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Abstract: The class of nearly balanced incomplete block designs with concurrence

range l, or NBBD(l), is defined. This extends previous notions of “most balanced”

designs to cover settings where off-diagonal entries of the concurrence matrix must

differ by a positive integer l ≥ 2. Sufficient conditions are found for optimality

of NBBD(2)’s under type-1 criteria, then used to establish A- and D-optimality

in settings where optimal designs were previously unknown. Some NBBD(3)’s are

also found to be uniquely A- and D-optimal. Included is a study of settings where

the necessary conditions for balanced incomplete block designs are satisfied, but no

balanced design exists.
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1. Introduction

Consider the proper block design setting where v treatments are arranged
in b blocks of size k ≤ v. Let D(v, b, k) denote the class of all block designs
in such an experimental setting, and observe that each design d ∈ D(v, b, k)
corresponds to a v × b incidence matrix Nd whose entries ndij are nonnegative
integers indicating the number of times treatment i occurs in block j. The
matrix NdN

′
d is referred to as the concurrence matrix of d, and its entries, the

concurrence parameters, are denoted by λdij . The reduced normal equations for
estimating treatment effects under the standard additive model, when the design
d is used, are Cdτ̂ = Td − 1

kNdBd, in which Cd = diag(rd1, . . . , rdv)− 1
kNdN

′
d, Bd

denotes the b × 1 vector of block totals in d, Td is the v × 1 vector of treatment
totals, rdi represents the number of times treatment i is replicated by d, and
diag(rd1, . . . , rdv) is a v×v diagonal matrix. The information matrix or C-matrix
of the design, Cd, is positive semi-definite for all d ∈ D(v, b, k).

A treatment contrast is any linear combination l′τ =
∑

liτi of the treatment
effects, where

∑
li = 0. A block design in which all treatment contrasts are

estimable is said to be connected, and all competing designs in this paper are
assumed to have this property, so D(v, b, k) is further defined to contain only
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connected designs. It is known that a block design is connected if and only if its
C-matrix has rank v − 1.

A design d is binary if all its blocks consist of distinct varieties, i.e., ndij = 0
or 1 for all i and j. For any given setting D(v, b, k), define M(v, b, k) as the
binary subclass of D(v, b, k), r as the greatest integer not exceeding bk/v, λ

as the greatest integer not exceeding r(k − 1)/(v − 1), p = bk − vr, and µ =
r(k − 1) − λ(v − 1), as needed throughout. If tr(A) denotes the trace of a given
square matrix A, then M(v, b, k) is the subclass of designs in D(v, b, k) with
maximal tr(Cd).

A binary design d in which each treatment occurs in either r or r +1 blocks,
and each pair of treatments is contained in either λ or λ + 1 blocks, is called
a semi-regular graph design (SRGD) (Jacroux (1985)), and is also a type of
nearly balanced incomplete block design (NBBD) (Cheng and Wu (1981)). These
notions generalize John and Mitchell’s (1977) definition of a regular graph design
(RGD), to which they reduce when bk/v is an integer. If d is an RGD and its
concurrence matrix additionally has all its off diagonal elements equal, then d is
called a balanced incomplete block design, or BIBD.

Let zd0 = 0 < zd1 ≤ · · · ≤ zdv−1 denote the eigenvalues of Cd. Let f be
a nonincreasing, convex, real-valued function. A design d ∈ D(v, b, k) is said
to be φf -optimal provided φf (Cd) =

∑v−1
i=1 f(zdi) is minimal over all designs in

D(v, b, k). The book by Shah and Sinha (1989) provides an excellent overview of
the various criteria φf typically employed. This paper focuses on those f which
Cheng (1978) included in the family of type-1 criteria.

Definition 1.1. φf (Cd) =
∑v−1

i=1 f(zdi) is a type-1 criterion if f is a convex,
real-valued function for which

(i) f is continously differentiable on (0, maxd∈D(v,b,k) tr(Cd)) with f ′ < 0,
f ′′ > 0, and f ′′′ < 0 on this range, and

(ii) f is continous at 0 or limx→0 f(x) = f(0) = ∞.
For instance, the well known A-, D-, and Φp-criteria are type-1 criteria: take
f(x) = 1/x, - log x, and x−p in the above definition, respectively. Unless explic-
itly stated otherwise, any criterion used in this paper is assumed to be a type-1
criterion. The phrase “type-1 optimality” will be used for optimality with respect
to an unspecified type-1 criterion φf .

A number of results are already known for type-1 optimality of block designs
in D(v, b, k), primarily for members of the classes of designs defined above. One
example is the celebrated result that a BIBD is optimal under all type-1 criteria
(Kiefer (1975)). Various types of block designs which are not BIBDs have also
been shown to be optimal under different type-1 criteria in a number of classes
and subclasses of D(v, b, k) (e.g. Conniffe and Stone (1975); Shah, Ragavarao and
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Khatri (1976); William, Patterson and John (1977); Cheng (1978, 1979); Jacroux
(1985, 1989, 1991); and Yeh (1988)). However, those designs which are type-1
optimal in many cases remain unkown, and the primary goal here is to extend
the reach of optimality arguments to settings where the strict combinatorial
conditions previously studied cannot hold.

In Section 2 the class of nearly balanced incomplete block designs with con-
currence range l, or NBBD(l), is defined. This class generalizes the SRGDs to
cases where off-diagonal entries of the concurrence matrix differ by at most the
positive integer l. The nonexistence of NBBD(1)’s is explored and an upper
bound for the minimum eigenvalue zd1 is derived. These results are used in
Section 3 to derive sufficient conditions for type-1 optimality of NBBD(2)’s in
D(v, b, k), then applied in Section 4 to establish A- and D-optimality of families
of NBBD(2)’s. In some instances, NBBD(3)’s are found to be optimal. Not all
of the problems are analytically tractable; in some cases theory reduces the op-
timality argument to a computationally feasible form. Concluding remarks are
made in Section 5.

2. Preliminary Results

Definition 2.1. A nearly balanced incomplete block design d with concurrence
range l, or NBBD(l), with v varieties and b blocks of size k is an incomplete block
design satisfying the following conditions:

(i) each ndij = 0 or 1,
(ii) each rdi = r or r + 1,
(iii) maxi�=i′,j �=j′ |λdii′ − λdjj′| = l,
(iv) d minimizes tr(C2

d) over all designs satisfying (i) − (iii).

The definition of a NBBD(l) generalizes those given by John and Mitchell
(1977) for a RGD and by Jacroux (1985) for a SRGD. It reduces to the definition
of a BIBD if bk/v is an integer and l = 0, to an RGD if bk/v is an integer
and l = 1, and to that of a SRGD if l = 1. Closely related when l = 1 is the
definition of a NBBD given by Cheng and Wu (1981), who require that (i) and
(ii) of Definition 2.1 hold, and that for each fixed i, the v − 1 concurrences λdij

for j �= i have range at most 1. For certain settings this allows treatments i

replicated r + 1 times to have λdij values of λ + 1 and λ + 2, thus falling under
our definition of a NBBD(2).

The need to extend the “nearly balanced” notion as in Definition 2.1 arises
in settings where neither BIBD’s nor NBBD(1)’s exist. These settings may be
classified into two broad categories. In category one, for any binary d the combi-
natorics force λdij ≤ λ − 1 for at least one treatment pair (i, j). That condition
implies that λdij ≥ λ + 1 for some treatment pair (i, j), and the nonexistence
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of NBBD(l)’s with l ≤ 1 follows. That condition also typically forces a sharper
bound on zd1 than can usually be obtained, as shown in Lemma 2.2. In category
two, any d satisfying (i) and (ii) of Definition 2.1 with λdij ≥ λ for all (i, j) must
have λdij ≥ λ + 2 for some (i, j). Though this partially overlaps the settings
studied by Cheng and Wu (1981) (in their notation, this occurs when n < k−1),
we will offer optimal category two designs that do not satisfy their definition
of a NBBD. We know of no previously published work addressing category one,
though designs that fit into this framework have appeared, as shall be seen.

Lemma 2.2. A binary block design d ∈ D(v, b, k) with k ≥ 3 for which either
rdi < r for some i, or λdij ≤ λ − 1 for some i �= j with rdi = rdj = r, satisfies

zd1 ≤ (k − 1)r + λ − 1
k

. (1)

Proof. Suppose some treatment is replicated rdp < r times. Then by Theorem
3.1 of Jacroux (1980a) and regardless of binarity,

zd1 ≤ v(k − 1)rdp

k(v − 1)
≤ v(k − 1)(r − 1)

k(v − 1)
≤ (k − 1)r + λ − 1

k
,

the last inequality because λ ≥ r(k−1)−(v−2)
v−1 . The result for λdij ≤ λ − 1 follows

from Proposition 2.1(b) of Jacroux (1982).

