
Statistica Sinica 12(2002), 337-359

DETECTING GENETIC ASSOCIATION IN CASE-CONTROL

STUDIES USING SIMILARITY-BASED ASSOCIATION

TESTS

Shuanglin Zhang1,2, Kenneth K. Kidd1 and Hongyu Zhao1

1Yale University School of Medicine and 2Michigan Technological University

Abstract: Although traditional case-control studies may be subject to bias caused
by population stratification, alternative methods that are robust to population

stratification such as family-based association designs may be less powerful due to
overmatching between cases and controls. Furthermore, case-control studies have

the advantages of easy sample collection. Recently, several statistical methods have
been proposed for association tests in structured populations using case-control de-

signs that may be robust to population stratification. In this article, we propose
a similarity-based association test (SAT) to identify association between a candi-

date marker and a disease of interest using case-control designs. We first determine
whether two individuals are from the same subpopulation or from different subpop-

ulations using genotype data at a set of independent markers. We then perform
an association test by comparing within-subpopulation allele-frequency differences

between cases and controls. Simulation results show that the SAT has correct
type-I error rate in the presence of population stratification. The power of the SAT

is higher than that using family-based association designs and is also higher than
other robust association methods when the high-risk allele is the same across all

subpopulations.
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1. Introduction

With the completion of the Human Genome Project, hundreds of thousands
of genetic markers have been identified in humans. Such abundant information
is invaluable for the efforts of mapping disease genes. Because it has become
clear that traditional linkage methods may not offer enough power to localize
genes conferring small to moderate risks to a trait of interest, association studies
may serve as a powerful and viable alternative to mapping complex disease genes
(Risch and Merikangas (1996)). One major limitation of standard case-control
association studies is that spurious association can result from population strat-
ification. Such spurious association can occur when the disease frequency varies
across subpopulations, thereby increasing the probability that affected individu-
als will be sampled from certain subpopulations and increasing the chance of any
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marker allele with high frequency in the overrepresented subpopulations being
associated with the phenotype. One well-known example is the immunoglobulin
gene Gm for non-insulin-dependent-diabetes mellitus (Knowler, Williams, Pet-
titt and Steinberg (1988)). Among residents of the Gila River Indian Commu-
nity in Arizona, diabetes was associated with the haplotype Gm. However, this
association no longer exists among ethnically homogeneous subjects. The con-
founding by population stratification occurred because the Gm haplotype serves
as a marker for European heritage, and the risk of diabetes varies with the level
of this ancestry. Population genetics studies have shown that allele frequency
at some loci can vary considerably among populations contributing to the U.S.
white population (Kang, Palmatier and Kidd (1999)).

To avoid false positives resulting from population stratification, family-based
association studies (Falk and Rubinstein (1987), Spielman, McGinnis and Ewens
(1993)) have received much attention in the literature because of their robust-
ness to population stratification and their higher power to detect genes of small
to moderate effects compared to linkage studies. However, such family-based
association designs are less powerful than standard case-control designs in a ho-
mogeneous population both for the analysis of qualitative traits and that of
quantitative traits (Morton and Collins (1998), Risch and Teng (1998), van den
Oord (1999)). Furthermore, case-control designs have practical advantages over
family-based designs in that collecting DNA from unrelated cases and controls is
often easier than collecting DNA from relatives of affected individuals, especially
for late-onset diseases. In addition, the same genotype data from unrelated nor-
mal controls may be used for separate genetic studies. However, to fully realize
the power of case-control studies, the population stratification issue still needs
to be addressed.

Recently Devlin and Roeder (1999), Prichard, Stephens, Rosenberg and Don-
nelly (2000), Reich and Goldstein (2001), and Satten, Flanders and Yang (2001)
have proposed statistical methods to use genomic markers to control population
stratification in the analysis of case-control data. Such methods are more power-
ful than family-based association designs and robust to population stratification.
In this article, we develop an alternative method, the Similarity-based Associ-
ation Test (SAT), that is valid in the presence of population stratification for
case-control data. To construct the test statistic, we first use the genotypes of
sampled individuals at a series of independent markers to calculate similarities Sij

for individuals i and j. We then model the similarities using a normal mixture
model to analyze the similarities as one or two clusters (within-subpopulation
group and between-subpopulation group) and use the Bayesian Information Cri-
terion (BIC) to estimate the number of clusters. The test statistic is based on
a weighted average of allele frequency differences between cases and controls
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within each subpopulation. We have performed extensive simulations to assess
whether the SAT procedure has the correct type-I error rate in the presence of
population stratification and to compare its power with other test statistics, in-
cluding the STRAT procedure proposed by Pritchard, Stephens, Rosenberg and
Donnelly (2000) and the transmission/disequilibrium test (TDT) developed by
Spielman, McGinnis and Evens (1993). The simulation results show that the
SAT has correct type-I error rate in the presence of population stratification
and its power compares favorable with other statistical tests that are robust to
population stratification.

2. Similarity-based Association Test (SAT)

Table 1. The 2× 2 contingency table for case-control studies using a biallelic
marker.

Number of Number of Total number
allele A allele a of alleles

Cases n11 n12 2nd

Controls n21 n22 2nc

Total numbers of alleles 2nA 2na 2n

Consider a case-control study on genetic association between a biallelic
marker A with two alleles A and a and a trait of interest. The data can be
represented in a 2 × 2 contingency table (Table 1). We assume that all of the
individuals in the sample are unrelated. One standard test for association be-
tween the trait and marker alleles from this contingency table is the Pearson test
statistic:

Tp =
(q̂d − q̂c)2

V̂
, (1)

where q̂d = n11/(2nd) and q̂c = n21/(2nc) are the estimated allele A frequency in
the case and control groups respectively, V̂ = 2n(ndnc)/(nAna) is the estimated
variance of q̂d − q̂c under the null hypothesis of no association. The notations
n11, n21, nd, nc, nA, and na are defined in Table 1. If the underlying population
is homogeneous and there is no association between the trait and the marker, the
test statistic Tp has a chi-square distribution with one degree of freedom. How-
ever, if the underlying population is not homogeneous, e.g., there is population
stratification, the expectation of q̂d − q̂c may not be zero and statistical inference
based on the test statistic Tp may be biased. For example, let us assume that
the sampled individuals come from two different subpopulations and there is no
association between marker A and disease within each subpopulation. Let q1 and
q2 denote the allele A frequency within subpopulations 1 and 2, respectively, f1
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denote the probability that a sampled affected individual is from the first sub-
population, and g1 denote the probability that a sampled normal individual is
from the first subpopulation. Then we have

E(q̂d − q̂c) = q1f1 + q2(1 − f1) − (q1g1 + q2(1 − g1))

= (q1 − q2)(f1 − g1). (2)

Therefore, if the allele frequencies differ between the two subpopulations and
f1 �= g1 (i.e., the disease prevalence is different between the two subpopulations),
then E(q̂d − q̂c) �= 0. Then the simple chi-square test statistic for the 2× 2 table
does not have a chi-square distribution with one degree of freedom even when
there is no disease-marker association in each subpopulation. Such statistical
tests that ignore population heterogeneity may lead to erroneous conclusions.

