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Abstract: This paper deals with generalized confidence intervals (GCIs) for the
maximum value of functions of parameters of interest in the presence of nuisance
parameters. For k(> 2) normal populations, we propose GCIs for, respectively, the
largest mean, the largest quantile and the largest signal-to-noise ratio.

For the case of the largest mean, it is shown that the proposed GClIs are better
than those of Chen and Dudewicz (1973a, b). A new measure of efficiency is
proposed and some Monte Carlo comparisons between the proposed method and
the known method are performed. We also show that in several situations the
GClIs are equivalent to Bayesian confidence intervals by employing improper prior
distributions. Illustration is made to some real data.
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val, quantile, signal-to-noise ratio.

1. Introduction

To illustrate the underlying problem and to formulate the generalized confi-
dence interval (GCI), consider an observable random vector X ; from population
m, © = 1,...,k, with cumulative distribution function FC-’ where ¢; = (6;,9;)
is a vector of unknown parameters, 6; the parameter of interest and d; a vec-
tor of nuisance parameters. For convenience, let x; be an observation of X,
i=1,...,k, X =(X1,...,Xg), x = (x1,...,2k), and ¢ = ({y,...,{;). Based
on x, our goal is to derive a 100(1 — )% GCI for § = max;< ;< 0;.

It is well known that confidence intervals (Cls) in statistical problems in-
volving nuisance parameters are available only in special cases. To remedy this,
Weerahandi (1993, 1995) proposed a generalized pivotal quantity and derived the
GCI as an extension of the classical CI. Based on that work, we make

Definition 1.1. Let R = R(X,z,¢) be a function of X and possibly  and
¢ as well. Then R is said to be a generalized pivotal quantity if it satisfies the
following conditions :

(1) the distribution of R is free from unknown parameters;

(2) rops defined as 7., = R(x, x, ) does not depend on nuisance parameters.
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Definition 1.2. Let © be the parameter space of 0. If a subset C1_, of the
sample space of R satisfies P(R € Ci_,) = 1 — «, then the subset ©. of the
parameter space given by ©.(1—a«) = {0 € Olrq,s € C1_4} is said to be a 100(1—
a)% GCI for 6.

As in a Bayesian treatment, the idea is to do the best with the observed data
rather than treat all possible samples. The GCIs are not based on conventional
repeated sampling considerations, but rather on exact probability statements.
For further discussions and details in this direction, see Weerahandi (1995). In
fact, by Meng (1994), the distribution of R sometimes can be obtained as a limit
of the posterior distributions of r.,s|X = @ in a Bayesian formulation, and the
GCI can be obtained as a limit of Bayesian Cls. However, this is not always the
case.

Let m1,...,m be k(> 2) populations where observations X;; from ; are
independently distributed as N (u;,02),i = 1,...,k,5 = 1,...,n;. All means pu;
and variances ¢? are unknown. Let g(u,0?) be some function of the mean and
variance. We consider 7; to be better than m; if g(u;, 02) > g(u;, 0]2-). Our goal
is to construct an interval estimator of maxj<;<g g(ui, o).

When g(ui,af) = u; and the variances are equal, the problem has been
considered by several authors (e.g., Dudewicz (1972), Chen and Dudewicz (1973a,
b), Alam, Saxena and Tong (1973), Alam and Saxena (1974), among others).
A discussion of these approaches and various related methods can be found in
Gupta and Panchapakesan (1979). When the variances are unequal, we consider
100(1 — «)% generalized upper confidence intervals (GUCIs) for the largest mean
by using the generalized pivotal quantity derived in Section 2.

In many practical situations, an experimenter is not only interested in select-
ing the population in terms of the means, but also in considering other quantities
such as the signal-to-noise ratio (Box (1988)). The latter is an important measure
in industrial statistics.

In this paper, we consider two specific cases: g(u,0?) = pu + oc® (p) and
g(u,0%) = pjo, ie. the pth quantile and the signal-to-noise ratio. They are
studied in Section 3 and Section 4, respectively. Proofs are presented in the
Appendix.