A rich series of settings falling into category one and meeting the conditions of
Lemma 2.2 is identified by Lemma 2.3. There are surely many others. Existence
of d such that λdij ≥ λ for all i �= j depends not just on arithmetic relationships
among the parameters v, b, and k, but on what assignments are combinatorially
achievable. For instance, if the necessary parameter conditions for existence of
a BIBD hold, but no BIBD exists, then the setting belongs to category one and
again the conditions for (1) are met Lemma 2.3, with Lemma 2.2, generalizes
Lemma 2 of Morgan and Uddin (1995).

Lemma 2.3. Any binary block design d ∈ D(v, b, k), where bk = vr + 1, and
r(k − 1)/(v − 1) = λ is an integer, satisfies the conditions of Lemma 2.2. Thus
no NBBD(1) exists for this setting, and (1) holds.

Proof. If some treatment is replicated rdi < r times, the result is immediate.
So assume rd1 = rd2 = · · · = rd,v−1 = r and rdv = r + 1. Since the design is
binary there are r +1 blocks containing the vth treatment, and the total number
of ordered pairs of treatments containing the vth treatment is (r + 1)(k − 1) =
λ(v−1)+(k−1). This implies that there is at least one treatment, say i0, which
occurs exactly (λ + l) times in these r + 1 blocks for some 1 ≤ l ≤ k − 1. Thus
there are (λ + l)(k− 2) ordered pairs in these r + 1 blocks, and (r− λ− l)(k− 1)
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in the other blocks, involving treatment i0 and treatments other than v. So the
total number of ordered pairs with treatment i0 but not with treatment v is
(λ + l)(k − 2) + (r − λ − l)(k − 1) ≤ r(k − 1) − (λ + 1) < λ(v − 2). This clearly
shows that there exists at least one pair (i, i0) for some i ∈ {1, . . . , v− 1}, i �= i0,
such that λdii0 ≤ λ − 1.

Sufficient conditions for a setting to fall into category two are stated in
Lemma 2.4, with proof in Cheng and Wu (1981, pp. 494-495). Their NBBD’s
which overlap with our NBBD(2)’s occur in settings satisfying condition (i) of
the lemma. The result under condition (ii) is a restatement of their Proposition
1.

Lemma 2.4. Let d ∈ M(v, b, k) have rdi ≥ r for all i, and λdij ≥ λ for all i �= j.
If (i) µ > v − k, or (ii) µ ≤ v − k and p(k − p) > (v − 2p)µ, then λdij ≥ λ + 2 for
some i �= j.

Section 3 will focus on optimality of NBBD(2)’s, and the chief tools will
require minimizing tr(C2

d) =
∑

i z
2
di. This is a bit harder in settings where

NBBD(1)’s do not exist than in those where they do. The final lemmas of this
section state results which will aid in that task.

Lemma 2.5. Let y1, . . . , yn, n ≥ 3, be integer-valued variables subject to the
constraints

∑n
i=1 yi = c and maxi{yi} − mini{yi} = R. Denote the minimum

value of
∑

y2
i by Q(R, c). With c1 = int(c/n) = int(c̄),

(i) Q(1, c) = −nc2
1 + c1(2c − n) + c, provided c1 �= c̄.

(ii) Q(2, c) = −nc2
1 + c1(2c − n) + c + 2.

(iii) If c1 �= c̄, then Q(R + 1, c) − Q(R, c) ≥
{

R for even R ≥ 2,
R + 1 for odd R ≥ 1.

(iv) If c1 = c̄, then Q(R + 1, c) − Q(R, c) ≥
{

R + 2 for even R ≥ 2,
R − 1 for odd R ≥ 3.

Lemma 2.6. Let y1, . . . , yn, n ≥ 3, be integer-valued variables subject to the con-
straints

∑n
i=1 yi = c, maxi{yi} − mini{yi} = R, and

∑n
i=1 max{0, c1 − yi} = δ,

where c1 = int(c/n). Here c and R are positive integers and δ is a nonnegative
integer. Let Qδ(R, c) denote the minimum value of

∑
y2

i subject to these con-
straints, provided the constraints are consistent, in which case Qδ(R, c) is said to
exist. Fix δ1 ∈ {1, . . . , n−(c−nc1)

2 }.
(i) Qδ1(2, c) = −nc2

1 + c1(2c − n) + c + 2δ1, and Qδ(2, c) does not exist for
δ > n−(c−nc1)

2 .
(ii) Qδ1(R, c) exists if and only if 2 ≤ R ≤ (c−nc1) + 2δ1, and for these R ≥ 3,

Qδ1(R, c) − Qδ1(R − 1, c) ≥ 2.
(iii) For every δ > δ1 and R ≥ 3 for which Qδ(R, c) exists, at least one of

Qδ(R− 1, c), Qδ−1(R, c) and Qδ−1(R− 1, c) exists, and at least one of these
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inequalities holds:

Qδ(R, c) − Qδ(R − 1, c) ≥ 2;Qδ(R, c) − Qδ−1(R, c) ≥ 2;

Qδ(R, c) − Qδ−1(R − 1, c) ≥ 4.

The above inequalities are generally only sharp for small R, which is sufficient
for our purposes.

3. Type-1 Optimality

This section uses results from Section 2 in adapting Jacroux’s (1985) ap-
proach for optimality of NBBD(1)’s to encompass problems on type-1 optimality
of category one NBBD(2)’s. Two lemmas needed from Jacroux (1985) on mini-
mization of type-1 optimality functions are stated first. Let n ≥ 3 be an integer
and let C and D be fixed and positive constants such that C2 ≥ D ≥ C2/n. Let
f(x) be a convex, real-valued function satisfying the conditions of Definition 1.1.
The problem is to find x1, . . . , xn which

minimize
n∑

i=1

f(xi) (2)

subject to the constraints

(i) xi ≥ 0 for i = 1, . . . , n,

(ii)
∑n

i=1 xi = C,

(iii)
∑n

i=1 x2
i ≥ D,

(iv) x1 ≤ F for a number F satisfying (3)
(a)F ≤ (C − [n/(n − 1)]1/2P )/n where P = [D − (C2/n)]1/2

(b) (C − F )2 ≥ D − F 2 ≥ (C − F )2/(n − 1).

The constraint (iv)(b) of (3) is solely to insure that a set of xi’s satisfying (i)-(iii)
can be found with x1 = F , for which it is both necessary and sufficient.

The following lemmas yield the solution to two related minimization prob-
lems. The proofs for both may be found in Jacroux (1985).

Lemma 3.1. With PF = [(D − F 2) − ((C − F )2/(n − 1))]1/2, the solution to
(2) subject to the constraints (3) occurs when x1 = F , xn = {(C − F ) + [(n −
1)(n − 2)]1/2PF }/(n − 1), and xi = {(C − F ) − [(n − 1)/(n − 2)]1/2PF }/(n − 1)
for i = 2, . . . , n − 1.

Constraint (iv)(a) of (3) implies that the solution of Lemma 3.1 satisfies
x1 ≤ xi for all i. Conversely, it can be shown that if F ≤ {(C − F ) − [(n −
1)/(n − 2)]1/2PF }/(n − 1) then (iv)(a) holds.
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The solution in Lemma 3.1 is found at a set of xi’s for which
∑n

i=1 x2
i = D,

that is, the quantity
∑n

i=1 x2
i is made as small as possible. As the bound D for∑n

i=1 x2
i is made smaller, the solution for xn moves to that of x2, . . . , xn−1. When

the constraint is dropped altogether, one gets x2 = x3 = · · · = xn, as found in
Lemma 3.2.

Lemma 3.2. The solution to (2) subject to constraints (i), (iv) of (3) and∑n
i=1 xi ≤ C, occurs when x1 = F and xi = (C − F )/(n − 1) for i = 2, . . . , n.

Lemmas 3.1 and 3.2 will be used in conjunction with bounds on zd1, tr(Cd),
and tr(C2

d), to establish bounds on the φf -values of designs which are not
NBBD(2)’s. For d̄ any NBBD(2) in D(v, b, k), define the quantities A and B2 by
A = tr(Cd̄) and B2 = tr(C2

d̄
) + 4

k2 . The main optimality result depends on B2

being the minimum value of tr(C2
d) among binary competitors of the NBBD(2)’s.

The value of this quantity depends on the setting parameters and the concurrence
discrepancy (shortly, discrepancy) of d̄.

Definition 3.3. The concurrence discrepancy of design d, denoted δd, is the
quantity δd =

∑ ∑
i<j max{0, λ − λdij}. The minimum discrepancy δ is the

minimum of δd over the binary class, ie., δ = mind∈M δd.

