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Abstract: We discuss a method called “cluster scoring” for supervised learning
from a set of gene expression experiments. Cluster scoring generalizes methods
that rank individual genes based on their correlation with an outcome measure.
It begins with a clustering of the genes, for example from hierarchical clustering,
and then computes outcome scores both for individual genes and the average gene
expression for each of the clusters. A permutation method is used to identify the
significant subset of these scores. We illustrate the method on both simulated data,
and data from a study of lymphoma.
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1. Background

In this paper we present a method for “supervised learning” from gene ex-
pression data. As our starting point, we have gene expression data from a collec-
tion of experimental samples, each hybridized to a micro-array— either cDNA
or oligo arrays. Brown and Botstein (1999) and Dudoit, Yang, Callow and Speed
(2000) contain useful background information on microarrays.

We denote the expression values by x;; for genes ¢ = 1,...,p and samples
j = 1,...,n. Here typically p >> n. For oligo arrays these are the usual
estimated expression levels; for cDNA arrays, z;; is the log red/green ratio. We
also have available a response measure y = (y1,...,yy) for each sample (each y;
may be vector-valued). For example y; might be a censored survival time, or a
cancer class.

A number of methods have been proposed for evaluating the relationship
between individual genes and the response y. When y takes on just two values,
one can compute a standard t-statistic for each gene to assess its change over the
two conditions. However with so many genes under assessment, control of the
false positive rate can be important. Proposals along these lines include Tusher,
Tibshirani and Chu (2001) and Dudoit, Yang, Callow and Speed (2000). Tusher,
Tibshirani and Chu (2001) also discuss other response types, including multiclass
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and survival data, Bayesian approaches were proposed by Efron, Tibshirani, Goss
and Chu (2000) and Newton, Kendziorski, Richmond, Blatter and Tsui (2000).

One shortcoming of these proposals is the fact that they operate on individ-
ual genes. Many genes are likely to operate in pathways, and hence will show
significant correlation in expression. Clustering methods (see for example Eisen,
Spellman, Brown and Botstein (1998)) identify groups of genes with high corre-
lation. In this paper, we use clustering methods as the basis for identifying both
individual genes, and clusters of genes, that show significant correlation with a
response measure.

2. A Review of the SAM Procedure

The basic proposal of this paper (“cluster scoring”) is a generalization of
the SAM (Significance analysis of microarrays) procedure of Tusher, Tibshirani
and Chu (2001) for evaluating individual genes. We briefly review SAM, before
describing cluster scoring.

For each gene ¢ we define a score

T

d; = (1)

si+ S0

The quantity r; is a measure of the relationship between the expression measure-
ments for gene ¢ and the response: for example, if y takes on just two values
1 and 2, then r; = T;5 — T;1, the difference in average expression values. For
other response types, d; is a score statistic derived from an appropriate model.
Tusher, Tibshirani and Chu (2001) discuss scores for many different types of re-
sponse measures, including one-class, two-class, multi-class, paired, survival and
quantitative responses.

The quantity s; is a standard deviation for gene ¢, and sy > 0 is an adjustment
factor that prevents genes with very low expression levels from dominating the
results.

Given the set of d; values, i = 1,...,p, our task is to decide which ones are
“significantly” large. The SAM procedure is a way of thresholding the set of d;
values, and gives an estimate of the false positive rate of the resulting rule. A
different but related proposal is given in Dudoit, Yang, Callow and Speed (2000).
The SAM procedure is outlined below.

The SAM procedure

1. Compute the order statistics of the d;’s: d(l) << d(p)

2. Take B sets of permutations of the response values y; (typically B=100 or 200
is sufficient). For each permutation b, compute statistics d;"b and correspond-
ing order statistics d’("{’) < d’("g) <. < d’(k;)’). From the set of B permutations,

estimate the expected order statistics by J(i) =(1/B)>, d’(kf) fori=1,...,p.
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3. Plot the d(;) values versus the J(i). For a fixed threshold A, starting at the
origin and moving up to the right, find the first ¢ = 4; such that d;) —d;) > A.
All genes past i1 are called “significant positive”. Similarly, start at origin,
move down to left and find first ¢ = i9 such that J(i) —d;y > A. All genes past
i are called “significant negative”. For each A define the upper cut-point
cuty,(A) as the smallest d; among the significant positive genes, and similarly
define the lower cut-point cutyy,(A).