2. GClIs for the Largest Mean

Let mq,...,m be k(> 2) populations where observations X;; from m; are
independently distributed as N(u;,02),i = 1,...,k,j = 1,...,n;. Let n* =
Zf:l(ni_l)a X = Z;‘Zl Xij [ni, S;Qz = Zf:l E?;(Xij—Xi)Q/n*, S7 = Z;L;l(Xi'
—X;)?/n;, and 7, 5227, and s? the observed values of X, Sg , and SZZ, respectively.
We want to construct 100(1 — a)% GUCISs for max;<;< ;-

2.1. When ¢? = - = 0} = ¢ are known
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Consider the identity u; = X; — ni_l/QoZi, where Z; = ng/Q(X'i — Wi)/o ~
N(0,1), and Z,...,Z; are independent. Let Y; = Z; — ni_l/goZi and R =
maxi<;<i Y;. Clearly, the observed value of R is maxj<j<j i; and the distri-
bution of R is free from the unknown parameters. Therefore, R is a general-
ized pivotal quantity. In fact, the components of the random vector (n%/ 2 (Y1 —

Z1)/o,... ,n,lc/g(Yk —Zg)/o) = (=Z1,...,—Z) have independent normal distri-
butions. The following theorem shows that the distribution of (Y1,...,Y%) is
equivalent to a posterior distribution of (1, ..., u;)| @ based on a linear trans-

formation of independent normal random variables.

Theorem 2.1. Suppose the joint prior distribution of (u1,...,px) is the im-

2

/ (11—
z1)/o, ..., n,i/Q(Mk — i) /o)| @ is equivalent to k independent normal distribu-
tions.

proper prior p(fi1, - . ., k) < 1. Then the joint posterior distribution of (ni

The proof is staightforward and thus is omitted. Now, for given 1 — «a, we
need to find a constant ¢ such that

1—a:P<maXYi§C) =PY;<c foralli=1,...,k)
1<i<k

1/2

7

k
=TI {1-2[»" @ -0/o}, (2.1)
i=1

:P{ZiZn (z; —c)/o for allizl,...,k}

where ®(-) denotes the standard normal distribution function. It is evident
that (—oo, ¢1-a(Z1,...,%k)) is a 100(1 — a)% GUCI for max)<;<j pt;, where
c1—a(Z1,...,Tk) is the value of ¢ that satisfies (2.1). By Theorem 2.1, it is equiv-
alent to a 100(1 — a))% Bayesian upper CI.

Chen and Dudewicz (1973a) (see also Gupta and Panchapakesan (1979)) also
proposed a 100(1 — «)% upper CI given by (—oo, max;<i<(Z; —i—ni_l/Qa(I)_l((l -
a)'/¥))). The following theorem shows that the proposed 100(1 — a)% GUCI is
always contained in this upper CI, henceforth abbreviated as UCI1.

Theorem 2.2. Let ¢1_o(Z1,...,Zk) denote the value c satisfying (2.1). Then
Cl—a(Z1,..., %) < maxi<;j<k(T; + ni_lﬂo'(I)_l((l — a)Y*)), and equality holds if
_1/2J<I>_1((1 —a)Vk), i =1,...,k, are all equal.

and only if x; +n;
To compare the empirical coverage probabilities of the proposed GUCI and
UCI1, suppose that k =5, ny = --- = ns = 10, pu; = i, and o = 1. Figure 1 is

based on 10000 simulations.
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Figure 1. Empirical coverage probabilities of GUCI and UCI1 based on 10000
simulations, k =5, ny = --- =ns = 10, y; = i, 02 = 1.