To address this issue, we have developed a statistical procedure that is robust
to population stratification in the testing of disease-marker associations. There
are two steps in our procedure: (1) we use genotype data at a series of indepen-
dent markers to infer whether two individuals are more likely to be within the
same subpopulation or more likely to be in different subpopulations; (2) we per-
form an association test using the inference on individual pair relationship. The
difference between our method and previous methods lies in how the information
from independent markers is utilized to correct for population structures. In the
rest of this section, we describe these two steps in detail.

2.1. Statistical inference on whether a pair of individuals belong to
the same subpopulation

We first define similarity between two individuals using a set of independent
markers in our assessment of whether two individuals are more likely to be within
the same subpopulation, or more likely to be in different subpopulations. In this
article, we focus on biallelic markers as they are more abundant than other types
of genetic markers in the human genome and great efforts have been made to
identify these markers for association studies. Suppose there are L independent
biallelic markers Al, where l = 1, . . . , L, and each marker Al has two alleles Al

and al. We further suppose there are n individuals in our sample and let zil

denote the genotype of the ith individual at the lth marker, where i = 1, . . . , n
and l = 1, . . . , L. The value of each zil can be 0, 1, or 2, corresponding to
the ith individual having 0, 1, or 2 copies of allele Al, respectively. A natural
measure of the difference in genotypes between the ith and the jth individuals
is dij =

∑L
l=1 |zil − zjl|. In this article, we define the similarity Sij between the

ith and the jth individuals as

Sij =
dmax − dij

dmax
, (3)
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where dmax is the maximum observed value of the dij across all pairs of individ-
uals.

For individuals within the same subpopulation, we expect similarity to be
smaller than similarity between individuals from different subpopulations. There-
fore, we propose to cluster these similarity estimates into two components: a
within-subpopulation component and a between-subpopulation component. To
identify possible components among the Sij , we assume the following normal
mixture model for the similarity estimates Sij :

Sij ∼
K∑

k=1

pkN(Sij , µk, σ
2
k), (4)

where K represents the number of components in the mixture model, pk denotes
the proportion of the kth component, and N(s, µk, σ

2
k) denotes the Gaussian

density function with mean µk and variance σ2
k. The maximum likelihood esti-

mates of the parameters pk, µk, and σk, for a given K, can be obtained using
the Clustering Expectation-Maximization (CEM) method (Celeux and Govaert
(1995)).

The choice of the number of components in the normal mixture model (4) is
a difficult problem. Biernacki and Govaert (1999) and Biernacki, Celeux and Go-
vaert (1999) discussed several criteria for choosing the number of component K,
including the Akaike information criterion AIC(K) = −2L(K)+2M(K) (Akaike
(1974)) and the Bayesian information criterion (BIC) BIC(K) = −2L(K) +
M(K) log N, where N is the total number of observations, L(K) =

∑
i,j log(

∑K
k=1

p̂kN(Sij , µ̂k, σ̂
2
k)) is the maximized log likelihood for a given K, and M(K) is the

number of free parameters in the mixture model. Based on extensive simulations,
Biernacki, Celeux and Govaert (1999) concluded that the BIC criterion behaves
better in general and we use it. From our experience with simulated data sets
based on both coalescent models and on empirical population genetics data, a
choice for K is often made between 1 and 2. The case of K = 1 corresponds
to a single population, no population heterogeneity, whereas K = 2 admits a
within-population component and a between-population component. Note that
K = 2 does not imply that there are only two subpopulations. When K = 2, let
p̂k, µ̂k and σ̂k denote the maximum likelihood estimates of the parameters pk,

µk and σk, respectively. Then

tijk =
p̂kN(Sij,µ̂k, σ̂

2
k)

p̂1N(Sij , µ̂1, σ̂
2
1) + p̂2N(Sij , µ̂2, σ̂

2
2)

is the conditional probability that Sij arises from the kth mixture component.
Assume µ̂1 > µ̂2, if tij1 > 0.5, we define the similarity indicator Wij between
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the ith and the jth individuals to be 1 and assume these two individuals belong
to the same subpopulation in our subsequent analysis. If tij1 < 0.5, we define
the similarity indicator Wij between the ith and the jth individuals to be 0 and
assume these two individuals belong to different subpopulations.

2.2. Similarity-based association test

Assume the case-control sample consists of nd affected individuals and nc

normal individuals. Let Dii′ denote the similarity indicator between the ith and
the i′th affected individuals, Bij denote the similarity indicator between the ith
affected individual and the jth normal individual, and Njj′ denote the similarity
indicator between the jth and the j′th normal individuals. Let xi denote the
genotype of the ith affected individual and yj denote the genotype of the jth
normal individual at the candidate marker. We start our introduction of the
Similarity-based Association Test (SAT) by considering

Us =
nd∑
i=1

xi

√
mdi(mdi + kdi)

kdi
−

nc∑
j=1

yj

√
mcj(mcj + kcj)

kcj
, (5)

where mdi =
∑nc

j=1 Bij , mcj =
∑nd

i=1 Bij, kdi =
∑nd

i′=1 Dii′ , and kcj =
∑nc

j′=1 Nj′j.
It is easy to see that mdi is the number of normal individuals in the same subpop-
ulation as the ith affected individual, mcj is the number of affected individuals
in the same subpopulation as the jth normal individual, kdi is the number of af-
fected individuals in the same subpopulation as the ith affected individual, and
kcj is the number of normal individuals in the same subpopulation as the jth
normal individual.