By Lemma 2.6, the value of tr(C2
d̄
) = (k−1

k )2
∑v

i=1 r2
d̄i

+ 2
k2

∑ ∑
i<j λ2

d̄ij
in a cat-

egory one setting is tr(C2
d̄
) = (k−1

k )2(vr2 + 2pr + p) + 1
k2 [bk(k − 1)(2λ + 1) +

4δd̄ − v(v − 1)λ(λ + 1)] and the NBBD(2) d̄ minimizes tr(C2
d̄
) over M if δd̄ = δ.

Category one settings are exactly those for which δ > 0.
Let z1 and z�

1 be nonnegative constants (they appear below as upper bounds
for the minimum nonzero eigenvalues zd1 of designs in the subclasses of binary
and nonbinary designs in D(v, b, k), respectively) which satisfy

(A − z1)2 ≥ B2 − z1
2 ≥ (A − z1)2

(v − 2)
and (A − z�

1)2 ≥ B2 − z�
1
2 ≥ (A − z�

1)2

(v − 2)
.

Given z1, and for P2 = [(B2 − z2
1) − ((A − z1)2/(v − 2))]1/2, define z2 and z3

(cf. xi and xn of Lemma 3.1) by z2 = [(A − z1)− ( (v−2)
(v−3) )

1/2
P2]/(v − 2) and z3 =

[(A−z1)+((v−2)(v−3))1/2P2]/(v−2). Given z�
1 , let z4 = [A−(2/k)−z�

1 ]/(v−2)
(cf. xi of Lemma 3.2).

Theorem 3.4. Let D(v, b, k) be a setting with k ≥ 3 and δ > 0. Let d̄ ∈ D(v, b, k)
be a NBBD(2) with δd̄ = δ and C-matrix Cd̄ having nonzero eigenvalues zd̄1 ≤
zd̄2 ≤ · · · ≤ zd̄,v−1. Let z1 = r(k−1)+λ−1

k and z�
1 = r(k−1)v

(v−1)k . Then if z1 ≤ z2 and

v−1∑
i=1

f(zd̄i) < f(z1) + (v − 3)f(z2) + f(z3), (4)
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a φf -optimal design in M(v, b, k) must be an NBBD(2). If, moreover, z�
1 ≤ z4

and
v−1∑
i=1

f(zd̄i) < f(z�
1) + (v − 2)f(z4), (5)

then a φf -optimal design in D(v, b, k) must be an NBBD(2).

Proof. Let d be any design in D(v, b, k). If d �∈ M(v, b, k) then Nd has |ndil −
ndjm| > 1 for some i, j and l �= m, and consequently tr(Cd) ≤ tr(Cd̄) − (2/k).
Furthermore, such d must have zd1 ≤ z∗1 (Jacroux (1980a, Theorem 3.1)). Thus
the zdi satisfy the constraints of Lemma 3.2 for the variables xi with n = v − 1,
C = A− 2/k, D = (A− 2/k)2/(v − 1), and F = z∗1 , implying that

∑v−1
i=1 f(zdi) ≥

f(z�
1) + (v − 2)f(z4). So if the last statement of the theorem holds, a φf -optimal

design in D(v, b, k) must be in M(v, b, k).

Now suppose d is in M(v, b, k) but is not an NBBD(2). Since δ > 0, no
NBBD(1) exists, and it must be true that either (i) |rdi − rdj | > 1 for some i �= j;
(ii) |λdij − λdkl| > 2 for some fixed values of i, j, k, and l, i �= j, k �= l; or (iii)
d fails the last condition of Definition 2.1. It will be established that for each of
these cases, tr(C2

d) ≥ B2.

Case (i). If |rdi − rdj | > 1 for some i �= j, then by Lemma 2.5, identifying the
yi’s with the rdi’s for n = v and c = vr + p,

v∑
i=1

r2
di −

v∑
i=1

r2
d̄i ≥

{
Q(2, c) − Q(1, c) ≥ 2 if p > 0,
Q(2, c) − Q(0, c) ≥ 2 if p = 0.

By Lemma 2.6, identifying the yi’s with the λdij ’s for i < j with n = v(v −
1)/2 and c = bk(k − 1)/2, for some R ≥ 2 and some δd ≥ δ, 2[

∑ ∑
i<j λ2

dij −∑ ∑
i<j λ2

d̄ij
] ≥ 2[Qδd

(R, c)−Qδ(2, c)] ≥ 0. Thus tr(C2
d)−tr(C2

d̄
) ≥ 2

(
k−1

k

)2 ≥ 4
k2

for k ≥ 3.

Case (ii). If the λdij have a range exceeding 2, then by Lemma 2.6 for some
R ≥ 3,

tr(C2
d) − tr(C2

d̄) ≥ 2
k2

[
∑ ∑

i<j
λ2

dij −
∑ ∑

i<j
λ2

d̄ij] ≥
2
k2

[Qδd
(R, c) − Qδ(2, c)] ≥ 4

k2
.

Case (iii) follows from yet one more application of Lemma 2.6 with the λdij ’s
as variables:

tr(C2
d) − tr(C2

d̄) ≥ 2
k2

[
∑ ∑

i<j
λ2

dij −
∑ ∑

i<j
λ2

d̄ij] ≥
2
k2

[Qδ+1(2, c) − Qδ(2, c)] ≥ 4
k2

.
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Now invoking Lemma 2.2, the zdi are seen to satisfy (i) zd1 > 0, (ii) tr(Cd) =∑v−1
i=1 zdi = A, (iii) A2 ≥ tr(C2

d) =
∑v−1

i=1 z2
di ≥ B2, and (iv) zd1 ≤ z1. These re-

strictions on the zdi are the same as those given in Lemma 3.1 for the variables xi

with n = v − 1, C = A, D = B2, and F = z1, and the condition z1 ≤ z2 guaran-
tees that (iv)(a) of (3) holds. Thus

∑v−1
i=1 f(zdi) ≥ f(z1)+ (v− 3)f(z2) + f(z3) >∑v−1

i=1 f(zd̄i), eliminating all binary competitors to d̄ outside of the NBBD(2)
class. If any binary design is φf -better than d̄, it must be some other NBBD(2).

An interesting feature of this theorem is that the upper bounds z1 and z∗1 for
zd1, for members of M(v, b, k) and D(v, b, k) respectively, satisfy z1 < z∗1 . That is,
the possibility is allowed that a nonbinary design may be E-better than the best
binary design. This indeed does occur in some cases (see Theorem 4.1). In other
settings it is possible to sharpen the theorem with a corresponding sharpening
of one or both of the bounds, which will be done when advantageous.

Given any setting where the minimum discrepancy δ must be positive, one
can apply Theorem 3.4 after addressing the sometimes onerous combinatorial
problem of determining the exact value of δ. Typically δd = δ for some binary
d in the subclass satisfying condition (ii) of Definition 2.1, and δd > δ for all d

not in that subclass; the difficulties arise in sorting through the possibilities for
the “as equally replicated as possible” designs. Example 1 demonstrates some of
these difficulties.

Example 1. Consider the design d̄ having parameters v = 9, b = 11, and k = 5,
whose blocks are the columns

1 1 1 1 1 1 2 2 2 3 3
2 2 2 3 4 5 3 3 4 4 4
3 4 5 6 7 6 5 6 5 5 5
4 6 8 8 8 7 7 7 6 6 7
5 7 9 9 9 9 9 8 8 9 8.

Then A = tr(Cd̄) = 44, B2 = tr(C2
d̄
) + .16 = 243.36109, −∑v−1

i=1 log(zd̄i) =
−13.61922 and

∑v−1
i=1 z−1

d̄i
= 1.46120. Calculating z1, z�

1 , z2, z3, and z4 as outlined
in Theorem 3.4 and the preceding text gives z1 = 5.2, z�

1 = 5.4, z2 = 5.36977,
z3 = 6.58136, z4 = 5.45714. It is now an easy matter to check that (4) and
(5) hold, so that A- and D-optimal designs in D(9, 11, 5) must be NBBD(2)’s,
provided d̄ itself is an NBBD(2), that is, provided δd̄ = 3 is the smallest achievable
δd among binary designs with replicate range of 1 and concurrence range of 2,
and provided that δd̄ is in fact δ, the latter value being determined over all of M .

