
Statistica Sinica 10(2000), 1069-1089
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BY COMBINING DIFFERENT PROCEDURES
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Abstract: We study a problem of adaptive estimation of a conditional probability

function in a pattern recognition setting. In many applications, for more flexibil-

ity, one may want to consider various estimation procedures targeted at different

scenarios and/or under different assumptions. For example, when the feature di-

mension is high, to overcome the familiar curse of dimensionality one may seek a

good parsimonious model among a number of candidates such as CART, neural

nets and additive models. For such a situation, one wishes to have an automated

final procedure that performs as well as the best candidate.

In this work, we propose a method to combine a countable collection of pro-

cedures for estimating the conditional probability. We show that the combined

procedure has a property that its statistical risk is bounded above by that of any

of the procedure being considered plus a small penalty. Thus asymptotically, the

strengths of the different estimation procedures are shared by the combined pro-

cedure. A simulation study shows the potential advantage of combining models

compared with model selection.

Key words and phrases: Adaptive estimation, conditional probability, logistic re-

gression, minimax-rate adaptation, nonparametric classification.

1. Introduction

In this paper, we study adaptive estimation of a conditional probability
function in a pattern recognition setting. For simplicity, consider the two-class
case with class labels Y ∈ {0, 1}.

Suppose one observes Zi = (Xi, Yi), i = 1, . . . , n, independent copies of a
random pair Z = (X,Y ). Let f(x) = P{Y = 1|X = x) be the conditional
probability of Y taking label 1 given the feature variable X = x ∈ X . Here the
feature space X could be of high dimension. We are interested in estimating f .

Besides parametric modelings (e.g., logistic regression), nonparametric meth-
ods have been considered. When the dimension of the feature space X is high,
traditional methods (e.g., maximum likelihood estimation based on order selec-
tion in a series expansion) often have difficulty estimating exponentially many
parameters based on a sample of moderate size, resulting in unsatisfactory per-
formance. Various methods have been proposed, including projection pursuit
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(Friedman and Stuetzle (1981)), CART (Breiman, Friedman, Olshen and Stone
(1984)), neural networks (e.g., Barron and Barron (1988)), additive models (e.g.,
Stone (1985), Buja, Hastie and Tibshirani (1989)), tensor-product splines with
various interaction orders (e.g., Stone, Hansen, Kooperberg and Truong (1997))
and more. Estimation procedures are developed under different characterizations
of the target function.

When a number of estimation procedures are available, how should one be
chosen for the data at hand? A solution lies in a good model selection criterion.
General results in this direction for estimating the conditional probability include
Barron and Cover (1991) using a minimum description length criterion, Barron
(1994) using a complexity-penalized criterion, Lugosi and Nobel (1999) using
an empirical-complexity based penalization criterion, and Yang (1999c) using a
penalized maximum likelihood estimation criterion. These results show that the
final estimator automatically adapts to various different characterizations of f .

In this work, we propose a method that allows one to combine a countable
collection of procedures for estimating f and derive its adaptation property. We
obtain a risk bound for the combined procedure and show that it combines the
strengths of the original procedures in the sense that when compared with any of
the original procedures, its risk is no more than a small penalty away. Thus the
combined procedure works asymptotically as well as the best being considered
without knowing which one it is.

The method of combining different procedures here has a connection with
data compression in information theory (see, e.g., Barron (1987), Clark and Bar-
ron (1990), and Yang and Barron (1999)). Similar adaptation results have been
obtained for density estimation and nonparametric regression (with Gaussian
errors) in Yang (1996, 2000a, b).

Combining different procedures has been studied in computational learning
theory (see, Vovk (1990), Littlestone and Warmuth (1994), Cesa-Bianchi, Fre-
und, Haussler, Shapire and Warmuth (1997), Cesa-Bianchi and Lugosi (1999),
and others). The focus is on the worst-case cumulative performance (relative
to the best procedure) over all possible sequences of observations without as-
sumptions on how the data are generated. The loss studied in the context of
classification is typically |Y − f̂ |, which is a suitable measure for prediction. In
this paper, our interest is in the estimation of the conditional probability under
a probabilistic assumption (i.i.d.) on the data. Accordingly the squared L2 loss
‖ f̂ − f ‖2 for estimating f is used. The risk bound, as is well-known, implies
a performance bound on the mean error probability for classifying the next Y,
which is commonly considered in statistical classification (see Section 5). Com-
pared with the methods mentioned above, for good performance at each sample
size (rather than a cumulative fashion, which is suitable for on-line learning), our
method involves an averaging over different sample sizes.
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The paper is organized as follows. In Section 2, the method of combining a
list of procedures is proposed. The adaptation property of the combined proce-
dure is derived in Section 3. In Section 4, we consider minimax-rate adaptation
over different classes of conditional probability functions. In Section 5, we give
an implication for adaptive classification. The main result is illustrated using an
example in Section 6. A computationally feasible algorithm is proposed in Sec-
tion 7 and a simulation study is presented. The proofs of the results are deferred
to Section 8.

2. Method of Adaptation

A procedure for estimating f refers to a sequence of estimators based on
observation(s) Z1,. . . , Zn−1, . . . respectively.

Let ∆ = {δj , j ≥ 1} be a collection of estimation procedures for f with δj

producing an estimator f̂j,i(x;Zi) based on Zi. The index set {j ≥ 1} is allowed
to degenerate to a finite set. No restrictive requirement other than a bounded-
ness condition will be placed on the procedures to be combined. For instance,
procedure δ1 may be an automated kernel method, δ2 may be a logistic regression
method, δ3 may be a neural net method, and so on. Then too, procedure δ4 may
be a method using quadratic splines while procedure δ5 may be one using cubic
splines. Some of the procedures (as δ1 above) may already be adaptive, in which
case the final procedure can provide further adaptation capability.

Let λ = {λj , j ≥ 1} be a set of positive numbers satisfying
∑

j≥1 λj = 1.
Here λ may be viewed as weights (or prior probabilities) of the procedures in ∆.
The choice of λ will be discussed in Section 3.B.