4. For a grid of A values, compute the total number of significant genes (from the
previous step), and the expected number of falsely called genes, by computing
the proportion of values among each of the B sets of d’("g, i=1,...,p, that
fall above cut,,(A) or below cut, (A).

5. The user then picks a value for A and the significant genes are listed.

observed d;)

T T T
-5 0 5

expected d;

Figure 1. SAM plot for some two-class data.

Figure 1 shows an example taken from Tusher, Tibshirani and Chu (2001).
There are 7129 genes and 8 samples, four in each of two classes (untreated and
treated). In the figure we have chosen A = 1.2 (based on the false positive rate),
giving the cut-points cuty, = —3.3, cuty,(1.2) = 3.3, and 46 genes are called
significant. The expected number of false positive genes is about nine. There are
24 called genes in the top right corner (red), and 22 called genes in the bottom
left (green). One advantage of the use of the A band to define cut-points, is the
potential for asymmetry. That is, cut,,(A) may not equal —cut;o,,(A) (although
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they are nearly equal in Figure 3) and hence more positive (or negative) genes
can be called significant.

3. Cluster Scoring

We now give the main proposal of this paper. We start with any clustering of
the genes. In this paper we use (average linkage) hierarchical clustering, because
of its popularity in micro-array analysis. We discuss the choice of clustering
method in Section 4.2. below.

For all clusters we compute the average gene expression: with hierarchical
clustering, clusters from all levels of the dendrogram are used. With p genes,
there are p — 1 such clusters. Then we apply SAM to the collection of both
individual genes and the cluster averages.

In some datasets, there might be a large cluster of highly correlated genes,
each of which is highly correlated with the response. In that instance, the cluster’s
average will also be highly correlated with the response. In other datasets, a single
gene might be highly correlated with the response. We would like our procedure
to work well in both situations.

Hence some special modification are needed to (a) encourage larger clusters
to emerge as significant (since they’re in competition with a large number of
individual genes), and (b) thin out the large set of clusters to focus on the
interesting ones. We give the cluster scoring procedure below, and then give
details of the modifications.

The use of the quantity so(p.) in step (2) encourages larger and tighter
clusters. It is an estimate of the standard deviation of d; for cluster size p.. In
more detail, by including the factor so(p.):

e for a given cluster size, the procedure rewards clusters having highly corre-
lated genes, and hence large values of s., and

e overall, it rewards larger clusters, since so(p.) will tend to be smaller for
larger clusters.

As an example of the first point, suppose there are two clusters of the same size,
the first being a tight cluster with s. = 10, and the second being less tight, with
se = 1. If sp(p.) = 5 say, then inclusion of this factor will reduce the value of d.
for the first cluster by a factor 10/(10+5) = 2/3, and that for the second cluster
by 1/(1 +5) = 1/6. Hence the score for the tighter cluster is reduced less, and
thus is favored.

The quantity so(p.) is computed by dividing the range of cluster sizes into
100 quantiles ¢; = 0, g2, . . ., 100, and then setting so(p.) equal to the o quantile
of {s¢;pe € (¢5,¢j+1]}. In this paper we set oo = 0.5.
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Step 3 thins out the clusters, keeping only those that are the “winning”
cluster for some gene.

Note that we count unique genes in computing the false positive rate: since
the clusters are overlapping this avoids counting a given gene more than once.

Cluster scoring

1. Start with a hierarchical clustering of the genes. Denote a cluster of
genes by ¢, and the corresponding gene expression average by I, =
(Zeas@e2y -5 Ten). There are 2p — 1 clusters, including individual genes.
Let p. be the number of genes in cluster c.

2. Define the score for each average gene expression Z. as

Te

d =" 2
© s+ s0(pe) @
Here r. measures correlation with the response, s, is standard deviation of
the cluster average Z., and so(p.) is an adjustment factor (details below).
3. For each gene i let ¢(i) be the set of clusters containing it. Let
¢é(1) = arg max |d,| (3)
c€ec(s)
the winning cluster for gene i. Let R be the set of winning clusters.
4. Apply the SAM procedure to the clusters ¢ € R. When computing false
positives, count unique genes.

4. An Example

We started with expression measurements of 3906 genes over 40 patient sam-
ples, from a study of diffuse large cell lymphoma (Alizadeh et al. (2000)). Diffuse
large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin’s
lymphoma, is clinically heterogeneous: 40% of patients respond well to current
therapy and have prolonged survival, whereas the remainder succumb to the
disease. The objective here is to relate gene expression to patient survival.