So consider any binary d. If rdi < 6 for some i, then
∑

j �=i λdij ≤ 20 and so
δd ≥ λ(v − 1) − ∑

j �=i λdij ≥ 4, eliminating designs with replicate range greater
than 1. Thus assume that rd1 = 7 and rdi = 6 for i > 1. If λd1i ≥ x for some i,
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then δd ≥ λ(v − 2) − ∑
j �=1,i λdij ≥ λ(v − 2) − (24 − x) = x − 3. So d for which

some λd1i ≥ 6 need not be considered further, and the last inequality also shows
in short order that d with two or more i for which λd1i = 5 has δd ≥ 4. Hence
δd < 3 requires either λd1i ≤ 4 for all i (implying four i with λd1i = 4 and four
with λd1i = 3, as with d̄ above), or λd12 = 5 and 3 ≤ λd1i ≤ 4 for i > 2. We
have enumerated all possibilities with all λd1i ≤ 4, and found in every case that
δd ≥ 3, proving that d̄ is a NBBD(2) (since if λd12 = 5, the concurrence range
must be 3). Furthermore, there is exactly one other, nonisomorphic NBBD(2) d̃,
which is

1 1 1 1 1 1 1 2 2 3 3
2 2 2 2 3 3 4 4 5 4 5
6 4 3 3 4 6 5 6 7 6 6
7 5 4 5 5 7 8 7 8 8 7
9 6 9 8 7 8 9 8 9 9 9.

The design d̃ is inferior to d̄ in terms of the A- and D-criteria, but cannot be said
to be uniformly inferior; it is better, for instance, in terms of the MV -criterion.
For the λd12 = 5 situation, we were surprised to find a design d∗. It is the unique
NBBD(3), and establishes that δ = 2 for D(9, 11, 5):

1 1 1 1 1 1 1 2 3 3 4
2 2 2 2 2 3 3 5 5 4 5
7 3 3 4 4 4 4 6 6 7 6
8 5 6 5 6 6 5 7 7 8 8
9 9 8 7 9 7 8 8 9 9 9.

Existence of d∗ means that Theorem 3.4 does not directly apply, but it is still use-
ful. Since d∗ is the unique design achieving the minimum discrepancy δ = δd̄−1, it
is the only design not ruled out by Theorem 3.4. Calculating −∑v−1

i=1 log(zd∗i) =
−13.61974 and

∑v−1
i=1 z−1

d∗i = 1.46093 thus proves that d∗ is A- and D-optimal in
D(9, 11, 5).

Example 1 shows there is no guarantee that a NBBD(2) in a category one
setting will minimize δd; nonetheless Theorem 3.4 is still a key component of
the optimality proof. And Theorem 3.4 does not assure that a given NBBD(2)
d̄ satisfying its conditions is actually φf -optimal. Rather, it says that a φf -
optimal design must then be some NBBD(2). In those settings where there are
nonisomorphic NBBD(2)’s, the best design still must be determined within the
NBBD(2) class.

Before closing this section, a theorem due to Cheng (1978, Theorem 2.3) will
be restated in a form suited to the current endeavor. Theorem 3.5 will be used
in proving optimality of some NBBD(2)’s in category two.

Theorem 3.5. If there is a design d̄ ∈ M(v, b, k) such that
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(i) Cd̄ has two distinct eigenvalues zd̄1 = zd̄2 = · · · = zd̄,v−2 ≤ zd̄,v−1, and
(ii) d̄ minimizes

∑v−1
i=1 z2

di over M ,
then d̄ is φf -optimal in M for all type I criteria with limx→0+ f(x) = ∞.

4. Applications

4.1. Two infinite series

This section is devoted to applications of the results of Section 3. Optimality
will be studied for some interesting individual designs, and for several infinite
series of designs. There are many more possibilities than shown here.

Consider the setting D(3t + 2, 3t2 + 3t + 1, 3) for t ≥ 1, in which r = 3t + 1
and λ = 2. Then bk = vr+1 and r(k−1)/(v−1) is the integer λ, so by virtue of
Lemma 2.3, NBBD(1)’s do not exist and binary members d of this class satisfy
both δd ≥ 1 and (1). Morgan and Uddin (1995) have constructed nonbinary
E-optimal designs for each t ≥ 1, and their E-value is the bound z∗1 of Theorem
3.4.

For given t, let d̃ be the E-optimal design of Morgan and Uddin (1995). It
contains one nonbinary block of the form (1, 1, 2), and has completely symmetric
information matrix with λd̃ij = λ for all i �= j. Construct a binary design d̄ from
d̃ by replacing this nonbinary block with the block (1, 2, 3). Then d̄ satisfies (i)
and (ii) of Definition 2.1, with 3 being the sole treatment replicated r + 1 times.
The concurrence parameters of d̄ are the same as those of d̃, with the exception of
those among 1, 2, and 3: λd̄12 = λ− 1 and λd̄13 = λd̄23 = λ + 1. This establishes
that δd̄ = 1 is the achievable value of δ for this class, and thus by Lemma 2.6,
that d̄ satisfies (iii) and (iv) of Definition 2.1 with l = 2. That is, d̄ is a NBBD(2).
Moreover, up to treatment labeling, d̄ is the unique NBBD(2), for such a design
must have two treatment pairs i < j with λdij = λ + 1, and both must involve
the treatment replicated r + 1 times.

Theorem 4.1. The NBBD(2) d̄ ∈ D(3t+2, 3t2 +3t+1, 3) is A- and D-optimal.

Proof. The C-matrix of d̄ has nonzero eigenvalues 2t+1, 2t+ 4
3 , and 2t+ 7

3 , with
multiplicities of 1, (3t−1), and 1, respectively, and gives A = tr(Cd̄) = 6t2+6t+2
and B2 = tr(C2

d̄
) + 4/k2 = 12t3 + 20t2 + 40t

3 + 46
9 . So z1 = 2t + 1, z�

1 = 2t + 4
3 ,

z2 = 2t+ 4
3+ 1

3t− 1
3t((13t−3)/(9t−3))1/2 , z3 = 2t+ 4

3+ 1
3t+

1
3t((13t−3)(3t−1)/3)1/2 ,

and z4 = 2t + 4
3 . As might be expected from these values, some quite messy

algebra is involved in checking the conditions of Theorem 3.4. The main lines of
argument are sketched below. Readers may find, as we did, that checking some
of the steps is eased by use of an algebraic manipulator such as Maple.

For A-optimality, consider f(x) = 1/x in Theorem 3.4. Since z1 ≤ z2,
z�
1 ≤ z4, and

∑v−1
i=1 f(zd̄i) < (9t+3)

(6t+4) = f(z�
1) + (v − 2)f(z4) is trivial, it remains to
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show that (4) holds. That is, that

1
2t + 7

3

− 1
2t + 4

3 + 1
3t + 1

3t((13t − 3)(3t − 1)/3)1/2

<
3t − 1

2t + 4
3 + 1

3t − 1
3t((13t − 3)/(9t − 3))1/2

− 3t − 1
2t + 4

3

.

Label the denominators in this inequality as y1, . . . , y4 so that it is

1
y1

− 1
y2

< (3t − 1)
(

1
y3

− 1
y4

)
⇐⇒ 1 <

[
(3t − 1)(y4 − y3)

(y2 − y1)

] (
y1

y4

) (
y2

y3

)
.

Since the term in brackets is 1, this is just

1 < (1 +
1

2t + 4
3

)

[
1 +

1
3t((13t − 3)(3t − 1)/3)1/2 + 1

3t((13t − 3)/(9t − 3))1/2

2t + 4
3 + 1

3t − 1
3t

√
(13t − 3)/(9t − 3)

]
.

The last inequality is clearly true for all t ≥ 1 and hence d̄ is A-optimal.
To show d̄ is also D-optimal it is sufficient to establish (4) with f(x) =

− log(x), for again (5) is trivial. This can be checked directly for small t, so the
remainder of the proof will assume t ≥ 5. Now

∑v−1
i=1 f(zd̄i) is − log[(2t + 7

3)(2t +
1)(2t + 4

3)3t−1] and f(z1) + (v − 3)f(z2) + f(z3) is

− log{(2t + 1)[2t +
4
3

+
1
3t

− 1
3t

((13t − 3)/(9t − 3))1/2]3t−1[2t +
4
3

+
1
3t

+
1
3t

((13t − 3)(3t − 1)/3)1/2]}.

With a bit of manipulation the inequality (4) is

log

{
1 −

1
3t [((13t − 3)(3t − 1)/3)1/2 + 1 − 3t]

2t + 4
3 + 1

3t + 1
3t((13t − 3)(3t − 1)/3)1/2

}

−(3t − 1) log

{
1 −

1
3t [((13t − 3)/(9t − 3))1/2 − 1]

2t + 4
3

}
> 0.