For a given i0 ≥ 2, let

βj,i =
λjΠi0≤m≤if̂j,m−1(Xm)Ym

(
1 − f̂j,m−1(Xm)

)1−Ym

∑
l≥1 λlΠi0≤m≤if̂l,m−1(Xm)Ym

(
1 − f̂l,m−1(Xm)

)1−Ym
, i ≥ i0. (1)

Note that
∑

j≥1 βj,i = 1 and that the βj,i’s are random, bounded between 0 and
1 depending on ∆ and the data Zi. Then for i ≥ i0, let f̃i(x) =

∑
j≥1 βj,if̂j,i(x),

and for i = i0−1, let f̃i(x) =
∑

j≥1 λj f̂j,i(x). These estimators are convex combi-
nations of the original estimators produced by the procedures in ∆, with weights
depending on ∆ and Zi. Let δ∗ denote this estimation procedure (producing {f̃n,

n ≥ 1}) with i0 = 2.
A closely related procedure will also be used. For each n, choose an integer

Nn with 2 ≤ Nn ≤ n (the role of Nn will be explained in Section 3.B; unless
stated otherwise, Nn is of order n). Taking i0 = n − Nn + 2 in the definition of
βj,i’s, we define f̂∗

n(x) = (1/Nn)
∑n

i=n−Nn+1 f̃i(x), our final adaptive estimator of
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f at sample size n. Let δ∗ denote this procedure (which produces the sequence
of estimators {f̂∗

n, n ≥ 1}). By construction, it is a convex combination of
the original estimators at various sample sizes up to n, with adaptive weights
depending on the list ∆ and the realization of the training sample.

Finally we point out that the adaptive weights for the combined procedures
δ∗ and δ∗ are based on a connection with universal coding in information theory
(see, e.g., Barron (1987), Barron and Cover (1991), and Yang (1996, Lemma 2.6).

3. Adaptation Risk Bound

A. Risk of interest. Let µ denote the (unknown) distribution of the feature
random variable X. We measure the loss of an estimator of f in terms of a
squared norm. Let ‖ · ‖2 denote the L2 norm with respect to µ and consider
two risks: the average cumulative risk and the individual risk. For a procedure δ

producing estimators f̂1, f̂2, . . . based on Z1, Z2, . . . respectively, the individual
risk at sample size n is R (f ;n; δ) = E ‖ f − f̂n ‖2

2, where the expectation is taken
with respect to Zn, f being the true conditional probability function. Since f is
between 0 and 1, this is well defined. Alternatively, for n ≥ 1, one can consider
the average cumulative risk up to sample size n, Rseq (f ;n; δ) = n−1∑n

i=1 E ‖
f − f̂i ‖2

2 .

B. Risk bound for the combined procedure. A technical condition will be
used for our first theoretical result. We assume that, for each procedure δj in
the list ∆, the estimators are uniformly bounded away from 0 and 1 (at least
for large samples), i.e., there exists a constant 0 < Aj < 1/2 such that f̂j,i(x) is
always between Aj and 1−Aj for all x and all sample size i ≥ 1. The constants
{Aj , j ≥ 1} are not required to be uniformly bounded away from zero. A data
modification to relax the requirement will be discussed in the next subsection.

Theorem 1. For a collection of procedures ∆ = {δj , j ≥ 1} satisfying the above
condition, and for any weight λ, we can construct estimation procedures δ∗ and
δ∗as in Section 2 such that for any underlying conditional probability function f ,

Rseq (f ;n; δ∗) ≤ 2 inf
j

(
1
n

log
1
λj

+ A−2
j Rseq (f ;n; δj)

)
, (2)

R (f ;n; δ∗) ≤ 2 inf
j

 1
Nn

log
1
λj

+ A−2
j

n∑
l=n−Nn+1

R (f ; l; δj) /Nn

 . (3)

Remark. Note that the adaptation method given in Section 2 does not re-
quire the boundness assumption on the procedures. Though risk bounds blow
up without such an assumption, the combined procedures may not be bad in
practice.
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From (2), the average cumulative risk of the adaptive procedure δ∗ is auto-
matically bounded by a multiple of the average cumulative risk of each procedure
δj plus a small penalty. Note that (1/Nn)

∑n
l=n−Nn+1 R(f ; l; δj) is the average

accuracy of δj between sample sizes n − Nn + 1 and n. Ideally one would like
to replace it by R (f ;n; δj) (the risk of δj at sample size n) in the individual
risk bound (3), but we suspect that it is not true in general. For most inter-
esting applications, with a proper choice of Nn, (1/Nn)

∑n
l=n−Nn+1 R (f ; l; δj)

is bounded like R (f ;n; δj) for a reasonable estimation procedure (see, e.g., the
proof of Theorem 3). For instance, for a decreasing risk around a polynomial
order n−rη(n) for some 0 < r ≤ 1 and η(n) (e.g., log n) being a slowly changing
function, (1/Nn)

∑n
l=n−Nn+1 R(f ; l; δj) is indeed of the same order as n−rη(n)

for any choice of Nn ≤ τn with 0 < τ < 1 (the choice of Nn = n results in an
extra logarithmic factor for a parametric rate with r = 1). If this is the case for
good procedures in the collection ∆ (which have small risks but not too small
weights), one has

R (f ;n; δ∗) = O

(
inf
j

(
1
n

log
1
λj

+ A−2
j R(f ;n; δj)

))
. (4)

Based on the above discussion, we later informally interpret the risk bound in
(3) as if (4) held.

From the above, for individual and average cumulative risks, without know-
ing which procedures are good for the underlying f , we pay the price of a penalty
(1/n) log(1/λj) (of order 1/n) for adaptation over the estimation procedures in
∆.

Now we briefly discuss the roles of Nn and λ. If for a given j, R (f ; l; δj)
is decreasing in l (as expected for a good estimation procedure), then clearly a
larger Nn decreases the penalty term in the risk bound in (3) involving the weight,
but increases the main term involving the risk of the procedure. For the familiar
cases with R (f ;n; δj) decreasing at a polynomial order, any choice of Nn ∼ τn

with 0 < τ < 1 yields the right rate of convergence. From a computational
point of view, a larger Nn increases the computation time polynomially. Due to
averaging over different sample sizes in the construction of δ∗, we expect that the
estimator produced with larger Nn to be more robust to the presence of outliers,
but this remains to be verified.