To better understand the meaning of Us, we consider an admixed population
with two subpopulations. We suppose that the sample consists of nd1 affected
individuals and nc1 normal individuals from the first subpopulation, and nd2

affected individuals and nc2 normal individuals from the second subpopulation.
If we can correctly identify all pairwise relationships, then it is easy to show that
Us = 2{√nd1nc1n1(q̂d1 − q̂c1)+

√
nd2nc2n2(q̂d2 − q̂c2)}, where n1 = nd1+ nc1 is the

number of individuals from the first subpopulation, q̂d1 =
∑nd1

i=1 xi/(2nd1) is the
allele A frequency among the affected individuals in the first subpopulation, q̂c1 =∑nc1

j=1 yj/(2nc1) is the allele A frequency among the normal individuals within
the first subpopulation, respectively, and n2, q̂d2 and q̂c2 are similarly defined
for the second subpopulation. Therefore, Us is the weighted sum of the allele
frequency differences between the affected individuals and the normal individuals
within each subpopulation. In general, if the sampled individuals come from M

subpopulations and we can correctly infer the relationship between any pair of
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individuals, the statistic Us is the weighted sum of the allele frequency differences
between the affected and the normal individuals within each subpopulation:

Us = 2
M∑

m=1

√
ndmncmnm(q̂dm − q̂cm), (6)

where the notation is similarly defined as above for the mth subpopulation. Un-
der the assumption that there is no disease-marker association within each sub-
population, E(Us) = 0, and the variance of Us is σ2 = 2

∑M
m=1 n2

mqm(1 − qm),
where qm is the allele A frequency in the mth subpopulation. We propose the
following estimator for σ2:

σ̂2 =
n∑

i=1

n∑
j=1

zi(1 − zj

2
)Wij , (7)

where zi (zi = 0, 1 or 2) denotes the genotype score at the candidate locus for
the ith individual in the sample without regard to the disease status. It is easy
to show that, under the assumption that we can correctly infer the relationship
between the ith and the jth individuals in the sample, σ̂2 = 2

∑M
m=1 n2

mq̂m(1 −
q̂m), where q̂m is the observed allele A frequency in the mth subpopulation. Based
on the above discussion, we define our SAT test statistic as

SAT =
Us

σ̂
, (8)

where Us was defined in (5) and σ̂ was defined in (7). This test statistic asymp-
totically follows the standard normal distribution.

3. Simulation Models and Other Statistical Tests Considered

In this section, we discuss the simulation models used to assess whether the
SAT is robust to population stratification and to compare the power of the SAT
with other association tests. In our simulation studies, we either generate the
data through coalescent models or through empirical population genetics data.
Other parameters varied in our simulations include different modes of inheritance,
different prevalences among the subpopulations, and different genetic distances
between the candidate locus and the disease gene.

3.1. Coalescent models

Coalescent models introduced by Kingman (1982a,b) were used in our simu-
lations. Recent developments of coalescent theory can be found in a review article
by Fu and Li (1999). Pritchard, Stephens, Rosenberg and Donnelly (2000) con-
sidered coalescent models with constant population sizes. To be more close to
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reality, we consider coalescent models with variable population sizes (Griffiths
and Tavaré (1994, 1997)) in our simulations, and allow subpopulations to have
different sizes.
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Figure 1. An example of a genealogy of a sample of five haplotypes. The
expected durations of the different time intervals under Wright-Fisher model
are shown on the right, measured in units of generations.

We give a brief description of the coalescent methods used to generate marker
genotypes for sampled individuals. Consider n haplotypes from one population,
they are connected by a single phylogenetic tree or genealogy in which the root
of the tree is the most recent common ancestor (MRCA) of these n haplotypes.
Figure 1 shows an example of a genealogy for a sample of five haplotypes. The
coalescent process we used generates the genealogy of the n sampled haplotypes
and generates the alleles for every sampled haplotype (the bottom nodes of the
genealogy) given the genealogy. Under the Wright-Fisher neutral model with
constant population size N haplotypes, the times between the nodes of the ge-
nealogy are exponentially distributed with means 4N/[k(k − 1)], where k is the
number of lineages at the level of the bottom node of this time interval. The
topology of the tree under this model can be generated by generating the time
between nodes and randomly choosing lineages to combine at each node. For
a given topology, if the mutation rate for each lineage in each generation is µ,

the probability of no mutation on a given branch of length t is (1 − µ)t. In our
simulations, we assume that there are two alleles A and a and there are no re-
current mutations. Thus, if the allele of the MRCA is A, the allele at the node
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immediately below the MRCA is A if no mutation occurred between this node
and the MRCA; the allele at the node is a if at least one mutation occurred
between this node and the MRCA. In this way, we can generate the allele node
by node from the MRCA to the bottom nodes. Once the allele at a node is
a, all the alleles at the descendant nodes are of type a because of no recurrent
mutations. When we obtain the haplotypes, we randomly pair the haplotypes in
one population to form genotypes. For the case of variable population size, the
distribution of the time length between nodes needs to be modified to accommo-
date variable population sizes, see Griffiths and Tavaré (1994, 1997) for details.
When we examine the effects of recombinations between a genetic marker and the
underlying gene, in addition to considering mutation events, we also consider re-
combination events whose probability depends on the assumed distance between
the candidate marker and the disease mutation. If there is no recombination
between the two sites from the MRCA to the present time, we assign the allele
at the candidate marker according to the mutation process. If there is at least
one recombination between the two sites from the MRCA to the present time,
we assign the allele at the candidate marker according to the allele frequencies
at this marker. It is straightforward to modify the above simulation methods to
generate the genotype data of the structured population models to incorporate
population structures.

Model A. There was an ancestral population which had evolved for a long period
of time in constant population size, then this population divided into two subpop-
ulations T generations before the present time. From the time of division, the two
subpopulations experienced exponential growth without migrations. We assume
that the sizes of the two subpopulations were 100 and 10000 when they divided,
and the current sizes are 107 and 5 × 107, respectively, so the first subpopula-
tion experienced a more rapid growth. We consider three population divergence
times between the two subpopulations: (1) T = 500 generations, (2) T = 1500
generations, and (3) T = 4500 generations. The first two separation times can
be thought of as the divergence times between non-African populations, and the
third can be thought of as the divergence time between African and non-African
populations (Goldstein, Linares, Cavalli-Sforza and Feldman (1995)).