Write this inequality as

log(1 − w(t)) − (3t − 1) log(1 − u(t)) > 0 (6)

where u(t) =
1
3t

[((13t−3)/(9t−3))1/2−1]

2t+ 4
3

and w(t) =
1
3t

[((13t−3)(3t−1)/3)1/2+1−3t]

2t+ 4
3
+ 1

3t
+ 1

3t
((13t−3)(3t−1)/3)1/2 .

Observe that 0 < u(t) < 1 and 0 < w(t) < 1 for all t ≥ 1. Thus for (6) it
is sufficient that h(t) = log(1 − w�(t)) − (3t − 1) log(1 − u�(t)) > 0 for some
u�(t) < u(t) and w�(t) > w(t). Let u�(t) = a

2t(3t+2) where a is the constant

(13/9)1/2 − 1, and w�(t) = (3t− 1.5)u�(t). Calculations for showing u�(t) < u(t)
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and w�(t) > w(t) for t ≥ 5 are straightforward, and (6) follows if limt→∞ h(t) = 0,
and if ∂h(t)/∂t < 0 for all t ≥ 5. The limit is easy. The derivative is

∂

∂t
h(t) =

−1
1 − w∗(t)

∂

∂t
w∗(t) +

(3t − 1)
1 − u∗(t)

∂

∂t
u∗(t) − 3 log(1 − u∗(t))

=
a(18t2−18t−6)

(6t2+4t)[6t2+4t−a(3t−1.5)]
− a(3t−1)(12t+4)

(6t2+4t−a)(6t2+4t)
−3 log(1−u∗(t))

= −3u∗(t)− a[(36−54a)t3+(36+99a)t2+(8−12a−9a2)t−(12a−4.5a2)]
(6t2+4t)[36t4+(48−18a)t3+(16−9a)t2+(2a+3a2)t−1.5a2]

−3 log(1 − u∗(t)).

Now 0 < u∗(t) < 1, so −3[u∗(t) + log(1 − u∗(t))] = −3(u∗(t) − ∑∞
j=1

[u∗(t)]j
j ) ≤

3
2

∑∞
j=2[u

∗(t)]j = 3u∗2(t)
2(1−u∗(t)) = 3a2

2(6t2+4t)(6t2+4t−a) . Putting this bound in the deriva-
tive above, collecting terms over a common denominator, and then dropping all
terms from the numerator involving a with a negative coefficient gives

∂

∂t
h(t)

≤ −(432−648a)t5−720t4−384t3−(64−360a−189a2)t2+112at+4.5a3

2(6t2+4t)(6t2+4t−a)[36t4+(48−18a)t3+(16−9a)t2+(2a+3a2)t−1.5a2]
.

This is clearly negative for t ≥ 5.

Example 2. As a consequence of Theorem 4.1, this NBBD(2) is uniquely A- and
D-optimal in D(8, 19, 3). Interestingly, it is Φp-inferior to Morgan and Uddin’s
(1995) design for all p ≥ 17.

1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 4 4 5
2 3 3 4 5 6 6 3 3 4 4 5 6 4 5 7 5 6 7
3 4 5 8 7 7 8 6 7 5 7 8 8 8 6 8 6 7 8

Closely related to the designs of Theorem 4.1 are members of a series whose
optimality will follow from Theorem 3.5. The setting for any t ≥ 1 is D(3t +
2, 6t2 + 6t + 2, 3), in which r = 6t + 2 and λ = 4. This is a category two setting,
and Lemma 2.4 implies the nonexistence of NBBD(1)’s for this class.

The proposed design is constructed from two copies of the previously dis-
cussed design d̃ with v = 3t + 2, b = 3t2 + 3t + 1, and k = 3, due to Morgan and
Uddin (1995). Again, d̃ contains a single nonbinary block (1, 1, 2). In the first
copy of d̃, replace this block with (1, 2, 3). In the second copy of d̃, first permute
the first three treatment labels 1, 2, 3 by 1 → 2, 2 → 3, 3 → 1. Then replace the
block (2, 2, 3) with (1, 2, 3). The resulting design d̄ ∈ D(3t + 2, 6t2 + 6t + 2, 3) is
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binary and has rd̄1 = r+1, λd̄13 = λ+2, all other rd̄i = r, and all other λd̄ij = λ.
If d̄ satisfies (iv) of Definition 2.1, it is a NBBD(2).

Theorem 4.2. The NBBD(2) d̄ ∈ D(3t+2, 6t2 +6t+2, 3) is φf -optimal amongst
all binary competitors for all type I criteria φf with limx→0+ f(x) = ∞. Putting
z∗1 = 4t + 8

3 and z4 = 4t + 8
3 + 2

9t , the optimality holds over the entire class D for
all these φf for which (5) is satisfied. In particular, d̄ is A-, D-, and E-optimal.

Proof. In Lemma 2.5, put n = v(v−1)
2 = 9t2+9t+2

2 and c = bk(k−1)
2 = 18t2+18t+6,

and so c1 = 4. Since there is no NBBD(1), any d ∈ M(v, b, k) must have∑ ∑
i<j λ2

dij ≥ Q(2, c) = 72t2 + 72t + 36 =
∑ ∑

i<j λ2
d̄ij

. Hence d̄ is a NBBD(2)
which minimizes tr(C2

d) over M . The eigenvalues of Cd̄ are 4t + 8
3 and 4t + 4,

with multiplicities of 3t and 1 respectively. Theorem 3.5 now gives the result for
the binary class.

Nonbinary competitors are eliminated with the same inequality used in The-
orem 3.4; this follows from Lemma 3.1 just as in the proof of that theorem. The
bound z∗1 given there is applicable here, and simplifies along with the correspond-
ing z4 to the stated values. E-optimality is immediate, and the calculations to
show that (5) holds for the A- and D-criteria are trivial.

4.2. BIBD settings

Another interesting class of applications is found in settings where the neces-
sary conditions for existence of a balanced incomplete block design are fulfilled,
but a BIBD does not exist. Say that D(v, b, k) is a BIBD setting if r = bk

v and
λ = r(k−1)

v−1 . Nonexistence of a BIBD (i.e. of a NBBD(0)) in a BIBD setting
implies that the conditions of Lemma 2.2 are fulfilled, opening the possibility of
optimal, category one NBBD(2)’s. To exploit Theorem 3.4 in such a setting, a
preliminary result on the discrepancy values δd is needed.

Lemma 4.3. Let d be a binary, equireplicate design in the BIBD setting
D(v, b, k). Then δd ≥ 2maxi,j |λdij − λ|.
Proof. Suppose λd12 = λ + α for some α > 0. Then δd ≥ ∑

i>1 max{0, λ −
λd1i} +

∑
i>2 max{0, λ − λd2i} ≥ 2α.

Suppose λd12 = λ + α for some α < 0. Binarity and equireplication implies
that

∑
i�=j λdij = λ(v−1) for each j, so

∑
i>2 max{0, λd1i−λ}+∑

i>2 max{0, λd2i−
λ} ≥ 2α. Thus 2δd =

∑ ∑
i�=j max{0, λ − λdij} =

∑ ∑
i�=j max{0, λdij − λ} ≥

2
∑

i>2 max{0, λd1i − λ} + 2
∑

i>2 max{0, λd2i − λ} ≥ 4α.

Theorem 4.4. Let D(v, b, k) be a BIBD setting in which a BIBD does not exist.
Let d̄ ∈ D be a NBBD(2) with δd̄ ≤ 4. Taking z1 = z∗1 = λv−1

k , if (4) and (5) of
Theorem 3.4 hold, then a φf -optimal design must be a NBBD(2).
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Proof. The bounds z1 = z∗1 for zd1 follow from the proof of Lemma 2.2 for
unequally replicated d, and from Propositions 3.1 and 3.2 of Jacroux (1980b) for
equireplicated d. The relations z1 ≤ z2 and z∗1 ≤ z4 are easy to check. The result
follows from Theorem 3.4 if it can be shown that δd ≥ 4 for any binary d with
replication range > 0 or concurrence range > 2. If d is not equireplicate, then
rdi ≤ r − 1 for some i, implying

∑
j �=i λdij ≤ (r − 1)(k − 1) = λ(v − 1) − (k − 1)

and thus δd ≥ k − 1 ≥ 4, since nonexistence of the BIBD implies k ≥ 5. If d is
equireplicate, but max{λdij} − min{λdij} > 2, then Lemma 4.3 gives the result.

Corollary 4.5. Let D(v, b, k) be a BIBD setting in which r ≤ 41 and in which a
BIBD does not exist. If there exists a design d̄ satisfying the first three conditions
of Definition 2.1 with l = 2 and δd̄ ≤ 4, then an A-optimal design must be a
NBBD(2), and a D-optimal design must be a NBBD(2).

Proof. It is obvious from the proofs of Theorems 3.4 and 4.4 that any d not
satisfying the conditions required of d̄ will have tr(C2

d) ≥ B2 = tr(C2
d̄
) + 4

k2 .