For the weight assignment λ, if ∆ is a small finite set with a few procedures of
interest, a natural choice is a uniform weight on the procedures. For example, if
both a parametric model and a nonparametric one are plausible, one can combine
them with λ1 = λ2 = 1/2. When there are countably many procedures to be
combined, one may assign the weights according to a natural or reasonable way
to describe the index of the procedures (see, e.g., Barron and Cover (1991), Hall
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and Hannan (1988), Rissanen, Speed and Yu (1992), Yang and Barron (1998) for
demonstrations of such assignments in related work). Of course the assignment is
always subjective to some degree, but when the weights are chosen reasonably it
usually does not affect the rate of convergence. In practice, we may assign smaller
weights λj for more complex estimation procedures. Then the risk bound in (3)
is a trade-off between accuracy and complexity.

In principle, one can also use the method in Section 2 to deal with adaptation
over estimation procedures indexed by continuous hyper-parameters (e.g., band-
widths for kernels). With the hyper-parameters properly discretized, an adaptive
procedure is obtained and the penalty term in the risk bound (3) usually does
not affect the rate of convergence for nonparametric estimation.

C. A modification to improve the adaptation risk bound. In Theorem 1, the
original procedures are assumed to be bounded away from zero and one. This
restriction can be weakened by a technique used earlier in Yang and Barron
(1998, 1999). The idea is to modify the data so that the conditional probability
is bounded away from 0 and 1 (to avoid a technical difficulty that arises in relating
Kullback-Leibler divergence and the chi-square distance).

In addition to the observed i.i.d. sample (X1, Y1), . . . , (Xn, Yn), let Wi be
an independently generated Bernoulli random variable with success probability
1/2, and let Ỹi be Yi or Wi with probability (ρ, 1 − ρ) for some 1/2 ≤ ρ < 1,
independently for i = 1, . . . , n. The conditional probability of Ỹi taking value 1
given X = x is g(x) = ρf(x) + (1 − ρ)/2. The new function g is bounded below
by (1 − ρ)/2 > 0 and above by ρ + (1 − ρ)/2 < 1. Applying the procedures in
∆ based on the modified data Z̃n = (Xi, Ỹi)ni=1, we have estimators ĝj,i(x) of
g. In accordance with the bounds on g, one can project the estimators to that
range, i.e., let g̃j,i(x) be the minimizer of ‖ s − ĝj,i ‖2 over all function s with
(1 − ρ)/2 ≤ s(x) ≤ ρ + (1 − ρ)/2. By convexity, the risk of g̃j,i is no greater
than ĝj,i (see e.g., Yang and Barron (1999)). Then, applying the adaptation
recipe in Section 2 to the modified estimators, from Theorem 1 we have an
adaptive procedure producing estimator ĝ∗n of g based on Z̃n, with E

Z̃n‖ĝ∗n − g‖2
2

bounded above in terms of the risks of the procedures in estimating g based on
Z̃n. Since f(x) = g(x)/ρ − (1 − ρ)/ (2ρ) , let f̂rand(x) = ĝ∗n(x)/ρ − (1 − ρ)/ (2ρ) .
Then f̂rand(x) is nonnegative and integrates to one (with respect to x). It is
a randomized estimator of f and, due to convexity of the loss, one may take
conditional expectation with respect to the randomness in the generated random
variables to obtain a nonrandomized estimator with no greater risk. The squared
L2 risk of f̂rand is related to the risk of ĝ∗n:

E‖f − f̂rand‖2
2 = ρ−2E

Z̃n‖ĝ∗n − g‖2
2, (5)

where the first expectation is taken with respect to both the original randomness
in Zn and that from the generated random variables. Let δ† and δ† be the
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combined procedures based on the modified data corresponding to δ∗ and δ∗

given in Theorem 1 respectively. We have the following conclusion.

Theorem 2. For any given ∆ = {δj , j ≥ 1} and λ, we can construct estimation
procedures δ† and δ† such that for any underlying conditional probability function
f , risks are bounded in terms of the risks of the original procedures at g = ρf +
(1 − ρ)/2:

Rseq (f ;n; δ†) ≤ 2ρ−2 inf
j

(
1
n

log
1
λj

+
(

2
1 − ρ

)2

Rseq (g;n; δj)

)
, (6)

R
(
f ;n; δ†

)
≤ 2ρ−2 inf

j

 1
Nn

log
1
λj

+
(

2
1 − ρ

)2 n∑
l=n−N+1

R (g; l; δj) /Nn

 . (7)

Remarks. 1. The bigger is ρ, the more we make use of the original data. From
a practical point of view, ρ should be taken to be close to 1, but not too close to
blow up the risk bounds.

2. The technical difficulty that arises when f is close to 0 or 1, in our
derivation of the adaptation risk bound for estimating f, seems not to be a
problem when classification alone is concerned, because being close to zero or
one are easy cases for classification.

3. In data modification, we generate the Wi’s using constant conditional
probability 1/2. Alternatively one may use any function uniformly bounded away
from zero and one as the conditional probability to generate Wi’s. A similar result
follows.

For nonparametric estimators, the risks at g(x) = ρf(x) + (1 − ρ)/2 and f
are usually bounded at the same rate. If this is the case for the procedures in ∆,
then (6) and (7) yield the desired adaptive rate of convergence. See the proof of
Theorem 3 for an application of this result.

4. Minimax-Rate Adaptation

In addition to the convergence property of a procedure at an individual f ,
uniform convergence over a class of conditional probability functions, say, F ,
is also of interest. To that end, the worst-case risk of a procedure over F can
be compared to the minimax risk to assess its performance. The minimax risk
also provides an answer to the question of how large the sample size should be to
guarantee a certain accuracy for every member in F . In this section, we apply the
adaptation risk bounds in Section 3 to obtain minimax-rate adaptive procedures
of f over different classes of conditional probability functions.

The minimax risk under the squared L2 loss for estimating a conditional
probability in F is R(F ;n) = minf̂ maxf∈F E ‖ f − f̂ ‖2

2, where f̂ is over all valid
estimators based on Zn.



1076 YUHONG YANG

The rate of convergence of the above minimax risk (as well as a minimax risk
for classification) is studied in Yang (1999b). It is shown that for estimating f ,
in general, the minimax rate is determined by the massiveness of F as measured
by metric entropy.

A procedure that produces a sequence of estimators of f (at different sample
sizes) achieving the minimax rate of convergence is said to be minimax-rate
optimal. Let {Fj , j ≥ 1} be a collection of classes of conditional probability
functions. If a procedure is simultaneously minimax-rate optimal for every Fj,
we say it is minimax-rate adaptive over the collection. An important question
concerning adaptation then is: Is it possible to construct a minimax-rate adaptive
estimator for a general collection of classes of conditional probability functions?
We have the following result in the positive direction.