Let f denote the probability that an affected individual is sampled from the
first subpopulation, g denote the probability that a normal individual is sampled
from the first subpopulation, and RR be the ratio of the prevalences of the disease
in the two subpopulations. For a rare disease,

RR ≈ f

1 − f

1 − g

g
. (9)



346 SHUANGLIN ZHANG, KENNETH K. KIDD, HONGYU ZHAO

In our simulations, we fix g = 0.2 and allow RR to vary from 1 to 7. The
value of f may be calculated from (9). For each population divergence scenario,
we independently simulate L independent markers that are not associated with
the disease phenotype. For each marker, we simulate genotypes of nAf + ncg

individuals from the first subpopulation and nA(1 − f) + nc(1 − g) individuals
from the second subpopulation. We assume the mutation rate µ = 5 × 10−7 per
generation, and only select markers whose allele frequencies are as least 0.2 in
the sample. This threshold was also used by Pritchard and Rosenberg (1999) to
approximate the likely characteristic of SNP surveys (Wang et al. (1998)). Among
the nAf + ncg genotypes generated for the first subpopulation, we randomly
assign nAf individuals to the case group and the others to the control group.
Similarly, among the nA(1 − f) + nc(1 − g) genotypes generated for the second
subpopulation, we randomly assign nA(1 − f) individuals to the case group and
the others to the control group.

To simulate genotypes at the candidate locus, we first simulate the genealo-
gies of the chromosomes carrying the disease mutation using the same coalescent
models, except that we are only concerned about the chromosomes carrying the
disease mutation. We assume that the chromosomes with the disease mutation
experienced the same evolutionary process as other chromosomes, and that the
number of affected individuals in the two subpopulations were 10 and 50, re-
spectively, when the two subpopulations divided. We further assume that the
number of the affected individuals in both subpopulations is 5 × 105 at present.
Therefore, the prevalence of the disease allele is 5% and 1% in the two subpop-
ulations. After we simulate the genealogy, we assign the allele on the MRCA
chromosome according to the allele frequencies estimated from genotypes at in-
dependent markers. At last, we get the genotypes of disease individuals according
to heredity models (dominant and recessive).

Model B. In Model A, there is no migration between the two subpopulations since
they divided. In Model B, we assume that the two subpopulations divided 4500
generations ago and recently merged to form an admixed population. In this ad-
mixed population, those individuals whose origin is the first subpopulation have
all of their genetic materials inherited from the first subpopulation; those individ-
uals whose origin is the second subpopulation have 80% of their genetic materials
inherited from their ancestry and 20% of their genetic materials inherited from
the first subpopulation. This structure could represent the genetic compositions
of the European Americans and the African Americans in the United States. For
Model B, we use two steps in our simulations. In the first step, we use the same
procedure as that in Model A to get chromosomes’ marker alleles at L indepen-
dent markers and the candidate marker in the two subpopulations. In the second
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step, for any chromosome in the second subpopulation, we randomly choose 20%
of the markers among the independent markers and replace the alleles in these
20% markers by the alleles of corresponding marker alleles of a random chosen
chromosome from the first subpopulation. At the candidate marker, we randomly
replace 20% of the chromosomes in the second subpopulation by a random sample
of the chromosomes from the first subpopulation.

We assume that a total of 500 unlinked biallelic markers are used for our
inference on the population structure, and the general population consists of two
subpopulations in all coalescent models.

3.2. Empirical population genetics data

One limitation of the simulations based on coalescent models is that these
models may not represent the human population evolutionary histories well.
Therefore, in our simulations, we also use empirical population genetics data
from a population genetics database ALFRED (Cheung, Osier and Kidd (2000);
http//info.med.yale.edu/genetics/kkidd) that provides allele frequencies for both
SNPs and microsatellite markers in different populations. For our simulation pur-
poses, we extracted 130 markers across four populations, including Danes, San
Francisco Chinese, Biaka and Maya. We use these four populations to represent
the populations from four different continents. For microsatellite markers, be-
cause we focus on the use of SNP markers in our methods, we pool the alleles to
form biallelic markers with allele frequencies between 10% and 90%. However,
this procedure may result in loss of information for the analysis of microsatellite
markers and we are currently extending our methods to handle microsatellite
markers.

If we sample from the general population, let nd1, nd2, nd3, and nd4 denote
the number of affected individuals sampled from the four populations (Danes,
San Francisco Chinese, Biaka and Maya), respectively, and let nc1, nc2, nc3, and
nc4 denote the number of normal individuals sampled from the four populations,
respectively. In our simulations, we vary the proportions of the affected and
normal individuals from the four subpopulations as follows. We first generate
the number of normal individuals from the four populations (nc1,nc2,nc3,nc4) from
a multinomial distribution with parameters (p1, p2, p3, p4), where (p1, p2, p3, p4)
are random variables generated from the Dirichlet Distribution with parameters
(n0

c1, n
0
c2, n

0
c3, n

0
c4), nc = n0

c1 + n0
c2 + n0

c3 + n0
c4. This means that, on average, the

number of normal individuals sampled from Danes, Chinese, Biaka and Maya
are n0

c1, n0
c2, n0

c3, and n0
c4, respectively. However, for each realized sample, we

allow the exact number of individuals from each subpopulation to vary. In our
simulations, we set n0

c1 : n0
c2 : n0

c3 : n0
c4 = 10 : 3 : 4 : 3 to increase the chance
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that every population is represented in the overall sample. We then generate
the number of affected individuals from the four populations (nd1, nd2, nd3,nc4)
similarly, but we assume that the disease risk ratios in the four subpopulations
are 1 : 1+R : 2+R : 3+R, where R is a random number with uniform distribution
on the interval [0,1]. Then, by using (9), we can get nd1, nd2, nd3 and nd4.

In our assessment of whether SAT is robust to population stratification,
we generate 100 sets of nci and ndi, i = 1, . . . , 4. For each set of nci and ndi,
i = 1, . . . , 4, we independently generate marker data 100 times for every marker
among the 130 markers mentioned above, i.e., we generate 100× 130 = 1.3× 104

markers that have no association with disease phenotype. For each set of nci and
ndi, i = 1, . . . , 4, we perform statistical tests for each of the 1.3 × 104 markers.