To compare the two Cls, we propose a new measure of efficiency between
two intervals. For any observations Z1,...,Z; and confidence level 1 — «, a UCI1
for maxj<;<, p1; can be constructed and, based on this, we can find 1 — o/ such
that

1—of = é 1— & "%‘1/2 - = 12 51 ((1 — a)/*
o' =11 o [:cz 1??gxk(xl+”% g <( @) >>] '

i=1

We define the efficiency of the proposed GUCI to UCI1 by

1—dao
ff = . 2.2
off = T— (2.2)
Based on 10000 simulations with k = 5, ny = --- = ng = 10, y; = 4, 02 = 1,
efficiencies are shown in Figure 2.
2.2. When ¢? = - = 0} = ¢? are unknown
Consider the identity p; = X; — (n*Sg/niV)l/QZi, where
]. 2 Ve k

Zi =0 (X — i) Jo ~N(0,1),  V =n"52/0% ~ 2., (2.3)

and Z1,...,7Z;, and V are independent. Let Y; = z; — (n*sg/niV)lﬂZi and
R = maxi<;<; Y;. Clearly R is a generalized pivotal quantity. In fact, the
distribution of the random vector (ni/g(Yl — Z1)/Sp, - - - ,n,lc/g(Yk — Tk)/Sp) =
(=Z,(V/n*)~Y2, ... = Zp(V/n*)~Y/2) has a k-variate ¢ distribution with n* de-
grees of freedom. The following theorem shows that the distribution of (Y7, ...,
Y)) is equivalent to a posterior distribution of (p1,...,u;)| @ which is a linear
transformation of a k-variate ¢ distribution.
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Figure 2. Efficiency of GUCI to UCII defined by (2.2) based on 10000 simu-

lations, k =5, ny = --- =n5 = 10, y; =1, 02 = 1.
Theorem 2.3. Consider the improper prior p(u1, ..., g, 02) o« o~ 2. The joint
posterior distribution of (n%/Q(,ul —T1)/5p, .. ,n,i,/Q(,uk —Zy)/sp)| x is a k-variate

t distribution with n* degrees of freedom.

Now, for given 1 — «, we need to find a constant ¢ such that

N2 (7. —
1—a:P<maXYi§c):P{Zi2<nzV) (xl C) forallizl,...,k}
1<i<k n* Sp

Lo ) (5 o .

where p, 2 (v) is the probability density function of a x? distribution with n*

degrees of freedom. It is evident that

(—OO, Cl_a(i‘l, ey Tk, Sp)) (2.5)
is a 100(1 — )% GUCI for max;<;<j i, where ¢1_q(Z1, . .., Tk, sp) is the value of
¢ satisfying (2.4) and, by Theorem 2.3, is equivalent to a 100(1 — «)% Bayesian
upper CI.

Chen and Dudewicz (1973b) proposed a 100(1 — «)% upper CI for the case
ny = --- = ng = n which is given by (—oo, max;<;<x(Z; + n_l/zsng;(n_l)(l —
«))), where Fk_’;(n_l)(l — «) satisfies Fk7k(n_1)(FI;1(n_1)(1 —a),... ,F];;(n_l)(l —
a)) = 1—a, and F}, j(n—1)(-, - - - ,-) denotes the distribution function of a k-variate

t distribution with k(n — 1) degrees of freedom and identity correlation matrix.
The following theorem shows that the proposed 100(1 — «)% GUCI is a non-
trivial subset of the 100(1 — a))% upper CI given by Chen and Dudewicz (1973b),
henceforth abbreviated as UCI2.
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Theorem 2.4. Let ny = --- =ny =n and c1—(Z1,..., T, sp) be the value of c
satisfying (2.4). Then ci—o(ZT1,. .., T, Sp) < maxy<i<k(T; +n_1/25ka_;(n_1)(1 -
a)), and equality holds if and only if 1 = --- = Ty.

Based on 10000 simulations with k =5, ny = --- =ny = 10, u; =i, 02 = 1,

Figure 3 shows that UCI2 is rather conservative and that the empirical coverage
probability of GUCI is very close to (never below) the confidence level.
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0.85 |
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--- UCI2
0.80 1 I I
0.80 0.85 0.90 0.95 1.00

empirical coverage probability

confidence level 1 — «

Figure 3. Empirical coverage probabilities for the case of equal unknown
variances.

In Figure 4 the efficiencies of GUCI relative to UCI2 is based on 10000
simulations with k =5, nqy = --- = ns = 10, p; = i, 0% = 1.
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Figure 4. Efficiency of GUCI to UCI2 when the variances are equal and
unknown.