Assume that each class Fj is convex, containing at least one common member
uniformly bounded away from 0 and 1. Otherwise, the function classes could be
completely different, e.g., F1 may consist of all nondecreasing functions between
0 and 1, F2 may be a neural network class, and some other classes may be Sobolev
with various interaction order and smoothness (see Section 6).

For a given class F , if R(F ; �n/2�) and R(F ;n) converge at the same order,
we say that the minimax risk of the class F is rate-regular. The familiar rates
of convergence n−α (log n)β for some 0 ≤ α ≤ 1 and β ∈ R are rate-regular. We
assume that each class is rate-regular.

Theorem 3. Under the above assumptions, we can construct a minimax-rate
adaptive procedure for the classes {Fj , j ≥ 1}.

Thus under a mild condition, a single procedure can be constructed to au-
tomatically perform optimally in terms of rate of convergence for a general col-
lection {Fj , j ≥ 1} without knowing which one contains the true conditional
probability function.

5. Implication for Classification

For classification, one needs to predict the label of Y according to the feature
variable X = x. Formally, a classifier κ based on the training data Zn is a
mapping from X × {X × {0, 1}}n to {0, 1}. For a given classifier κ = κ(x;Zn)
based on Zn, the mean error probability is EP (Y �= κ(X;Zn)|Zn) . If f were
known, this error probability is minimized over all choices of classifiers by a
Bayes decision κ∗ which predicts Y as class 1 if f(x) ≥ 1/2 and class 0 otherwise.
A risk of interest for studying a classifier is

r(f ;n;κ) = EP{Y �= κ(X;Zn)|Zn)} − P{Y �= κ∗(X)}. (8)

It is a measure of performance of κ relative to the Bayes rule.



ADAPTIVE ESTIMATION FOR PATTERN RECOGNITION 1077

Given an estimator f̂ of f, the plug-in classifier classifies Y as class 1 for x

with f̂(x) ≥ 1/2 and class 0 otherwise. It is well-known (see e.g. Devroye, Györfi,
and Lugosi (1996, p.95)) that a plug-in classifier has a risk bound r(f ;n;κ) ≤
2(E‖f−f̂‖2

2)
1/2. It is shown in Yang (1999b) that for most of the familiar function

classes (e.g., bounded variation, Sobolev or Besov), if f̂n is minimax-rate optimal
for F , so is the plug-in classifier. For a collection of such classes of conditional
probability functions, from Theorems 1 and 2, we have the conclusion that the
plug-in classifier based on the combined procedure for estimating f is minimax-
rate adaptive for classification.

For the pure purpose of classification, one does not have to estimate the
conditional probability function f . Devroye (1988) derived nice risk bounds and
convergence properties for an adaptive classifier obtained by selecting among a
candidate set based on empirical risk minimization.

6. An Example of High-Dimensional Estimation

When the dimension of the feature variable X is high, one faces the familiar
curse of dimensionality: the accuracy of the traditional estimators are often not
satisfactory even with a moderate sample size. To overcome the problem, dif-
ferent parsimonious models have been suggested. In applications, not knowing
which model is good, adaptivity over a collection of plausible ones is desired.
For a demonstration, we consider three types of procedures: data-dependent his-
tograms, neural nets, and splines with various interaction orders and smoothness.

Assume that X = [0, 1]d and that the distribution µ of X is dominated by
the Lebesgue measure with a density bounded away from zero and infinity.
A. Procedures to be combined.

(i). Histograms using data-dependent partitionings. Let Πn(Zn) be a data
dependent partition of Rd. For a given x, let Πn[x] denote the cell containing x.
Then the histogram estimate of the conditional probability function f is defined
as

f̂n(x) =
∑n

i=1 YiI{Xi∈Πn[x]}∑n
i=1 I{Xi∈Πn[x]}

.

(When the denominator is zero, define f̂n(x) = 0.) Consistency and almost
sure convergence results have been established under conditions on the partition-
ing (see, Stone (1974), Devroye and Györfi (1983), Gordon and Olshen (1984),
Breiman, Friedman, Olshen and Stone (1984), Nobel (1996) and others). A
tree-structured partitioning results in a regression tree. When the partition is
properly carried out, the procedure is consistent for every conditional probability
function f . Let δ1 denote such a histogram procedure.

(ii). Neural nets. Consider feedforward neural network models with one layer
of sigmoidal nonlinearities, which have the form fk(x, θ) =

∑k
i=1 ciσ(vi·x+bi)+c0.
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The function is parametrized by θ, consisting of vi ∈ Rd, bi, ci ∈ R with the
restriction that 0 ≤ fk(x, θ) ≤ 1. Here σ is a given sigmoidal function with
‖ σ ‖∞≤ 1, limz→∞ σ(z) = 1 and limz→−∞ σ(z) = 0. A model selection criterion
can be used to select k. Consider, for example, the penalized maximum likelihood
estimation using a criterion studied in Yang (1999c). Let δ2 denote this neural
net procedure.

(iii). Tensor-product spline models. Let ϕm,q,1(x), . . . , ϕm,q,m(x) be the B-
spline basis on [0,1]. For 1 ≤ r ≤ d, let Jr = (j1, . . . , jr) (j1 < j2 < · · · < jr)
be an ordered vector of elements from {1, . . . , d}, and let Jr denote the set of
all possible such choices. Let xJr = (xj1 , . . . , xjr) be the subvecter of x with
subscripts in Jr. Let mr = (m1, . . . ,mr) and qr = (q1, . . . , qr) be vectors of
integers. Let ir = (i1, . . . , ir), with 1 ≤ il ≤ ml, 1 ≤ l ≤ r. Then given the spline
order qr and mr, the tensor products

{ϕir(xJr) = Πr
l=1ϕml,ql,il(xjl

) : Jr ∈ Jr; 1 ≤ il ≤ mj for 1 ≤ l ≤ r} (9)

have interaction order r − 1.
For each choice of I = (r,qr,mr), consider the family of linear combinations

of the splines in (9). Based on a model selection criterion, a penalized maximum
likelihood estimation procedure is shown in Yang (1999c) to be minimax-rate
adaptive over Sobolev classes (see below). Let δ3 denote this spline procedure.
B. Related function classes.