To compare the power of SAT with other statistical tests, we systematically
assign the trait locus across the 130 markers. Let A and a denote the two alleles
and f11, f12, and f22 denote the penetrances for genotypes AA, Aa, and aa,

respectively. Let f11 = α, f22 = β, f12 = γ (γ = α or β corresponds to a
dominant or recessive disease model), and RA = α/β. For a given RA value and
mode of inheritance, the proportions of affected individuals with genotypes AA,

Aa and aa can be easily calculated. In our simulations, we vary the values of RA

and disease models. In addition, we either assume all subpopulations have the
same high-risk allele or allow each individual subpopulation to have the high-risk
allele chosen randomly according to its allele frequency in that subpopulation.

For every marker among the 130 markers, we independently generate the
marker alleles B times according to the allele frequencies. Therefore, we obtain
alleles in a set of 130 × B markers, and use these 130 × B markers to infer the
components of similarities from a sample of individuals. For power comparisons,
we fix nci = n0

ci, i = 1, . . . , 4 and R = 1. We independently generate the trait
locus data at each of the 130 markers 1,000 times, i.e., we generate data at
1.3 × 105 trait loci.

3.3. Other association tests compared with the SAT

In our simulation studies, we compare SAT with four other statistics. The
first three statistics are all applicable to case-control studies whereas the fourth
test statistic requires a different design. The first statistic is the Pearson statistic
at (1) which ignores potential population structure. This statistic can be quite
sensitive to population heterogeneity and may lead to false-positive rates much
higher than the nominal level. The second statistic, Tm, is similar to SAT ex-
cept that the true pairwise relationship is used in the analysis, i.e., the Wij are
assigned their true values instead of being estimated from independent markers.
This test represents an ideal case and the maximal power we may achieve with
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our procedure. The third test, STRAT, was proposed by Pritchard, Stephens,
Rosenberg and Donnelly (2000).

The fourth test statistic compared is the TDT proposed by Spielman, McGin-
nis and Evens (1993). To apply this test statistic, we need to collect parents-child
triads instead of a sample of unrelated cases and controls. For each family triad,
we first generate genotypes of the affected individuals and then generate the
genotypes of their parents in our simulations. The prevalence of the disease is
specified under each coalescent model. When empirical population genetics data
are used in our simulations, we assume the prevalence of the disease in the Dan-
ish population is 1% and the prevalence in other populations can be calculated
using the relative risks among the subpopulations. In our simulations, we keep
the total sample the same between the case-control design and the TDT design.

4. Results

4.1. The Accuracy of clustering for similarities

Because the SAT will only perform well if the similarities can be clustered
correctly, we first assess the performance of the clustering method in our simula-
tions. The results are summarized in Table 2 for coalescent models with different
sample sizes from two subpopulations, and from the second subpopulation only.

Table 2. The performance of the similarity-based clustering method under
coalescent models for different sample sizes based on 500 unlinked markers
and 100 replications. T is the divergence time of the two subpopulations in
generation (for the case of one subpopulation, all sampled individuals come
from the second population). MK is the percentage of the 100 replications
in which the number of similarity components is correctly estimated. MSS

is the mean proportion of the individual pairs that are assigned the correct
relationship, i.e., whether they are in the same subpopulation or in different
subpopulations in 100 replications. Among all sampled individuals, there is
an equal number of affected and normal individuals.

T=500 T=1500
Sample size Two populations One population Two populations One population

MK MSS MK MK MSS MK

50 100% 96.00% 100% 100% 99.76% 100%
100 100% 96.17% 100% 100% 99.82% 100%
150 100% 96.58% 100% 100% 99.82% 100%
200 100% 96.53% 100% 100% 99.83% 100%
250 100% 96.37% 100% 100% 99.82% 100%
300 100% 96.31% 100% 100% 99.82% 100%
350 100% 96.56% 100% 100% 99.83% 100%
400 100% 96.71% 100% 100% 99.83% 100%
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It is easy to see that the estimation of the number of similarity groups is very
reliable using the BIC criterion. In the presence of two subpopulations, more than
96% and 99.76% of all pairwise relationships are correctly inferred for the case
of T = 500 and T = 1500 respectively. The results for T = 4500 are not shown,
but it is apparent that the two subpopulations are more easily distinguished in
this case. It is clear that the results are stable for varying sample sizes. Although
there are some misclustered similarities, this has little effect on the type-I error
rates. Table 3 summarizes the results of similarity clustering using empirical
population genetics data by using different numbers of independent markers for
a sample of 100 cases and 100 controls. When 520 independent markers are
used to make inference on pairwise relationships, only 2.07% of the pairs are
misclassified. This proportion reduces to 0.31% when 1040 markers are used for
similarity inferences.

Table 3. The performance of the similarity-based clustering method
using empirical population genetics data. K̂ is the estimated number
of similarity components and SS is the proportion of the individual
pairs that are assigned the correct relationship, i.e., whether they are in
the same subpopulation or in different subpopulations. The results are
based a sample consisting of 100 affected individuals and 100 normal
individuals.

Four Populations One Population
Number of Biaka Danes Chinese Maya

Loci K̂ SS K̂ K̂ K̂ K̂

520 2 97.93% 1 1 1 1
780 2 99.14% 1 1 1 1
1040 2 99.69% 1 1 1 1

When we apply the clustering method developed by Pritchard, Stephens and
Donnelly (2000) using the same set of genotype data, the number of subpopu-
lations estimated from their method tends to overestimate the true number of
subpopulations. For example, under Model A with a population divergence time
of 500 generations, the log-likelihoods of the data given the number of the popu-
lations are −237289, −237276, and −237295 for G = 2, 3, and 4, respectively. If
we choose a uniform prior on G, the estimated number of subpopulations should
be three instead of two. For the simulated data based on empirical population
genetics data with 780 markers, the estimated number of populations is six by
the method of Pritchard, Stephens and Donnelly (2000). Although an overes-
timated number of subpopulations may not induce spurious association due to
population stratification, it will nonetheless reduce the power of the test.
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4.2. Type-I error

Under coalescent models, we simulate a large number of independent biallelic
candidate loci under the null hypothesis of no disease-marker association and
compare the type-I error rates among three test statistics: the Pearson chi-
square statistic Tp, SAT and Tm. The results summarized in Table 4 for three
statistical significance levels (0.05, 0.01 and 0.001) are based on 105 replications.
The standard errors for the type-I error rate estimates are

√
0.05 × 0.95/105 ≈

6.9× 10−4,
√

0.01 × 0.99/105 ≈ 3.14× 10−4 and
√

0.001 × 0.999/105 ≈ 1× 10−4

for the true error rates 0.05, 0.01 and 0.001, respectively. It is easy to see that
the estimated type-I error of SAT and Tm are not significantly different from
the nominal levels. For Tp, the type-I error rate can be much higher than the
nominal level in the presence of population stratification. The three significance
levels considered here are appropriate if a candidate gene is studied. In practice,
a more stringent criterion is needed if a genome-wide search is performed. We
have also performed simulations for significance levels of 10−5 and 10−6 using
2 × 107 replications and the results show the same pattern.