2.3. When ¢? are unequal and unknown
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~1/2

Following an identity of Weerahandi (1995), p; = X; — n, 'T0:Z; = X, —
SZ-ZZ-Vi_l/Q, where
Zi =02 (X; — pi)Joi ~N(0,1),  Vi=niSfo? ~3 oy (26)

and Z; and V;, 2 = 1,...,k are independent. Let Y, =z, — siZiVi_l/Q and R =
maxi<;<i Y;. Clearly R is a generalized pivotal quantity. It can be shown that
the random variables (n; — 1)V/2(Y; — %) /s; = —Zi{Vi/(ns — D)} Y2, i =1,... k,
follow independent t distributions with n; — 1 degrees of freedom, respectively,
and the distribution of the random vector (Y7,...,Y}) is equivalent to a posterior
distribution of (g1, ..., ux)| @ which is a linear transformation of independent ¢
distributions.

Theorem 2.5. Consider the improper prior p(u1, ..., [, a%, ce ,a,%) ochzl 052.
The joint posterior distribution of ((n1 — 1)Y2(uy — &1)/s1, ..., (ng —1)Y2(uy, —
Zr)/sk)| @ is equivalent to k independent t distributions with n; — 1 degrees of
freedom, respectively.

The proof is similar to that of Theorem 2.3 and is omitted. Now, for given
1 — «, there is some constant ¢ satisfying

1—a:P<maX Y; §c>
1<i<k
Z;

:P{xwm—n
k
[LP{tns 2 (i = )2~ s} (27)
=1

> (n; — DY2(z; —¢)/s; foralli=1,.. k}

where ¢,,,_1 denotes a random variable with ¢ distribution with n; — 1 degrees of
freedom. Thus

(=00, C1—a(T1y -+ s Ty 15+ SK)) (2.8)

is a 100(1 — a)% GUCI for max;<;<j, pti, where ¢1_o(Z1, ..., Tk, S1,. .., Sg) is the
value of ¢ that satisfies (2.7) and, by Theorem 2.5, is equivalent to a 100(1 —a)%
Bayesian upper CI.

Figure 5 shows the empirical coverage probabilities of the proposed GUCI,
based on 10000 simulations with k = 5, ny = --- = n5 = 10, and u; = 01-2 =
i,0 = 1,...,5. It is seen that the empirical coverage probability is larger than
the associated confidence level.
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Figure 5. Empirical coverage probabilities when the variances are unequal
and unknown.

What is the efficiency loss if GUCI for the unequal variances case is applied
when the variances are in fact all equal 7 Under the same setting as in Section
2.1, we computed the efficiency of (2.5) relative to (2.8). Figure 6 shows that,
over the range 1 — v € [0.8,1), (2.8) is almost as efficient as (2.5). Therefore,
unless there is strong evidence for equality of variances, it is recommended to use
the GUCI at (2.8) derived under the unequal variances assumption.
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Figure 6. Efficiency of GUCI for the case of equal variances against that of

unequal variances based on 10000 simulations, k = 5, n; = --- = nz = 10,
. 9

Wi =1, 05 =1

It is noted that a two-sided GCI can also be obtained by the same method.
In fact, a 100(1 — )% two-sided GCI is given by (c¢1,1-a(Z1, ..., Tk, 51, - -, Sk),
c21-a(Z1,..., %, 51,...,5;)) where ¢11-o(Z1,..., %k, 51,...,5,) and c21-a(Z1,
.oy Tk, S1,...,8k) respectively satisfy

k
[1P {tn1> (= DY (@ — craal@r, o Bs1,e o op)) [5if = o,
i=1
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k
[1P {tn1> (= )Y (@ = ea1-a(@r, o 51,y s8)) [5i) = 1= as,
i=1

and a1 + ag = a.