(i). Neural network classes. Let N(C) be the closure in L2[0, 1]d of the set
of all functions g : Rd → [0, 1] of the form g(x) = c0 +

∑
i≥1 ciσ(vi · x + bi),

with |c0| + ∑
i≥1 |ci| ≤ C, and ‖vi‖ = 1, where σ is a sigmoidal function. The

minimax rate of N(C) under squared L2 loss is shown in Yang (1999b) to be
slightly better than n−1/2 for large d. Neural net estimators, including δ3 with
the number of nodes (k) selected by a criterion, are shown to converge at the
rate (log n/n)1/2 (see, e.g., Barron (1994), McCaffrey and Gallant (1994), Barron,
Birgé and Massart (1999), and Yang (1999c)). This rate is independent of d and
is close to the optimal rate of convergence when d is large.

(ii). Sobolev classes with various interaction-order and smoothness. For
r ≥ 1, let zr = (z1, . . . , zr) ∈ [0, 1]r . For k = (k1, . . . , kr) with nonnegative
integer components ki, define |k| =

∑r
i=1 ki. Let Dk denote the differentiation

operator Dk = ∂|k|/∂zk1
1 · · · ∂zkr

r . For an integer α, define the Sobolev norm
‖ g ‖W α,r

2
=‖ g ‖2 +

∑
|k|=α

∫
[0,1]r |Dkg|2dzr. Let W α,r

2 (C) denote the set of all
functions g on [0, 1]r with ‖ g ‖W α,r

2
≤ C. Consider the following function classes

of different interaction orders and smoothness:

S1(α;C) = {∑d
i=1 gi(xi) : gi ∈ W α,1

2 (C), 1 ≤ i ≤ d},
S2(α;C) = {∑1≤i<j≤d gi,j(xi, xj) : gi,j ∈ W α,2

2 (C), 1 ≤ i < j ≤ d},
· · ·
Sd(α;C) = W α,d

2 (C),
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with α ≥ 1 and C > 0. (Since f is bounded between zero and one, we restrict
attention to members in that range accordingly.) The simplest class S1(α;C) con-
tains additive functions (no interaction), and with larger r, functions in Sr(α;C)
have higher order interactions. The minimax rate of convergence under squared
L2 loss for estimating f ∈ Sr(α;C) is shown in Yang (1999c) to be n−2α/(2α+r)

for 1 ≤ r ≤ d (cf. Stone (1994) and Nicoleris and Yatracos (1997)). Note that
the convergence rate depends on the interaction order but not on the input di-
mension d, as suggested by the heuristic dimensionality reduction principle of
Stone (1985). Thus low order interaction classes are worth exploring for bet-
ter accuracy. Stone et al (1997) propose a general adaptive spline methodology
by model selection for function estimation including estimating the conditional
probability. However, it remains to be seen in theory if the methods have the
intended adaptation capability.

In Yang (1999c), it is shown that squared L2 risk of the procedure δ3 (the
penalized maximum likelihood estimation based on model selection) is automati-
cally bounded above by the right order n−2α/(2α+r) for each class Sr(α;C) without
knowing α and r.
C. Adaptation property of the combined procedure. By combining the three pro-
cedures δ1, δ2, and δ3 with a uniform weight (λ1 = λ2 = λ3 = 1/3) and with
a data modification as used for Theorem 2, we have a single procedure, say δ∗,
with the following adaptation property.

Theorem 4. The procedure δ∗ has risk bounded simultaneously as follows:
supf∈Sr(α;C) R(f ;n; δ∗) = O(n−2α/(2α+r)) for all 1 ≤ r ≤ d, α ≥ 1; supf∈N(C)

R(f ;n; δ∗) = O( log n
n )

1
2 . In addition, δ∗ is consistent for every conditional proba-

bility function f .

From this result, the combined procedure is minimax-rate adaptive over the
Sobolev classes, it achieves a rate close to the optimal (when d is large) for
the neural network class, and it is consistent for every conditional probability
function.

7. A Computationally Feasible Algorithm

A. ACM algorithm. So far, we have concentrated on theoretical development
of adaptive pattern recognition. In the formulation of the adaptation method in
Section 2, we allow countably many procedures to be combined. This is clearly
impossible to implement in practice within a finite time. If the complexities of the
procedures in a list ∆ are well understood, one could use an appropriate rule to
exclude procedures that are too complex at the given sample size. For instance,
if one considers various finite-dimensional models based on approximations of the
conditional probability function f with n observations, one could not fit models
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with more than n parameters and they can be ruled out. In general, if we have
a reasonable way of assigning the weights λj for the procedures, then a sensible
way to avoid infinite computation time is to rule out procedures with weights
sufficiently small relative to the sample size (e.g., less than n−ρ for some ρ > 0).
Now with n given, assume that we have a finite number of procedures to be
combined.

Notice that the adaptive estimator given in Section 2 depends on the order
of observations. Since the observations are assumed to be i.i.d., the order does
not contain useful information for estimating f. Under the (convex) squared
L2 loss, the estimator can be improved by taking the conditional expectation
given the observations (ignoring the order). That is, one should permute the
order of the observations in all possible ways and compute the average of the
resulting estimators. This, however, is computationally prohibitive due to the
large number of permutations, even for a small sample size. We next propose an
algorithm compromising appropriately between the theoretical risk bound and
computational feasibility.

First, instead of permuting the order of observations in all possible ways,
we can randomly permute a manageably large number of times and compute the
average of the corresponding estimators. Secondly, to save computation time,
we do not update the estimators sequentially after each new observation (which
is used in constructing f̂∗

n in Section 2). In addition, instead of averaging over
different sample sizes as used for computing f̂∗

n, we take the last estimator. We
call the algorithm ACM (Adaptive Classification by Mixing). For simplicity,
assume n is even and there are not too many procedures to be combined. We
simply assign a uniform weight to the procedures. Let ∆ = {δ1, . . . , δK} denote
the procedures.

Algorithm ACM

• Step 1. Randomly permute the order of observations. Split the data into
two parts Z(1) = (Xi, Yi)

n/2
i=1 and Z(2) = (Xi, Yi)ni=n/2+1.

• Step 2. Estimate f by f̂k,n/2 based on Z(1) for each procedure δk ∈ ∆.

• Step 3. Assign the weights.