Table 4. Type-I error rates in pecentage for the Pearson chi-square statis-
tic Tp, the SAT, and the Tm under coalescent models. In the table, T is
the number of generations since two subpopulations divided and RR is the
relative risk between the two subpopulations. The results are based on 105

replications. For each replication, the sample consists of 100 affected indi-
viduals and 100 normal individuals. A total of 500 independent markers are
used to make inference on the population structure.

P=5% P=1% P=0.1%

Model T RR Tp SAT Tm Tp SAT Tm Tp SAT Tm

1 4.51 4.91 5.01 0.85 0.97 0.98 0.069 0.087 0.088
500 4 20.4 5.05 5.01 8.77 1.03 0.98 2.421 0.101 0.094

7 34.6 5.02 5.04 20.2 0.98 1.01 8.893 0.102 0.094
1 4.44 4.93 4.94 0.87 0.97 0.97 0.084 0.092 0.095

A 1500 4 36.5 4.92 4.95 20.9 0.97 0.96 9.073 0.102 0.092
7 56.4 5.01 5.03 41.5 0.98 0.99 25.64 0.091 0.093
1 4.34 4.94 4.99 0.77 0.97 0.99 0.055 0.093 0.094

4500 4 46.1 5.02 5.05 31.3 0.98 0.98 17.24 0.095 0.093
7 66.2 4.99 5.04 52.0 0.97 0.98 37.25 0.094 0.094
1 4.30 5.02 5.10 0.85 1.04 1.03 0.075 0.103 0.110

B 4500 4 32.1 4.93 4.94 18.0 0.97 1.03 8.34 0.102 0.103
7 52.2 4.99 4.98 36.6 1.02 1.02 23.12 0.109 0.108
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Using empirical population genetics data the results on the type-I error rates,
by using different number of independent markers to infer the similarities, are
summarized in Table 5. When 4× 130 = 520 independent markers are used, the
type-I error rates of SAT are slightly higher than the nominal error rates, and
the type-I error rates are at the nominal rates when 8× 130 = 1040 independent
markers are used to infer the similarities. On the other hand, the type-I error
rates of Tp are much higher than the nominal error rates based on empirical
population genetics data.

Table 5. Type-I error rates in percentage for the Pearson chi-square statistic
Tp, the SAT, and the Tm using empirical population genetics data. Different
numbers of markers are used to make inference on the population structures.
Results are based a sample of 100 affected individuals and 100 normal indi-
viduals.

Number P=5% P=1% P=0.1%

of Loci Tp SAT Tm Tp SAT Tm Tp SAT Tm

520 15.5 5.7 5.1 6.5 1.2 0.97 2.2 0.13 0.110
780 15.6 5.5 5.1 6.5 1.2 1.0 2.3 0.11 0.096
1040 15.4 5.1 5.1 6.4 1.0 0.98 2.2 0.10 0.093

4.3. Power comparisons

Under each coalescent model, we compare the power of SAT to that of TDT
and Tm. The results are summarized in Table 6 and Table 7 for recessive and
dominant disease models, respectively. We assume physical distances of 50 ∼ 100
kb, 20 ∼ 50 kb, and 10 ∼ 20 kb, respectively, between the candidate marker
and the disease gene for population divergence times of 500, 1500 and 4500
generations between the two subpopulations. It can be seen from these two tables
that the power of SAT and Tm are almost identical in all cases, which implies
that there is almost no loss of information by the SAT procedure. In addition,
both SAT and Tm are more powerful than TDT for all cases considered. We also
compare the power of SAT with that of STRAT under a subset of simulation
models because the STRAT test is computationally intensive. In addition, we
assume the true number of subpopulations is known although STRAT tends to
overestimate the number of populations. The results (data not shown) suggest
that SAT is slightly more powerful than STRAT under Model A, and the two
tests have almost identical power under Model B.

The power comparisons of between SAT, TDT, Tm and STRAT based on
empirical population genetics data are summarized in Table 8. We use 8 ×
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130 = 1040 markers to infer the similarities in SAT and to infer the population
structures in STRAT. We assume that the number of subpopulations is known
for STRAT. It can be seen from this table that SAT and Tm have almost the
same power and both are more powerful than TDT in all of the cases considered.
When we assume the same high-risk allele across all subpopulations, SAT is more
powerful than STRAT, even when the number of subpopulations is given at the
true value for STRAT. When we allow different populations to have different
high-risk alleles, STRAT is more powerful because it considers one population as
a unit, whereas SAT and TDT pool information across populations by assuming
the same high-risk allele is shared by all subpopulations.

Table 6. Power comparisons of the three association tests (SAT, Tm and
TDT) under coalescent models for recessive diseases. The results are based
on 104 replications with each replication consisting of 100 affected individuals
and 100 normal individuals. T is the number of generations since population
divergence and RR is the relative risk for the two subpopulations.

Dist P=0.05 P=0.01

model T RR (kb) TDT SAT Tm TDT SAT Tm

50 0.777 0.884 0.881 0.701 0.814 0.811
1

100 0.618 0.733 0.728 0.493 0.628 0.623
500

50 0.756 0.879 0.879 0.652 0.797 0.799
4

100 0.599 0.725 0.724 0.469 0.604 0.603

20 0.795 0.882 0.881 0.683 0.804 0.802
1

50 0.553 0.668 0.664 0.448 0.555 0.551
A 1500

20 0.757 0.868 0.867 0.677 0.781 0.781
4

50 0.556 0.652 0.651 0.432 0.540 0.538

10 0.637 0.739 0.738 0.545 0.647 0.646
1

20 0.466 0.542 0.540 0.350 0.436 0.434
4500

10 0.815 0.724 0.724 0.730 0.624 0.624
4

20 0.428 0.529 0.528 0.342 0.424 0.424

10 0.584 0.698 0.695 0.482 0.598 0.597
1

20 0.443 0.526 0.525 0.328 0.425 0.423
B 4500

10 0.560 0.675 0.674 0.487 0.590 0.590
4

20 0.410 0.490 0.490 0.330 0.390 0.390
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Table 7. Power comparisons of the three association tests (SAT, Tm and
TDT) under coalescent models for dominant diseases. The results are based
on 104 replications with each replication consisting of 100 affected individuals
and 100 normal individuals. T is the number of generations since population
divergence and RR is the relative risk for the two subpopulations.