3. GCls for the Largest Quantile
Let the pth quantile corresponding to 7; be denoted by 67, 7 = p;+0;27 1 (p).

[

We want to construct a 100(1 — )% GUCIs for max;j<;<j 07

3.1. When o = - = 0} = ¢? are unknown

Consider the identity 07 = X; — (n*/V)l/QSp{ni_l/QZi — & 1(p)}, where
Z; and V are defined in (2.3). Let Y; = z; — (n*/V)l/zsp{ni_l/gZi -3 1(p)}
and R = maxj<;<;Y;. Clearly R is a generalized pivotal quantity. Also, the
distribution of the random vector

<n1/2(Y1 — 1) nzlf/Q(Yk - i‘k))

ge ey

Sp Sp
_ 1/2 4
A za-nep) Z-n/7 )
(V/ntz (V/n*)1/2
has a k-variate noncentral t distribution with n* degrees of freedom and
noncentral parameter vector (n}/2<1>_1(p),...,n,t/2¢_1(p)). Connection of the
distribution of the random vector (Y7,...,Y%) and a posterior distribution of

(67,...,0%)|x is shown by the following.

Theorem 3.1. Consider the improper prior p(u1, ..., g, 02) < 2. The joint

posterior distribution of (n%/2 0V —Z1)/sp, - - - ,n,lc/2 (07 — z1)/sp) |2 is a k-variate

noncentral t distribution with n* degrees of freedom and noncentral parameter
1/2 1 1/2 + 1

vector (ny’ " @7 (p),..., n, @ (p)).

For given 1 — «, find a constant ¢ such that

l-a=P (max Y, < c)
1<i<k

v 1/2
= {Z@(”’ ) (@i — ¢) + n 21 (p) forallizl,...,k}

.y o \ 2
:/0 [1P {1 — 0 [(n*’52> (zi — ) + nil/2<I>_1(p)] }pxi* (v)dv. (3.1)
i=1

P
Then (—o0, c1—a(Z1, ..., Tk, Sp)) is a 100(1 — a)% GUCI for max; << 67, where
ci—a(Z1,..., %y, sp) is the value ¢ satisfying (3.1) and, by Theorem 3.1, is equiv-
alent to a 100(1 — «)% Bayesian upper CI.
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3.2. When a%, e ,O']% are unequal and unknown

Consider the identity 67 = X; — SiVi_lﬂ{Zi - n;/2<I>_1(p)}, where Z; and V;
are defined in (2.6). Let Y; = :Z‘i—sﬂ/i_lﬂ{Zi—ngm@_l(p)} and R = maxj<;<j Y;.
Clearly, R is a generalized pivotal quantity. It can be shown that (n; —1)%/2(Y; —
) /si = —{Z; — ng/zé_l(p)}/{Vi/(ni — D}Y2, i = 1,...,k, are independent
noncentral ¢ distributions with n;—1 degrees of freedom and noncentral parameter

nzl / 2<I>_1(p), respectively, and the distribution of the random vector (Y1,...,Y%)
is equivalent to a posterior distribution of (67, ... ,92,’)\ x by the following.

Theorem 3.2. Consider the improper prior p(u1, . . ., i, O‘%, . ,a,%) ocl_[le O‘z-_2.
The joint posterior distribution of ((n1 — 1)Y/2(0) — #1)/s1,..., (ng — 1)Y2(0F —

Zk)/sk)| @ is equivalent to k independent noncentral t distributions with n; — 1
degrees of freedom and noncentral parameters n;/Z(IJ_l(p), respectively.

The proof is similar to that of Theorem 3.1 and is omitted. Now, for given
1 — «, there is some constant c satisfying

l—a=P <max Y, < c)
1<i<k

Z; —n 291
P e (r) > (ng— )V (& —c¢)/s; foralli=1,... k
Vi/(ni —1)

I

P{th o (0?07 ) = (ni = 1)@ — 0)/si} (3:2)

=1

/
n;—1

degrees of freedom and the noncentral parameter A;. Thus

where ¢ (\;) denotes a random variable of noncentral ¢ distribution with n; —1

(—OO,Cl_a(fZ‘l,...,i‘k,sl,...,sk)), (3.3)

is a 100(1 — a)% GUCI for max;<;<k 07, where ¢1_o(Z1,..., Tk, 51, ..., Sk) is the
value ¢ satisfying (3.2) and, by Theorem 3.2, is equivalent to a 100(1 — )%
Bayesian upper CI.