In order to test the procedure, we used the expression values but not the
observed survival times. Instead we simulated an artificial set of survival times,
so that the “true” cluster could be defined.

To carry this out, hierarchical clustering was applied to the genes, and then
a moderate-sized cluster of 162 genes was selected at random from the resulting
set of clusters. Denote this cluster by cg. A set of standard Gaussian survival
times for the 40 patients was simulated, having correlation 0.95 with the average
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gene expression of cluster ¢g. (0.95 being a high but plausible value in practice;
later this is reduced to 0.75) Then we applied the cluster scoring technique to
the data. The score d; is based on Cox’s score statistic for survival data, detailed
in Tusher, Tibshirani and Chu (2001).

The results are shown in Figures 2, 3 and 4. Figure 2 shows the set R of 381

“winning” clusters from step 3 of the cluster scoring procedure.

0R-®PBOO

Figure 2. Results for simulated data, correlation =0.95. The true generating

(negative) cluster is black. Shown is the set R of 381 “winning” clusters from
step 3 of the cluster scoring procedure. Red clusters have a average gene
expression that is positively correlated with the response, while green ones
are negatively correlated with the response. The true black cluster also
belongs to R. The correlation of the average gene expression from each
cluster with the response ranged from —0.77 to 0.95.

The SAM plot in the middle right panel of Figure 3 calls seven clusters
significant: these are marked on the dendrogram of Figure 4. The other panels
in Figure 3 are explained in the figure caption.

We see in Figure 4 that the chosen clusters are “sons” of the preassigned
true cluster (marked in black). There are 162 unique genes in the called clusters,
with zero false positive genes. Hence the procedure identified the correct set of
genes exactly.

Figure 5 shows the sizes of the top 100 scoring clusters, as the factor sqg is
varied from the Oth percentile to the 100 percentile of the s; values. The cluster
sizes increase slightly, with a marked increase at the 100th percentile. In our

example we use the 50th percentile, as a reasonable intermediate value.
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Figure 3. Results for simulated data, correlation =0.95. Top left panel shows
how the standard deviation s. tends to decrease with cluster size. The top
right panel shows the score d. as a function of the standard deviation s,
without the factor sg: smaller clusters have the largest (negative) scores. sg
is used in the middle left panel, and now some clusters with larger standard
deviations are favored. The middle right panel shows the SAM plot with
A = 1.64. The observed scores d. are plotted on the vertical axis, versus
the expected scores under permutation of the responses values. Finally the
bottom left panel displays the SAM cutoff for the score d., and the resulting
chosen clusters below the broken line.

©

o

Figure 4. Results for simulated data, correlation =0.95. The true generating
(negative) cluster is black and was called by the procedure, as were the green
clusters.
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Figure 5. Sizes of the top 100 scoring clusters, as the factor s¢ is varied from
the Oth percentile to the 100 percentile of the s; values.
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Figure 6. Com frison of cluster scoring to individual gene screening via
SAM. Shown are number of falsely called genes versus number of called
genes, for SAM Qlue, broken) and cluster scoring (red, solid).

o))
¢}

Figure 6 compa%es cluster scoring to the SAM procedure for screening in-
dividual genes, as the threshold for each method is varied. We see that cluster
scoring, by explicitly looking for clusters, has fewer false positive genes for the
same number of genes called significant.

Figure 7 shows the result when the correlation between the survival times
and the average gene expression of the “true” cluster is reduced from 0.95 to
0.75. The results degrade a little, as there are now three false positive clusters.

How large is a realistic correlation in this setting? With so many genes,
moderately large correlations with any response variable can be expected to occur
just by chance. To quantify this, we fixed the expression data and generated 50
sets of survival times as independent standard Gaussian variates. The average
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maximum (absolute) correlation of the survival times with gene expression was
0.54. Hence correlations of 0.75 and above are not much over “noise” level in this
problem. Note that this example was based on a single simulation. A broader
study would be useful in understanding the properties of the method. We study
one such property next.
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Figure 7. More results for simulated data, correlation=0.75. The true gen-
erating (negative) cluster is black and was called by the procedure, as were
the green clusters. The red clusters are the positive called clusters.

4.1. Simulations

We generated 50 replications from the scenario described above. The objec-
tive was to investigate how the cluster sizes chosen by the method compared to
the “true” cluster size, and to measure the correlation of the chosen cluster with
that of the “true”cluster.