Dist P=0.05 P=0.01

model T RR (kb) TDT SAT Tm TDT SAT Tm

50 0.517 0.577 0.576 0.374 0.448 0.444
1

100 0.372 0.431 0.433 0.254 0.308 0.306
500

50 0.514 0.573 0.575 0.365 0.440 0.442
4

100 0.375 0.430 0.432 0.248 0.299 0.302

20 0.514 0.596 0.588 0.374 0.463 0.456
1

50 0.313 0.391 0.382 0.201 0.260 0.253
A 1500

20 0.513 0.591 0.590 0.388 0.464 0.465
4

50 0.311 0.391 0.392 0.211 0.271 0.271

10 0.450 0.489 0.489 0.318 0.374 0.376
1

20 0.306 0.325 0.320 0.189 0.217 0.213
4500

10 0.428 0.484 0.484 0.323 0.370 0.372
4

20 0.330 0.345 0.343 0.212 0.244 0.243

10 0.433 0.472 0.473 0.348 0.360 0.360
1

20 0.287 0.302 0.304 0.180 0.208 0.207
B 4500

10 0.415 0.468 0.468 0.320 0.350 0.352
4

20 0.291 0.321 0.320 0.221 0.232 0.235

In our simulations, we keep the total number of subjects the same between
the case-control design and the TDT design. However, we should note that a
large number of genomic markers have to be typed in the application of SAT
to avoid spurious association caused by population stratification, whereas only
genotypes from candidate markers are required for TDT designs. In addition,
there is no need to collect controls in the TDT design. In practice, the best design
depends heavily on the trait being studied. For example, for diseases where
parental information is relatively easy to collect, e.g., autism, the TDT design
may be preferred. On the other hand, if the parental information and/or relative
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information is difficult to obtain, e.g., drug dependence, the case-control design
may be the only feasible and powerful approach to identifying susceptibility genes.

Table 8. Power comparisons of the four association tests (SAT, Tm, TDT,
and STRAT) using empirical population genetics data. The sampling of the
affected individuals and normal individuals from each of the four subpopu-
lations is discussed in the text. RA denotes the relative attributable risk of
the different genotypes. The results are based on 1000 replications on 130
markers from ALFRED and 8 × 130 = 1040 independent markers are used
to make inference on the population structures (The fixed ancestral allele
model assumes that the high-risk alleles are the same across all subpopula-
tions; The random ancestral allele model assumes that we assign a high-risk
allele according to the allele frequency in normal individuals, independently
in each subpopulation).

Ancestral Disease P=0.05 P=0.01

allele model RA TDT SAT Tm STRAT TDT SAT Tm STRAT

4 0.313 0.443 0.444 0.380 0.15 0.254 0.259 0.200
recessive

8 0.708 0.846 0.848 0.770 0.523 0.721 0.724 0.625
fixed

4 0.395 0.547 0.540 0.525 0.220 0.387 0.377 0.345
dominant

8 0.526 0.659 0.654 0.641 0.375 0.531 0.532 0.520

4 0.198 0.283 0.287 0.375 0.088 0.147 0.150 0.200
recessive

8 0.379 0.530 0.532 0.766 0.242 0.390 0.392 0.618
random

4 0.342 0.460 0.461 0.520 0.185 0.299 0.302 0.340
dominant

8 0.385 0.510 0.511 0.591 0.225 0.337 0.335 0.36

5. Discussion

Although traditional case-control studies may be subject to bias caused by
population stratification, alternative methods such as family-based association
designs (Spielman, McGinnis and Evens (1993)) may be less powerful due to
overmatching between cases and controls (Risch (2000)). Furthermore, case-
control studies have the advantages of easy sample collection and possibly sim-
ple genetic analysis. Recently, Devlin and Roeder (1999), Pritchard, Stephens,
Rosenberg and Donnelly (2000), Reich and Goldstein (2001), and Satten, Flan-
ders and Yang (2001) have described statistical methods for an association test
in structured populations that may be robust to population stratification.

In this article, we have developed an alternative method, the similarity-
based association test (SAT), to detect association between a candidate marker
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and a disease of interest using case-control designs. We first infer whether two
individuals are from the same subpopulation or from different subpopulations
using genotype data at a series of independent markers. We then perform an
association test using SAT by comparing within subpopulation allele-frequency
differences between the cases and controls. We are testing for a single SNP while
using all other SNPs to classify subpopulations. In practical studies, what is
more realistic is that many candidate SNPs are tested and a set of independent
markers are used to classify subpopulations. Simulation results show that our
test has correct type-I error rate even in the presence of population stratification.
In contrast with STRAT proposed by Pritchard, Stephens, Rosenberg and Don-
nelly (2000), SAT does not estimate the number of the subpopulations. Instead,
we need only estimate the number of similarity groups. Usually a choice is made
between one or two groups, resulting in a simpler problem than estimating the
number of subpopulations. Furthermore, statistical inference for SAT is based on
an asymptotic distribution, making statistical significance assessment less com-
putationally demanding than for STRAT. Our simulation results show that the
power of SAT is higher than STRAT when the high-risk allele is the same across
all the subpopulations, even if we assume that the number of subpopulations is
known when we use STRAT. On the other hand, if we allow different populations
to have different high-risk alleles, STRAT is more powerful than SAT. However,
it is not clear which scenario is more likely for genes responsible for complex
traits. To address this problem, we may construct alternative statistics to detect
different allele effects in each subpopulation. For example, by using the notation
introduced previously, we may consider

Td =
∑
i,j

∑
i1,j1

(xi − yj)Bij(xi1 − yj1)Bi1j1Dii1Njj1,

and use simulation procedures to assess the statistical significance level of the
test.