4. GClIs for the Largest Signal-to-noise Ratio

Let 6; denote the signal-to-noise ratio corresponding to m;, 6; = u;/o;. We
want to construct 100(1 — a)% GUCISs for max;<;<, ;.
4.1. When o = - = 0} = ¢? are unknown

Consider the identity 6; = (V/n*)l/ZXi/Sp — ni_l/QZi, where Z; and V; are
defined in (2.3). Let Y; = (V/n*)'/2z;/s, — n;1/2Zi and R = maxj<;<j Y;.
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Clearly R is a generalized pivotal quantity. For given 1 — «, find a constant ¢
such that

1—Oz:P<main§c>
1<i<k

VN2 [z
:P{ZiZ (nﬁ‘k/) <ﬁ>—ng/20 for allizl,...,k}
n Sp
o K N 1/2 [ 5
— nv Zi 1/2
_/0 g {1 - ® [( o ) (g) —-n, C} }pxi* (v)dv. (4.1)

Then (—o0, ¢1—o(Z1, ..., Tk, Sp)), is a 100(1 — @)% GUCI for max;<,;<j, 6;, where
C1—a(Z1,...,Z, sp) is the value c satisfying (4.1) and, by the following, it is
equivalent to a 100(1 — «)% Bayesian upper CI.

Theorem 4.1. Consider the improper prior p(u1, ..., g, 02) o« o~ 2. The joint
posterior distribution of (u1/o, ..., uk/o)|x is equivalent to the joint distribution
Of (Yl, PN ,Yk)

4.2. When o¢? are unequal and unknown

Following an identity of Weerahandi (1995), 6; = (V;/n;)'/?X;/S; — ni_l/2Zi,
where Z; and V; are defined in (2.6). Let Y; = (Vi/m)lﬂa’:i/si — n;1/2Zi and
R = maxj<;<; Y;. Clearly R is a generalized pivotal quantity. Now, for given
1 — «, there is some constant ¢ satisfying

1—a:P<main§c)

1<i<k
Z; +n/?
=P gitn c > (n; —1)Y2z;/s; foralli=1,....k
Vi/(ni —1)
k
=TI P {tha(ni%e) > (i = 1) /5, } (4.2)
i=1
Then
(—OO,Cl_a(fZ‘l,...,."Z‘k,sl,... ,Sk)) (4.3)
is a 100(1 — @)% GUCI for max;<;<i, 6;, where ¢1_(Z1,..., Tk, S1,. .., Sk) is the

value ¢ satisfying (4.2) and, by the following, is equivalent to a 100(1 — )%
Bayesian upper CI.

Theorem 4.2. Consider the improper prior p(j1, . . ., g, 0%, ... ,a,%) ocHé“:l 052.
The joint posterior distribution of (u1/01,. .., uk/ok)| @ is equivalent to the joint
distribution of (Y1,...,Yy).



1380 YI-PING CHANG AND WEN-TAO HUANG

The proof is similar to that of Theorem 4.1 and is omitted.

5. Real Data

Table 1 presents repeated determinations of bilirubin, a red bile pigment at
intervals of a week or more in the serum of healthy young men. Data are from
Table 10.1 of Bliss (1967) and originated from Drill (1947).

Table 1. Concentration of bilirubin in serum samples from each of 8 young
men, in units of milligrams per milliliter, listed in order of size. (Drill, 1947.)