Wk =
Πn/2+1≤m≤nf̂k,n/2(Xm)Ym

(
1 − f̂k,n/2(Xm)

)1−Ym

∑
l≥1 Πn/2+1≤m≤nf̂l,n/2(Xm)Ym

(
1 − f̂l,n/2(Xm)

)1−Ym

• Step 4. Repeat the above steps (M − 1) times. Average the weights over
the M permutations. Denote the weights by Ŵk, 1 ≤ k ≤ K.
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• Step 5. Compute the convex combination of the estimators f̂k,n for 1 ≤ k ≤
K : f̂n(x) =

∑K
k=1 Ŵkf̂k,n(x).

When the number of permutations M is suitably large, the final estimator
f̂n is stable. One could use an objective rule to decide how large M should be.
For instance, stop permuting when the estimator meets a convergence criterion.
Notice that in the assignment of the weights Wk in Step 3, the same estimator
f̂k,n/2 (instead of f̂k,i for n/2 + 1 ≤ i ≤ n as in Section 2) is used for each k

without updating. This reduces the computation dramatically. In the meantime,
as we show next, we do not sacrifice much in terms of the risk bound.

For n/2 + 1 ≤ i < n, define f̂i(x) =
∑K

k=1 Ŵk,if̂k,n/2(x), where Ŵk,i is the
average of Wk,i over the M permutations with

Wk,i =
Πn/2+1≤m≤if̂k,n/2(Xm)Ym

(
1 − f̂k,n/2(Xm)

)1−Ym

∑
l≥1 Πn/2+1≤m≤if̂l,n/2(Xm)Ym

(
1 − f̂l,n/2(Xm)

)1−Ym
.

Corollary 1. Assume that the boundness condition used for Theorem 1 is satis-
fied. Then the average cumulative risk of the estimators f̂i satisfies

1
n/2

n∑
i=n/2+1

E ‖ f − f̂i ‖2

≤ 2 inf
1≤k≤K

(
1

n/2
log K + A−2

k

(
n − 2

n
E ‖ f − f̂k,n/2 ‖2 +

2
n

E ‖ f − f̂k,n ‖2
))

Remarks. 1. Note that for a good procedure δk, the risk E ‖ f−f̂k,l ‖2 decreases
as the sample size l increases. Then the quantity n−2

n E ‖ f − f̂k,n/2 ‖2 + 2
nE ‖

f− f̂k,n ‖2 is worse than
∑n

l=n/2+1 E ‖ f − f̂k,l ‖2 (as would appear if one uses the
method in Section 2). If f̂k,n/2 and f̂k,n converge at the same rate, as is usually
the case for both parametric and nonparametric estimations, then the simplified
algorithm does not affect the rate of convergence while it dramatically reduces
the computation time.

2. As in Theorem 1, one could average the estimators f̂i for n/2 + 1 ≤
i < n to get an estimator with guaranteed good individual risk bound, but that
significantly increases the computation time.

3. Using a treatment similar to that in Section 3.C, the boundness condition
on the procedures can be relaxed.

The algorithm ACM can be computationally intensive if M is large and/or
there are a large number of procedures to be combined.

B. A simulation study. The following is a simulation study intended to pro-
vide some understanding of the actual performance of ACM in a simple setting.
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We consider logistic regression with a number of feature variables. We compare
ACM with familiar model selection criteria AIC, BIC and cross-validation.

Let X = (X1, . . . ,X8) be a feature vector with independent components all
uniformly distributed on [−1, 1]. Consider nested logistic regression families

fk(x, θ) =
eθ0+

∑k

i=1
θixi

1 + eθ0+
∑k

i=1
θixi

for 1 ≤ k ≤ 8. It is assumed that the true conditional probability function f is
in one of these families. The criteria AIC (Akaike (1973)) and BIC (Schwartz
(1978)) select the model that minimizes −loglikelihood + k and −loglikelihood +
k/2 log n respectively. For the leave-one-out cross-validation (see, e.g., Stone
(1974)), for a given family, each observation is removed once and the estimator
of f based on the remaining data is used to classify the case being removed
while the error rate of misclassification is recorded. The family that minimizes
this test error rate is selected. Differently from these model selection criteria,
ACM combines the families rather than selecting one. The number of random
permutations M is chosen to be 100 for ACM.

Regarding the difference between selecting and combining (or mixing) mod-
els, it seems intuitively clear that when the models are hard to distinguish (e.g.,
due to the small sample size relative to the number of models), selection causes
a larger variability compared with combining the models appropriately. For
such a case, ACM is likely to perform better than the model selection crite-
ria. This has been demonstrated in the context of parametric regression (see
Yang (1999d)). In the study here, the sample size is chosen to be n = 100, which
is not very large relative to the number of models (i.e., 8) being considered.
Two cases are chosen with different numbers of parameters in the true models.
For the first one, f(x) = (e1+0.8x1+0.5x2)/(1 + e1+0.8x1+0.5x2), and for the second,
f(x) = (e1+0.8x1+0.5x2+0.9x3+0.4x4+0.2x5)/(1 + e1+0.8x1+0.5x2+0.9x3+0.4x4+0.2x5).

Both squared L2 loss for estimating f and the probability of misclassifying
a future case (error probability (EP)) are considered as performance measures in
the simulation study. In addition, L1 loss and logarithmic loss are considered for
comparison. Here the risk under logarithmic loss is E

∫
(f(x) log(f(x)/f̂(x))+(1−

f(x)) log((1−f(x))/(1− f̂ (x))))µ(dx). Five thousand additional observations are
drawn from the true underlying distribution to simulate these quantities, and one
hundred replications are used to simulate the corresponding risks. The numbers
in the parentheses in Table 1 are the corresponding standard errors.

From Table 1, it is clear that ACM outperforms the model selection criteria
for the estimation of f under all loss functions. For the two cases, compared with
the model selection criteria, the risk of ACM is reduced respectively by at least
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15% and 32% under squared L2 loss, by at least 9% and 17% under L1 loss, and
by at least 17% and 39% under logarithmic loss. For classification risk, ACM and
BIC perform similarly and significantly better than AIC and Cross-validation for
both cases.

Table 1. Comparing ACM with AIC, BIC and cross-validation in logistic
regression.