Hence the corollary amounts to saying that (4) and (5) hold for all equireplicate,
binary designs d̄ with δd̄ ≤ 4 and concurrence range 2 in all of the BIBD settings
mentioned. Given any such d̄, let vd̄ be the number of treatments i for which
λd̄ij < λ for some j. With appropriate labeling these are the first vd̄ members of
the treatment set, and certainly vd̄ ≤ 8. Hence the conceivable information ma-
trices Cd̄ whose eigenvalues must be examined are determined by the symmetric
matrices of order vd̄ ≤ 8 for which (a) all off-diagonal elements are in the set
{λ−1, λ, λ+1}, (b) the sum of the off-diagonal elements in each row is (vd̄−1)λ,
and (c) the number of elements above the diagonal which equal λ− 1 is no more
than 4. There are eleven such discrepancy matrices, listed in Table 1 with, for
compactness, the variable λ replaced by 0. Their diagonal values are irrelevant,
since the diagonal of Cd̄ is fixed by the first two conditions of Definition 2.1.

A list of the settings D(v, b, k) with r ≤ 41 for which either a BIBD does
not exist, or for which existence is not known, may be found in Mathon and
Rosa (1996); there are 497 cases when complements are included. It is then
a simple exercise to write a computer routine to check the conditions (4) and
(5) for each case and for each of the eleven conceivable information matrices
Cd̄. We have done this and found that the conditions indeed do always hold in
this range. Alternatively, one could analytically derive the eigenvalues from each
of the nine concurrence patterns shown in Table 1, and likely prove with nine
repetitions of some extremely messy algebra akin to that sketched in the proof of
Theorem 4.1 that the result of the corollary holds for any r. We have not done
that, preferring the much quicker and more compact computational approach in
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applying the theorem, which has covered essentially all of the cases of practical
interest.

Table 1. Discrepancy matrices of order 8 and lower with δ ≤ 4.

x −1 1 0
−1 x 0 1

1 0 x −1
0 1 −1 x

x −1 −1 1 1
−1 x 1 0 0
−1 1 x 0 0

1 0 0 x −1
1 0 0 −1 x

x −1 1 0 0 0
−1 x 0 0 1 0

1 0 x −1 0 0
0 0 −1 x 0 1
0 1 0 0 x −1
0 0 0 1 −1 x

x −1 −1 1 1 0
−1 x 0 0 0 1
−1 0 x 0 0 1

1 0 0 x 0 −1
1 0 0 0 x −1
0 1 1 −1 −1 x

x −1 −1 1 1 0
−1 x 0 1 0 0
−1 0 x 0 0 1

1 1 0 x −1 −1
1 0 0 −1 x 0
0 0 1 −1 0 x

x −1 −1 1 1 0
−1 x 1 −1 0 1
−1 1 x 0 0 0

1 −1 0 x 0 0
1 0 0 0 x −1
0 1 0 0 −1 x

x −1 −1 1 1 0 0
−1 x 1 0 0 0 0
−1 1 x 0 0 0 0

1 0 0 x 0 −1 0
1 0 0 0 x 0 −1
0 0 0 −1 0 x 1
0 0 0 0 −1 1 x

x −1 −1 1 1 0 0
−1 x 0 0 0 1 0
−1 0 x 0 0 0 1

1 0 0 x −1 0 0
1 0 0 −1 x 0 0
0 1 0 0 0 x −1
0 0 1 0 0 −1 x

x −1 −1 1 1 0 0
−1 x 0 0 0 1 0
−1 0 x 0 0 0 1

1 0 0 x 0 −1 0
1 0 0 0 x 0 −1
0 1 0 −1 0 x 0
0 0 1 0 −1 0 x

x −1 1 0 0 0 0 0
−1 x 0 1 0 0 0 0

1 0 x −1 0 0 0 0
0 1 −1 x 0 0 0 0
0 0 0 0 x −1 1 0
0 0 0 0 −1 x 0 1
0 0 0 0 1 0 x −1
0 0 0 0 0 1 −1 x

x −1 1 0 0 0 0 0
−1 x 0 0 1 0 0 0

1 0 x −1 0 0 0 0
0 0 −1 x 0 0 1 0
0 1 0 0 x −1 0 0
0 0 0 0 −1 x 0 1
0 0 0 1 0 0 x −1
0 0 0 0 0 1 −1 x

What is known of NBBD(2)’s in BIBD settings like those considered here?
Unfortunately very little, and the general combinatorial problem of determining
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the achievable lower bound δ for the discrepancy values δd appears to be quite
difficult. A pair of recent papers by Hedayat, Stufken and Zhang (1995a,b) have
begun the combinatorial study of the design possibilities, and their virtually bal-
anced incomplete block designs will be NBBD(2)’s whenever they have minimum
discrepancy δ. They display a few of these designs, but do not address what we
term as the minimum discrepancy problem. Of relevance here is their design for
D(22, 33, 8) with discrepancy 4. Existence of a BIBD for this setting is not yet
determined, so Corollary 4.5 tells us that if there is no BIBD, then the A-optimal
and D-optimal designs are NBBD(2)’s.

The smallest BIBD setting, in terms of either r or k, for which a BIBD does
not exist, is D(15, 21, 5), for which Zhang (1994) gives a design with concurrence
range 2 and discrepancy 6. Example 3 displays the discrepancy matrix for that
design, along with a discrepancy matrix for a NBBD(3) which, should the design
exist, is A- and D-better than the discrepancy 6 design. This illustrates the
pitfalls in trying to extend Corollary 4.5 to include values δd > 4, and gives a hint
at the richness of the combinatorial difficulties in the optimal design problem for
these settings. We conjecture that optimal designs for BIBD settings will always
be found within the NBBD(l) classes for l ≤ 3 and, based on the results above,
suggest that the attack on the combinatorial existence/construction problems
should now generally focus on the minimum discrepancy problem, and specifically
on equireplicate, binary designs with discrepancy no more than 4. The concept
of treatment deficiency as defined by Hedayat, Stufken and Zhang (1995a, b) will
certainly be useful in this endeavor.

Example 3. Discrepancy matrices for a known design and a potentially better
competitor in D(15, 21, 5).

x 0 0 0 0 0 1 −1 0
0 x 0 0 0 0 1 0 −1
0 0 x 0 0 0 0 −1 1
0 0 0 x 0 0 −1 0 1
0 0 0 0 x 0 −1 1 0
0 0 0 0 0 x 0 1 −1
1 1 0 −1 −1 0 x 0 0

−1 0 −1 0 1 1 0 x 0
0 −1 1 1 0 −1 0 0 x

x 2 −1 −1 0 0
2 x 0 0 −1 −1

−1 0 x 1 0 0
−1 0 1 x 0 0

0 −1 0 0 x 1
0 −1 0 0 1 x

4.3. A series with four blocks

The final class to be discussed finds either NBBD(2)’s or NBBD(3)’s to be
optimal, depending on the value of k in the series

v = 2k − 1, b = 4, k, r = 2, λ = 1 (7)
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with k ≥ 4. The first job is to establish the value of δ.

Lemma 4.6. For d ∈ M(v, b, k) with parameters in the series (7),

δ =

{
k(k − 3)/3, if k ≡ 0 (mod 3),
(k − 1)(k − 2)/3, otherwise.

Proof. Let d be binary and suppose that d has rdi = 1 for some i, say rdv =
nd1v = 1. Then either (a) some treatment, say 1, has rd1 = 4 (since d is binary,
4 is the maximum replication); or (b) at least three treatments, say 1,2,3, occur
three times each. In case (a), form d′ from d by changing 1 to v in block 2;
since 1 and v have exactly the same concurrences in block 1, it follows easily that
δd ≥ δd′ . For case (b), if any of λd1v, λd2v, λd3v, say λd1v , is greater than 0, then
form d′ by changing 1 to v in a block not containing v; as in (a), δd ≥ δd′ , and
this process can be repeated until rdi ≥ 2 for all i. If none of λd1v, λd2v , λd3v

is nonzero, then the four blocks B1, . . . , B4 have the form of the following four
columns

B1 B2 B3 B4

v 1 1 1
4 2 2 2
5 3 3 3
6 ? ? ?
...

...
...