Both SAT and STRAT rely on correct inference of the population structure
using a set of independent markers. Pritchard, Stephens, Rosenberg and Don-
nelly (2000) suggested that more than 100 microsatellite loci should be used for
STRAT. Based on empirical population genetics data, our experience suggests
that 500 to 1000 SNPs are needed to make accurate inference of the similarities
used by SAT. If the two subpopulations are very similar, it may be the case that
two clusters (the within-population cluster and the between-population cluster)
of the similarities cannot be distinguished from each other with 500 to 1000
SNPs. However, the false-positives due to population stratification are likely to
be small and the spurious association is not a severe problem in this case. In our
simulations (results not shown), we have considered two subpopulations divided
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100 generations ago. In this case, the estimated number of similarity groups by
the BIC criterion is one, and the estimated type-I errors of SAT (assuming a
relative risk of two) are 6% and 1.2% for nominal levels 5% and 1%, respectively,
based on 105 replications. However, if it is affordable to type a large number of
SNPs, we suggest use of more independent markers.

Although we have focused our discussion on SNPs, microsatellite markers
may be more informative to identify population structures. The reason that we
develop SAT for SNP markers here is that we think the abundance of SNPs in
the human genome may lead more research groups to examine SNPs in genetic
association studies in the future. We are currently exploring ways to extend the
SAT methodology to microsatellite markers and will report our results in the
future. Because the methods discussed in the paper only handle biallelic markers
and we do not have access to a large number of SNP marker allele frequencies
in many populations, we have to pool the alleles from microsatellite markers
to form biallelic markers in our assessments of various methods using empirical
population genetics data. However, if microsatellite markers are available in
genetic studies, they should be directly used to increase the ability to identify
population structures.

Although several methods, including ours, have been proposed to use ge-
nomic markers to control for population stratification, there has not been a pub-
lished study utilizing this idea. The power and usefulness of this new approach,
as well as the relative performance of various methods, need to be validated and
compared through real studies.
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165-182. IMA Volume 87, Springer-Verlag.

Kang, A. M., Palmatier, M. A. and Kidd, K. K. (1999). Global variation of a 40-bp VNTR in the

3’-untranslated region of the dopamine transporter gene (SLC6A3). Biological Psychiatry

46, 151-160.

Kingman, J. F. C. (1982a). The coalescent. Stochastic Process Appl. 13, 235-248.

Kingman, J. F. C. (1982b). On the genealogy of large populations. J. Appl. Probab. 19, 27-43.

Knowler, W. C., Williams, R. C., Pettitt, D. J. and Steinberg, A. G. (1988). Gm3-5,13,14

and type-2 diabetes mellitus: An association in American-Indians with genetic admixture.

Amer. J. Hum. Genet. 43, 520-526.

Hudson, R. R. (1990). Gene genealogies and the coalescent process. In Oxford Surveys in

Evolutionary Biology (Edited by D. Futuyma and J. Antonovics), 144. Oxford University

Press, Oxford.

Lazzeroni, L. C. and Lange, K. (1998). A conditional inference framework for extending the

transmission/disequilibrium test. Hum. Hered. 48, 67-81.

Morton, N. E. and Collins, A. (1998). Tests and estimates of allelic association in complex

inheritance. Proc. Natl. Acad. Sci. USA 95, 11389-11393.

Pritchard, J. K. and Rosenberg, N. A. (1999). Use of unlinked genetic markers to detect

population stratification in association studies. Amer. J. Hum. Genet. 65, 220-228.

Pritchard, J. K., Stephens, M. and Donnelly, P. (2000). Inference of population structure using

multilocus genotype data. Genetics 155, 945-959.

Pritchard, J. K., Stephens, M., Rosenberg, N. A. and Donnelly, P. (2000). Association mapping

in structured population. Amer. J. Hum. Genet. 67, 170-181.

Reich, E. E. and Goldstein, D. B. (2001). Detecting association in a case-control study while

correcting for population stratification. Genet. Epidemiol. 20, 4-16.

Risch, N. (2000). Searching for genetic determinants in the new millennium. Nature 405,

847-856.

Risch, N. and Merikangas, K. (1996). The future of genetic studies of complex human diseases.

Science 273,1516-1517.

Risch, N. and Teng, J. (1998). The relative power of family-based and case-control designs for

linkage disequilibrium studies of complex human diseases - I. DNA pooling. Genome Res.

8, 1273-1288.



SAT FOR CASE-CONTROL STUDIES 359

Satten, G. A., Flanders, W. D. and Yang, Q. (2001). Accounting for unmeasured population

substructure in case-control studies of genetic association using a novel latent-class model.

Amer. J. Hum. Genet. 68, 466-477.

Spielman, R. S. and Ewens, W. J. (1998). A sibship test for linkage in the presence of association:

the sib transmission/disequilibrium test. Amer. J. Hum. Genet. 62, 450-458.

Spielman, R. S., McGinnis, R. E. and Ewens, W. J. (1993). Transmission test for linkage

disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM).

Amer. J. Hum. Genet. 52, 506-513.

Teng, J. and Risch, N. (1999). The relative power of family-based and case-control designs

for linkage disequilibrium studies of complex human diseases. II. Individual genotyping.

Genome Res. 9, 234-241.

van den Oord EJCG (1999). A comparison between different designs and tests to detect QTLs

in association studies. Behav. Genet. 29, 245-256.

Wang, D. G., Fan, J. B., Siao, C. J., Berno, A., Young, P., Sapolsky, R., Ghandour, G., Perkins,

N., Winchester, E., Spencer, J., Kruglyak, L., Stein, L., Hsie, L., Topaloglou, T., Hubbell,

E., Robinson, E., Mittmann, M., Morris, M. S., Shen, N. P., Kilburn, D., Rioux, J.,

Nusbaum, C., Rozen, S., Hudson, T. J., Lipshutz, R., Chee, M. and Lander, E. S. (1998).

Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in

the human genome. Science 280, 1077-1082.

Department of Mathematical Science, Michigan Technological University, Houghton, MI, U.S.A.

E-mail: shuzhang@mtu.edu

Department of Genetics, Yale University School of Medicine, New Haven, CT, U.S.A.

E-mail: kidd@biomed.med.yale.edu

Departments of Epidemiology and Public Health, Yale University School of Medicine, New

Haven, CT, U.S.A.

E-mail: hongyu.zhao@yale.edu

(Received March 2001; accepted October 2001)