Case 1 Case 2
L2 Sq L1 Log-Loss EP L2 Sq L1 Log-Loss EP

AIC
0.0109

(0.0009)
0.0786

(0.0034)
0.0322

(0.0032)
0.3171

(0.0041)
0.0143

(0.0007)
0.0921

(0.0026)
0.0410

(0.0025)
0.3467

(0.0038)

BIC
0.0073

(0.0005)
0.0675

(0.0019)
0.0193

(0.0013)
0.3061

(0.0038)
0.0169

(0.0006)
0.1025

(0.0019)
0.0452

(0.0017)
0.3305

(0.0045)

CV
0.0103

(0.0009)
0.0762

(0.0031)
0.0286

(0.0027)
0.3170

(0.0040)
0.0157

(0.0007)
0.0974

(0.0022)
0.0425

(0.0019)
0.3371

(0.0044)

ACM
0.0062

(0.0005)
0.0612

(0.0021)
0.0161

(0.0012)
0.3092

(0.0036)
0.0097

(0.0005)
0.0760

(0.0020)
0.0251

(0.0013)
0.3302

(0.0037)

ACM and cross-validation are more computer intensive compared with AIC
and BIC. With M = n = 100, ACM and cross-validation take about the same
computing time. Note that the standard errors associated with ACM (M = 100)
are all smaller compared with the model selection criteria.

8. Proof of the Results

Proof of Theorem 1. Let Kf (x, y) = f(x)y(1 − f(x))1−y denote the joint
density of (X,Y ) with conditional probability function f with respect to the
product measure µ⊗ν, where ν is the counting measure on {0,1}. For y = 0 and
1, we have K

f̃i
(x, y) =

∑
j≥1 βj,iKf̂j,i

(x, y). Thus for i ≥ i0,

K
f̃i

(xi+1, yi+1)

=

∑
j≥1

λj

(
Πi0≤m≤if̂j,m−1(xm)ym(1−f̂j,m−1(xm))1−ym

)
f̂j,i(xi+1)yi+1(1−f̂j,i(xi+1))1−yi+1∑

l≥1
λlΠi0≤m≤if̂l,m−1(xm)ym(1−f̂l,m−1(xm))1−ym .

As a consequence, together with the definition of f̃i0−1, we have

Πn
i=i0−1Kf̃i

(xi+1, yi+1) =
∑
j≥1

λjΠn
i=i0−1f̂j,i(xi+1)yi+1

(
1 − f̂j,i(xi+1)

)1−yi+1
.

(10)
For 2 ≤ i0 ≤ n, we have

n∑
i=i0−1

E

∫
Kf (x, y) log

Kf (x, y)
K

f̃i
(x, y)

µ ⊗ ν(dxdy)
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=
n∑

i=i0−1

E

∫
Kf (xi+1, yi+1) log

Kf (xi+1, yi+1)
K

f̃i
(xi+1, yi+1)

µ ⊗ ν(dxi+1dyi+1)

=
n∑

i=i0−1

E

∫
Πn

i=i0−1Kf (xi+1, yi+1) log
Kf (xi+1, yi+1)
K

f̃i
(xi+1, yi+1)

µ ⊗ ν(dxi0dyi0)

· · · µ ⊗ ν(dxn+1dyn+1)

= E

∫
Πn

i=i0−1Kf (xi+1, yi+1) log
Πn

i=i0−1Kf (xi+1, yi+1)
Πn

i=i0−1Kf̃i
(xi+1, yi+1)

µ ⊗ ν(dxi0dyi0)

· · · µ ⊗ ν(dxn+1dyn+1)

= E

∫
Πn

i=i0−1Kf (xi+1, yi+1) log

Πn
i=i0−1Kf (xi+1, yi+1)∑

j≥1 λjΠn
i=i0−1f̂j,i(xi+1)yi+1

(
1 − f̂j,i(xi+1)

)1−yi+1

µ ⊗ ν(dxi0dyi0) · · · µ ⊗ ν(dxn+1dyn+1)

≤ E

∫
Πn

i=i0−1Kf (xi+1, yi+1) log
Πn

i=i0−1Kf (xi+1, yi+1)

λjΠn
i=i0−1f̂j,i(xi+1)yi+1

(
1 − f̂j,i(xi+1)

)1−yi+1
µ

⊗ν(dxi0dyi0) · · · µ ⊗ ν(dxn+1dyn+1)

≤ log(1/λj) + E

∫
Πn

i=i0−1Kf (xi+1, yi+1) log

Πn
i=i0−1Kf (xi+1, yi+1)

Πn
i=i0−1f̂j,i(xi+1)yi+1

(
1 − f̂j,i(xi+1)

)1−yi+1

µ ⊗ ν(dxi0dyi0) · · · µ ⊗ ν(dxn+1dyn+1)

= log(1/λj) +
n∑

i=i0−1

E

∫
Kf (x, y) log

Kf (x, y)
Kf̂j,i

(x, y)
µ ⊗ ν(dxdy),

where, for the fourth equality, we use equation (10); for the first inequality, we
use the fact that log(x) is an increasing function; and for the last step, we use the
relationships for the first four equalities but in the reverse direction. Let D(p ‖
q) =

∫
p log(p/q) and d2

H(p, q) =
∫ (√

p −√
q
)2 denote the Kullback-Leibler (K-

L) divergence and the squared Hellinger distance between two densities p and q

respectively. We now bound the K-L divergence D(Kf ‖ Kf̂j,i
) in terms of the

L2 distance: ∫
Kf (x, y) log

Kf (x, y)
Kf̂j,i

(x, y)
µ ⊗ ν(dxdy)

=
∫ (

f(x) log
f(x)

f̂j,i(x)
+ (1 − f(x)) log

1 − f(x)
1 − f̂j,i(x)

)
µ(dx)
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≤
∫ 

(
f(x) − f̂j,i(x)

)2

f̂j,i(x)
+

(
f(x) − f̂j,i(x)

)2

1 − f̂j,i(x)

µ(dx)

≤ 1
A2

j

‖ f − f̂j,i ‖2
2,

where the first inequality follows from the familiar bound on K-L divergence by
chi-square distance, i.e.,

∫
p log (p/q) ≤ ∫

(p − q)2 /q for densities p and q, and
the second inequality follows from the boundness assumption on the procedures.
Thus we have

n∑
i=i0−1

ED(Kf ‖ K
f̃i

) ≤ log(1/λj) +
1

A2
j

n∑
i=i0−1

E ‖ f − f̂j,i ‖2
2

for each j. Since the squared Hellinger distance is always upper bounded by the
K-L divergence, we have

n∑
i=i0−1

Ed2
H(Kf ,K

f̃i
) ≤ inf

j≥1

log(1/λj) +
1

A2
j

n∑
i=i0−1

E ‖ f − f̂j,i ‖2
2

 . (11)

Note that d2
H(Kf ,Kg) =

∫
d2

Y (f(x), g(x))µ(dx), where

d2
Y (f(x), g(x)) =

(√
f(x) −

√
g(x)

)2

+
(√

1 − f(x) −
√

1 − g(x)
)2

≥ 1
4
(f(x) − g(x))2 +

1
4
(1 − f(x) − (1 − g(x)))2 =

1
2
(f(x) − g(x))2.