...
k+2 ? ? ?

where the lower (k − 3) × 3 does not contain v. Let S1 denote the treatments in
block 1 other than v; let S2 denote all other treatments other than 1, 2, 3, and
v; and for j > 1, let B∗

j denote the treatments in block j not found in the others
of blocks 2, 3, and 4. Let gj = |S2 ∩ Bj|, dj = |B∗

j |, and r2 =
∑

i∈S2
rdi. The

goal is still to change one copy of 1 to v without increasing the number of zero
concurrences. This can be done in block j unless dj − gj − 2 ≥ 1; if the change
cannot be made in any of the blocks, then

∑4
j=2(dj − gj) ≥ 9. Since the 3(k − 3)

plots in the lower (k− 3)× 3 contain only treatments from the 2k− 5 treatments
in S1 ∪ S2, the maximum value of

∑4
j=2 dj can be written as a function of r2

thusly:

4∑
j=2

dj ≤
{

[k − 4 − int( r2−(k−4)+1
2 )] + [3(k − 3) − r2], if 3(k − 3) − r2 ≤ k−1

[k − 4 − int( r2−(k−4)+1
2 )] + [r2 − k + 7], if 3(k − 3) − r2 > k−1

,

(in each line the two terms in brackets are the maximum contributions of S2 and
S1, respectively). It follows that

∑4
j=2(dj−gj) =

∑4
j=2 dj−r2 ≤ 3, the maximum
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occurring when r2 takes its minimum value of k − 4, so that the desired change
can be made.

Thus to determine δ, it is sufficient to consider only binary designs d in
which rdi ≥ 2 for all i, that is, only designs satisfying (i) and (ii) of Definition
2.1. Such designs contain exactly two treatments, say 1 and 2, replicated thrice,
all others being replicated twice, and λd12 is either two or three. Assuming that
the first two blocks contain both 1 and 2, and letting e denote the number of
other treatments common to both B1 and B2, there are two cases d1e and d2e to
be considered:

d1e d2e

B1 B2 B3 B4

1 1 1 2
2 2 2k−e−1 2k−e−1
3 3 2k− e 2k−e
...

...
...

...
e+2 e+2 v v

e+3 k+1 ? ?
...

...
...

...
k−1 2k−e−3 ? ?

k 2k−e−2 ? ?

B1 B2 B3 B4

1 1 1 ?
2 2 2 ?
3 3 2k−e−1 2k−e−1
...

...
...

...
e+2 e+2 v−1 v−1
e+3 k+1 v v

...
... ? ?

k−1 2k−e−3
...

...
k 2k−e−2 ? ?

In either case, the ? plots must be filled by using each treatment from Se =
{e + 3, e + 4, . . . , 2k − e − 2} exactly once. These must be placed so that, for
given e, the number of zero concurrences among treatments in Se is minimized.
This number of zero concurrences can then be minimized as a function of e. For
fixed e the desired placement is not difficult; in rough terms, “half” of the set
Se ∩ B1 is placed into B3 along with “half” of the treatments in Se ∩ B2; the
complementary “halves” are placed in B4. The exact manner in which this is
done depends on whether or not k − e− 2 is even, and also on the two displayed
cases. Writing h = |(B1 ∩ B3) − {1, 2}|, the minimized values are as stated in
the lemma, and occur in d2e with e = h = (k − 3)/3 when k ≡ 0(mod 3); in d1e

with e = (k − 4)/3 and h = e + 1, and in d2e with e = h = (k − 4)/3, when
k ≡ 1(mod 3); and in d1e with e = h = (k − 2)/3, and in d2e with e = (k − 2)/3
and h = e − 1, when k ≡ 2(mod 3).

Given the results of the preceding two sections, one may suspect that with
Lemma 4.6 in hand optimality could be established in very short order. However
a number of details must be attended to before arriving at the optimality result
in Theorem 4.8 below.
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The designs d1e and d2e determined in the proof to minimize δd are
NBBD(2)’s and NBBD(3)’s, respectively, and several observations follow. First,
if k ≡ 0(mod 3), the lower bound for δd is not achieved by a NBBD(2). The
best NBBD(2) in this situation (also e = h = (k − 3)/3) has δd = δ + 1, and
has tr(C2

d) equal to that of the NBBD(3). Second, for k �≡ 0(mod 3), both types
of designs attain the bound; in this case the NBBD(3) must have tr(C2

d) ≥ B2

(see Lemma 2.6 (iii)), so that the NBBD(2)’s are expected to be best. Thus
there are four series of designs from which the best is expected to be found: the
unique NBBD(2) and the unique NBBD(3) when k ≡ 0(mod 3), and the unique
NBBD(2)’s when k ≡ 1(mod 3) and when k ≡ 2(mod 3).

The messy eigenvalue structure of these designs, an unavoidable situation
for any reasonably efficient design in this setting given the small amount of ex-
perimental material relative to v, precludes a direct application of Theorem 3.4.
For instance, the inequality (4) is never satisfied. Theorem 3.4 is best suited for
designs that are “closer to balance” than those encountered here.

These problems will be resolved through a 3-step approach. First, all binary
d with some rdi < r will be eliminated by an inequality akin to (4). Second, most
binary d with all rdi ≥ r will be eliminated using bounds on the zdi’s. Finally, the
few remaining binary designs can be sorted out computationally. The problem
of nonbinarity will be briefly discussed at the end of the section. Use d̄ to denote
a NBBD with δd̄ = δ.

So first let binary d have some rdi < r. It is established in the proof of

Theorem 3.4 that tr(C2
d) ≥ tr(C2

d̄
) + 2

(
k−1

k

)2
= B2, say. Taking this value for

B2 and z1 = (k−1)v
(v−1)k to calculate z2 and z3, d will be eliminated if the inequality

displayed in (4) holds.
Next, let binary d have all |rdi − rdi′ | ≤ 1. Then d is a member of one of the

two series d1e and d2e discussed in the proof of Lemma 4.6. These designs are
indexed by the parameters e and h defined in the proof, and for convenience also
define g = |B1 − B2| = k − e − 2. Using e, g, and h, the information matrices
may be displayed in partitioned form as shown in Tables 3 and 4 in the appendix
(Jx,y denotes an x× y matrix of 1’s). Here 0 ≤ e ≤ k − 2 and 0 ≤ h ≤ int(g

2 ) for
members of d1e. For d2e, 0 ≤ h ≤ e ≤ k − 4, and h ≤ int(g−1

2 ) if e = k−3
3 , while

h ≤ int(g−2
2 ) otherwise. The upper bounds on h are to avoid repetition of designs

having information matrices which are identical up to row/column permutation.
Such repetition is also found from the pairs (e, h) and (e∗, h∗) = (k−3−e−h, h).

Exact eigenvalues for the matrices in Tables 3 and 4 are extremely messy,
if not analytically intractable, as functions of e and h. Since the large number
of cases makes exact computation of all of the eigenvalues for all e and h over
a reasonable range of v infeasible, an intermediate approach is needed, to wit,
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bounds for the zdi’s will be established. These bounds can then be used in the
next lemma.

Lemma 4.7. Let d ∈ M(v, b, k) have information matrix Cd with nonzero
eigenvalues zd1 ≤ zd2 ≤ · · · ≤ zd,v−1 which satisfy zdi ≤ wi for i ≤ s1, and
zdi ≥ wi for i ≥ s2, where w1 ≤ w2 ≤ · · · ≤ wv−1,

∑
i wi =

∑
i zdi, and

ws1+1 = ws1+2 = · · · = ws2−1. Then
∑

i f(zdi) ≥ ∑
i f(wi) for any type-1 crite-

rion f .

Lemma 4.7 is a simple consequence of the convexity of f . Bounds wi for
members of the two series d1e and d2e are shown in Table 2; the respective values
of (s1, s2) are (v−3, v−1) and (v−5, v−2). The unspecified values wv−2 for d1e,
and wv−4 = wv−3 for d2e, are chosen to make the wi’s sum to tr(Cd) = 4(k − 1).
The method of derivation is explained in the appendix.

Table 2. Eigenvalue bounds wi as functions of e, g, h, and a = max{e + 1, h + 1, g − h}.
Series w1 w2 w3 wi, 4 ≤ i ≤ s1 wv−2 wv−1

d1e w01 w02 w03 2 wv−2 3 − 1
k

d2e mini≥1{wi1} mini≥1{wi2} mini≥1{wi3} 2
5k−6−2a+((k−6)2+4a(k+a−4))1/2

2k 3

i wi1 ≤ wi2 ≤ wi3 are the ordered values of

0 2 − 2e+g+1
k +

(g2+1)1/2

k , 2 − 2(g−h)
k , 2 − 2h

k

1 2 − 2e+g
k +

((g−1)2+1)1/2

k , 2 − 2(g−h−1)
k , 2 − 2h

k

2 2 − 2g+e−h−1
k +

((e+h)2+1)1/2

k , 2 − 2e
k , 2 − 2h

k

3 2 − e+g+h
k +

((e+g−h−1)2+1)1/2

k , 2 − 2(g−h−1)
k , 2 − 2e

k

These bounds do not lend themselves to a nice analytic proof that d̄ is opti-
mal; rather, they allow a simple computation to eliminate most of the competitors
in d1e and d2e. To get a sense of the magnitudes of the numbers involved, a few
of the triples (v, number of competitors, number of competitors eliminated by
the bounds) when simultaneously examining the A and D criteria are (25, 56, 51),
(51, 225, 213), (101, 867, 844), and (201, 3400, 3357). So, for v = 101, for instance,
after verifying the inequality based on (4) mentioned above, we calculate two sim-
ple functions of known lists of numbers for 867 cases, then need only calculate
the eigenvalues of 23 matrices of order 101. The time-heavy alternative would be
to calculate the eigenvalues of 867 matrices of order 101. The bounding approach
allows us to extend the computational proof of the final result much further than
would otherwise be possible.