The cluster size of the “true” cluster was chosen at random from the set
of unique cluster sizes, and then vector of response values y were generated by
adding standard Gaussian noise to the gene expression average of this true cluster.
Fifty permutations were used in the SAM procedure. The standard deviation of
the noise was chosen so that the correlation of y with the gene expression average
of this true cluster had mean about 0.75 across the 50 simulations. We then
applied cluster scoring to each of the 50 datasets, giving the results in Figure
8. The left panel shows the cluster size of the cluster with highest score, versus
the size of the true cluster. The procedure sometimes underestimates the true
cluster size but overall does quite well. The right panel plots the correlation of
the gene expression average of the highest score cluster and the true cluster. This
correlation averages around 0.75, which is to be expected from the noise level in
the data.
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Flggre 8. Results from 50 simulations. Le&ft panel shows the cluster size
of tfle cluster with highest score, versus tlwe size of the true cluster. The
rlgh% panel plots the correlation between th@ average gene expression of the
highest score cluster and that for the trueacluster versus the true cluster
size.
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4.2. Choice of clustering method

In this paper we use hierarchical clustering of the genes as input into the
cluster scoring procedure. However any set of gene clusters could be used. Possi-
bilities include k-means clustering, self-organizing maps (Kohonen (1990)), gene
shaving (Hastie et al. (2000)), and plaid models Lazzeroni and Owen (2000).
Some of these methods (gene shaving, plaid models) allow genes to appear in
more than one cluster. To make the cluster scoring procedure most effective, it
is best to have a wide range of cluster sizes in the available set. Hierarchical
clustering provides such a set; one could use k-means clustering for many dif-
ferent values of k to achieve a similar range of cluster sizes. We have not yet
experimented with cluster scoring using other clustering methods.

5. Lymphoma Data

In this section we analyze the lymphoma data mentioned earlier, here using
the actual survival times rather than simulated ones.

The left panel of Figure 9 shows the observed versus expected plot for the
cluster scores. With a value of A = 0.3, the resulting cutoff was —1.78 and gave
the clusters shown in Figure 10. They are small- ranging in size from 1 to 4
genes, 33 unique genes in all.

Table 1 shows the number of called genes, and estimated number of false
positives for various values of the tuning parameter A. For A = 0.3, about one
third of the 33 called genes are expected to be false positives. This high false
discovery false is about the same as that obtained from SAM, and indicates that
the correlation between gene expression and survival time is not great.
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Table 1. Lymphoma data: number of called genes, and estimated number of
false positives for various values of the tuning parameter A.

A Aver # false calls # called False discovery rate
0.0 2713.25 3258 0.83
0.1 1290.00 1831 0.70
0.2 71.35 156 0.46
0.3 11.45 33 0.35
0.4 0.00 0 —
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Figure 9. Left panel: Observed vs expected plot for actual lymphoma data.
Right panel: Cluster score versus SAM score, for each gene.

The significant gene clusters may be worthy of further investigation. They
are shown in Figure 10. Many of the genes are ESTs (expressed sequence tags). A
nice feature of the Cluster Scoring procedure is that each gene is assigned a score,
the largest score from any cluster in which it appears. The right panel shows
these cluster scores versus the SAM scores, for each gene. We see that many of
the genes called significant (below the broken line) have individual scores which
are not very large (~ —1).

In general, the results in this example are somewhat disappointing. No large
significant clusters were found. This does not seem to be a fault of the cluster
scoring method, but is due to a general lack of correlation between expression
and outcome in these data. Our collaborators are currently collecting a larger
set of samples, and these may provide more useful results.

6. Discussion

Cluster scoring is a promising method for finding both individual genes and
clusters that have significant correlation with a response measure. It can be used
for a wide variety of outcome measures, including survival categorical and paired
data.
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Figure 10. Winning clusters (top) and significant clusters (bottom) for the
actual lymphoma data.

Associated with the method is an estimate of the false discovery rate, count-
ing the number of unique false positive genes in the clusters that are called
significant. However the development in this paper is exploratory, and we make
no rigorous claims about the statistical properties of our method. Further inves-
tigation of these properties is needed, including study of type I error rates, power
and false discovery rate.

A new version of the SAM software may soon be available, implementing the
cluster scoring methodology, and interfacing with both Xcluster (http://genome-
www.stanford.edu/~sherlock/) and Cluster and TreeView (http://rana.lbl.gov/).
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