Term A B C D E F G H
0.14 020 032 041 0.61 053 0.61 048
0.20 027 041 068 061 0.55 0.83 0.68
0.23 0.32 0.41 0.68 0.68 0.68 0.83 0.75
027 034 055 068 068 0.75 0.89 0.96
027 034 055 068 074 079 096 1.03
T 0.34 038 062 075 075 082 096 1.23
041 041 071 075 0.75 0.82 1.10  1.30
041 041 091 098 0.82 1.16 1.10 1.30

0.55 048 1.00 083 123 144 1.30
0.61  0.55 1.03  1.03 151  1.51
0.66 1.16
n; 11 10 8 10 11 9 10 10
Z; 0.372 0.370 0.560 0.764 0.787 0.814 1.023 1.054
i 0.165 0.095 0.177 0.181 0.163 0.228 0.263 0.315
i +s®71(9) 0583 0.493 0.787 0.996 0.996 1.106 1.361 1.458
T/ s 2.253 3.879 3.159 4.225 4.835 3.580 3.884 3.347

From Table 1, it can be seen that the sample standard deviation is large when
the sample mean is large. To test homogeneity of variances, apply Bartlett’s test
and find a p-value of 0.0441. Thus, significant differences in the variances at the
0.05 significance level. Applying the proposed methods at (2.8), (3.3), and (4.3),
Table 2 gives the associated generalized upper confidence bounds for the largest
mean, the largest 0.9-quantile, and the largest signal-to-noise ratio at various
confidence levels.

Table 2. Generalized upper confidence bounds for the largest mean, 0.9-
quantile, and signal-to-noise ratio.

confidence level

0.9 0.95 0.99
mean 1.2190 1.2632 1.3639
0.9-quantile 1.7752 1.8702  2.1016

signal-to-noise ratio  6.0856  6.4458  7.1805
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Appendix

Proof of Theorem 2.2. Since [%_,{1 — @(ng/g(a’:i —¢)/o)} is increasing in c,

k 1/2
11 (1_@{7”7 i g (5o (0 —a>”’“>>}}>

It is noted that the equality holds if and only if z; + ni_l/za(I)_l((l — a)V/*) are
all equal.

Proof of Theorem 2.3. By the technique of Lee (1997), the joint posterior
distribution is

p(ula v aﬂka0-2|m)

k
. 1 _ 1 _
x () e { o st | 0?) ’“/2exp{—2—zzm<ui—xi>2}.
g g =1

Consider the transformation ) = ’rlil/z(,ui —Z))o,i=1,...,k, and T = 072
Then, conditioning on x,

w; ~ N(0,1), Nt ST ~ X, (A.1)
and pf,..., ) and 77,*8]2)7' are independent. Therefore, by Johnson and Kotz

(1972), the posterior distribution of (ni/Q(,ul —1)/Spy - - - ,n,lc/g(uk — k) /sp)| x
is a k-variate t-distribution with n* degrees of freedom and identity correlation
matrix.

Proof of Theorem 2.4. When ny = --- = ni =n, (2.4) becomes

l—-a=P LGlﬂ Ti—c foralli=1,.... k).
V/(k(n —1)) Sp

Since the distribution of the random vector (Z{V/(k(n — 1))}~Y2,..., Zx{V/
(k(n —1))}~'/2) has a k-variate t distribution with k(n — 1) degrees of freedom
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and P(Zi{V/(k(n — 1))} ~Y/2 > n/2(z; — ¢) /s, for all i = 1,...,k) is increasing
in ¢,

7. nl/2 1
- Ti— T —-1/2 -1 B
P( V/(k(n—1)) > 5 {a:z max <xl +n spFM(n_l)(l a))}

1<i<k
for allizl,...,k)

Zi -1 .
ZP (W Z _Fk,k(n—l)(l — Oé) fOI' all 1= 1, N ,k’)
=1—-a,
and the equality holds if and only if 71 = --- = Z}.

Proof of Theorem 3.1. Similar to the proof of Theorem 2.1, by (A.1), the
posterior distribution of

m2@-a) O w)\| (o) et )
e = (31277)1/2 s e (8%7)1/2

T
Sp Sp

is the k-variate noncentral t-distribution with n* degrees of freedom and noncen-
tral parameter vector (nim@_l(p), . ,n,i,/Q(I)_l(p)).

Proof of Theorem 4.1. It is similar to the proof of Theorem 3.1. Note that
wifo = (n*ng/n*)l/zi‘i/sp — (nim)Y? (7 — ,uz-)/n;/Z. By (A.1), the proof is com-
plete.
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