The only competitors not covered by the discusion so far are those with
r1 = 4 and all other rdi = 2; call this family d3e. A general member of this
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family can be found from d1e by changing the 2 in B4 to 1. The information
matrix, displayed in Table 5, has generalized group divisible structure (Srivastav
and Morgan (1998)) with eigenvalues of 2 with frequency v − 5, and one each
of 4v

v+1 , 2 − 2(e+1)
k , 2 − 2h

k , and 2 − 2(g−h)
k . The Schur-optimal member of d3e

is found at the values of (e, g, h) for which all possible values of the last three
eigenvalues are majorized. Subject to the constraints g−h ≤ h ≤ e+1 (to avoid
isomorphic repetition), the optimizing triples are (k−3

3 , 2k−3
3 , k

3 ) for k ≡ 0(mod 3),
(k−4

3 , 2k−2
3 , k−1

3 ) for k ≡ 1(mod 3), and (k−2
3 , 2k−4

3 , k−2
3 ) for k ≡ 2(mod 3). For

any given v and concurrent with the computations above, the resulting unique
optimality criteria values for this family can be directly compared to those for d̄.

Theorem 4.8. The NBBD d̄ ∈ D(2k − 1, 4, k) with δd̄ = δ as given in Lemma
4.6 is uniquely A- and D-optimal over M(2k − 1, 4, k) for 4 ≤ k ≤ 101.

Thus in every case with k ≡ 0(mod 3), the NBBD(3) is best and is A- and
D-superior to the NBBD(2). As expected, for k �≡ 0(mod 3), the NBBD(2)’s are
best and are superior to the NBBD(3)’s which also have minimum discrepancy.
Curiously, the Schur-best member of d3e, identified just prior to Theorem 4.8, is
E- and MV -better than the A- and D-best NBBD(2) whenever k ≡ 1(mod 3),
though not otherwise.

We have not tackled the larger problem of optimality over the full class
D(2k − 1, 4, k). Though there seems little doubt that A- and D-optimality of
the NBBDs will still hold, we have found no reasonably compact method to sift
through the greater variety of structures for Cd allowed by nonbinarity. This
problem remains open.

From a larger perspective, the difficulties dealt with for D(2k − 1, 4, k) are
typical of problems that design theory has as yet to adequately address. Argu-
ments based on concepts of “near symmetry” of the information matrix are not
effective for settings where that condition cannot be even approximately met.
The tack taken here, blending theory and computation, and deriving bounds for
multiple eigenvalues, provides an approach that is likely to prove fruitful else-
where. If further significant progress is to be made on the block design optimality
problem, slowed in recent years, such a blend will be needed.

5. Concluding Comments

In embarking on this study we had entertained thoughts of debunking this
conjecture from Shah and Sinha (1989, p.60): “Binary (or generalized binary)
designs form an essentially complete class.” The results of Morgan and Uddin
(1995) establishing that E- and MV -optimal designs in some settings must lie
in the nonbinary class suggested that perhaps a similar result would hold with
respect to criteria that focus less on extreme behavior, such as A and D (compare
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Example 2). We are now fairly firmly convinced otherwise. All of our results give
conditions for optimality of binary designs, including some in settings explored
by Morgan and Uddin (1995), and we are now inclined to support the conjecture
for the A-optimality problem.

We have not encountered any setting where the A-optimal design lies out-
side of the NBBD(l) classes for l ≤ 3. Another interesting observation is that
whenever designs with different discrepancies δd but the same minimum value
tr(C2

d) have been encountered, the smaller discrepancy has proven superior for
the A and D criteria.

The main thrust of this paper, the first systematic study to do so, has been to
explore optimality in block design settings where the “near balance” studied by
other authors cannot hold. When complete symmetry of the information matrix
can still be fairly closely approximated, earlier used tools adopt fairly well, as
seen in Sections 3, 4.1, and 4.2. When that approximation is not close, such as
in Section 4.3, other tools are needed, and increased reliance on computational
methodology is inevitable.
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Appendix. Eigenvalue Bounds for the d1e and d2e Series

For both series, bounds can be established by using a Sturmian separation
theorem (see Rao (1973, p.64)). Consider first d1e. If the first two rows and
columns of the information matrix as displyed in Table 3 are deleted, the ordered
eigenvalues of the resulting order v − 2 matrix are upper bounds for the v − 2
smallest eigenvalues of the information matrix. Deriving eigenvalues for the order
v − 2 matrix is straightforward; the smallest is 2 − 2e+g+1

k − (g2+1)1/2

k and the
other v − 3 are w1, . . . , wv−3 as shown in Table 2. The largest eigenvalue of the
upper left-most 2×2 of Cd1e is 3− 1

k , which is a lower bound wv−1 for the largest
eigenvalue of Cd1e.

For d2e, deleting the first two rows and columns of the information matrix
as done for d1e leaves an order v − 2 matrix which, while appearing to be only
slightly more complicated than that found with d1e, does not admit tractable
expressions for its four smallest eigenvalues. Simple expressions (which, since
in any case the bounds will not eliminate all competitors, are preferred) can be
found by deleting two more rows/columns to get an order v−4 matrix in the same
form as the order v−2 matrix used with d1e. There are

(
3
2

)
ways to do this, since

the deletion must reduce by one the order of two of the three diagonal blocks of
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orders e + 1, h + 1, and g − h; the key is that the result will have two pairs of
identically sized diagonal blocks, making the eigenvalue computation analytically
tractable. The ith of these three distinct sets of deletions yields wi1, wi2, wi3 in
Table 2.

To derive wv−1 and wv−2 for d2e, let a = max{e + 1, h + 1, g − h}. Delete
all rows and columns from Cd2e except the first two and those corresponding to
a diagonal block of order a. The two largest eigenvalues of the resulting order
a + 2 matrix are wv−1 and wv−2.

Table 3. Partitioned information matrix for series d1e.


3− 3
k − 2

k

− 2
k 3− 3

k

− 2
kJ2,e − 1

kJ2,e+1
− 2

k J1,h

− 1
k J1,h

− 1
k J1,h

− 2
k J1,h

− 1
k J1,g−h

− 2
k J1,g−h

− 2
k J1,g−h

− 1
k J1,g−h

2I− 2
kJ 0 − 1

kJ − 1
kJ − 1

kJ − 1
kJ

2I− 2
kJ − 1

kJ − 1
kJ − 1

kJ − 1
kJ

2I− 2
kJ 0 − 1

kJ − 1
kJ

2I− 2
kJ − 1

kJ − 1
kJ

2I− 2
kJ 0

2I− 2
kJ




Table 4. Partitioned information matrix for series d2e.


3− 3
k − 3

k

− 3
k 3− 3

k

− 2
kJ2,e − 1

kJ2,e+1 − 2
kJ2,h − 1

kJ2,h+1 − 1
kJ2,g−h − 2

kJ2,g−h−1

2I− 2
kJ 0 − 1

kJ − 1
kJ − 1

kJ − 1
kJ

2I− 2
kJ − 1

kJ − 1
kJ − 1

kJ − 1
kJ

2I− 2
kJ 0 − 1

kJ − 1
kJ

2I− 2
kJ − 1

kJ − 1
kJ

2I− 2
kJ 0

2I− 2
kJ




Table 5. Partitioned information matrix for series d3e.


4 − 4
k − 2

kJ2,e+1 − 2
kJ2,e+1 − 2

kJ2,h − 2
kJ2,h − 2

kJ2,g−h − 2
kJ2,g−h

2I− 2
kJ 0 − 1

kJ − 1
kJ − 1

kJ − 1
kJ

2I− 2
kJ − 1

kJ − 1
kJ − 1

kJ − 1
kJ

2I− 2
kJ 0 − 1

kJ − 1
kJ

2I− 2
kJ − 1

kJ − 1
kJ

2I− 2
kJ 0

2I− 2
kJ



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