(For the above inequality, we use the fact that f and g are upper bounded by 1.)
As a consequence, we have

n∑
i=i0−1

E ‖ f − f̃i ‖2
2≤ 2 inf

j≥1

log(1/λj) +
1

A2
j

n∑
i=i0−1

E ‖ f − f̂j,i ‖2
2

 .

Taking i0 = 2, the above inequality yields the cumulative risk bound (2). For
the individual risk bound, taking i0 = n − Nn + 2 and, by convexity of squared
L2 loss, we have

E ‖ f − f̂∗
n ‖2

2≤
1

Nn

n∑
i=n−Nn+1

E ‖ f − f̃i ‖2
2

≤ 2 inf
j≥1

 log(1/λj)
Nn

+
1

A2
jNn

n∑
i=n−Nn+1

E ‖ f − f̂j,i ‖2
2

 .
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This completes the proof of Theorem 1.

Proof of Theorem 3. Let Rj(n) denote the minimax squared L2 risk of the
class Fj, i.e., Rj(n) = minf̂ maxf∈Fj

E ‖ f − f̂ ‖2
2, where the minimum is taken

over all estimators based on Zn. For each class Fj , let δj be a minimax-rate
optimal procedure, i.e., supf∈Fj

R(f ;n; δj) ≤ CjRj(n) for some constant Cj > 1.
From the assumptions, there exists a function f0 ∈ Fj uniformly bounded away
from zero and one. We modify the data as in Theorem 2 with, for instance,
ρ = 1/2, Nn = n/2 (ignore rounding), and λj = c/j2 (c =

∑
j≥1 j−2). Instead of

generating Wi’s using the constant conditional probability 1/2 in the derivation
of Theorem 2, we generate Wi using the conditional probability f0(Xi) at Xi for
1 ≤ i ≤ n. A result similar to Theorem 2 then holds. For the following proof,
for simplicity, we assume f0 = 1/2 is in each Fj . The proof for a general f0 is
similar.

Let gf = f/2 + 1/2. By Theorem 2, we have a combined procedure δ† such
that for each j∗ ≥ 1 and every f ∈ Fj∗,

R
(
f ;n; δ†

)
≤ 8 inf

j

 2
n

log
1
λj

+ 32
n∑

l=n/2

R (gf ; l; δj) /n


≤ 8

 2
n

log
1

λj∗
+ 32

n∑
l=n/2

sup
g∈Fj∗

R (g; l; δj∗) /n


≤ 8

 2
n

log
1

λj∗
+ 32

n∑
l=n/2

Cj∗Rj∗(l)/n


≤ 8

(
2
n

log
1

λj∗
+ 16Cj∗Rj∗(n/2)

)
.

For the second inequality, we use the fact that gf is in Fj∗ under the convexity
assumption; for the third inequality, we use the fact that δj∗ is minimax-rate
optimal; for the last inequality, we use the fact that the minimax risk Rj∗(l) is
nonincreasing in l. As a consequence,

sup
f∈Fj∗

R
(
f ;n; δ†

)
≤ 8

(
2
n

log
1

λj∗
+ 16Cj∗Rj∗(n/2)

)
.

Under the rate-regular assumption on the classes, Rj∗(n/2) is of the same order
as Rj∗(n). The penalty (2/n) log(1/λj∗) is of order 1/n for each j∗ and does not
affect the rate of convergence. Thus δ† converges at the rate Rj∗(n) uniformly
over Fj∗ for each j∗. This completes the proof of Theorem 3.
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Proof of Theorem 4. Since the constant function 1/2 is in the Sobolev and
neural network classes, by convexity of these classes, g = f/2+1/2 is also in these
classes. The rate of convergence of the combined procedure then follows directly
from Theorem 2. Since δ3 is consistent for every conditional probability function,
we have R(f ; l; δj) → 0 as l → ∞. As a consequence,

∑n
l=n/2 R(f ; l; δj)/n → 0 as

n → ∞. The consistency of δ∗ then follows from (7). This completes the proof
of Theorem 4.

Proof of Corollary 1. Since ‖ f − f̂ ‖2
2 is a convex loss, averaging over random

permutations does not increase the risk. The conclusion of Corollary 1 then
follows directly from Theorem 1.
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Barron, A. R., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via penaliza-

tion. Probab. Theory Related Fields 113, 301-413.

Barron, A. R. and Cover, T. M. (1991). Minimum complexity density estimation. IEEE Trans.

Inform. Theory 37, 1034-1054.

Breiman, L., Friedman, J. H., Olshen, R. and Stone, C. J. (1984). Classification and Regression

Trees. Wadsworth, Belmont, CA.

Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothing and additive models. Ann.

Statist. 17, 453-555.

Cesa-Bianchi, N., Freund, Y., Haussler, D. P., Schapire, R. and Warmuth, M. K. (1997). How

to use expert advise? J. ACM 44, 427-485.

Cesa-Bianchi, N. and Lugosi, G. (1999). On prediction of individual sequences. To appear in

Ann. Statist..



1088 YUHONG YANG

Clarke, B. and Barron, A. R. (1990). Information-theoretic asymptotics of Bayes methods.

IEEE Trans. Inform. Theory 36, 453-471.

Devroye, L. (1988). Automatic pattern recognition: a study of the probability of error. IEEE

Trans. Pattern Analysis and Machine Intelligence 10, 530-543.

Devroye, L. and Györfi, L. (1983). Distribution-free exponential bound on the L1 error of

partitioning estimates of a regression functions. In Proceedings of the Fourth Pannonian

Symposium on Mathematical Statistics (edited by F. Konecny, J. Mogyor ódi and W.
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