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Abstract: Window-based estimates for stochastic harmonic regression models are
useful for cases where harmonic parameters appear to be time-varying. Least
squares estimates for harmonic models with one fundamental have been studied and
asymptotic variance expressions have been developed. This paper extends these re-
sults to weighted least squares for the multiple fundamental case, and presents an
application in signal processing.
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1. Introduction

Consider the signal plus noise model
ytZS(t;ﬁ)—FEt, (tzla---aT)a (1)

where the signal s(t; 3) is composed of J periodic components

J
s(t;8) =Y si(t:6), B=(b1,.-.,8.), (2)
j=1
and each component s;(t; ;) is a sum of K sinusoidal components
K;
si(t; B5) = Y _{Ajk cos(wjit) + Bjpsin(wjxt)}, (3)
k=1
Bi = (Aj1, Bj1,. .., Ajk; Bik,, w1, wik;) (4)

that are somehow related to each other, for example by a condition like (7) below.

Here the noise ¢ is a strictly stationary real valued random process, with
autocovariance function c.(u) = Cov {€144, €} that satisfies Condition 1 below,
and has power spectrum

fee(N) = % Zc“ exp(—idu), —oo < A < 00. (5)
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Condition 1. The noise process {¢;} is such that all its moments exist, with
zero mean, and with c._¢(uq1,...,ur—1) the joint cumulant function of order L
for L =2,3,.... Furthermore, the

Cr = Z Z ‘Ce...e(ula"'au[/—lﬂ (6)
U1=—00 Ur—-1=—00

satisfy 3, Crz¥/k! < oo for z in a neighborhood of 0.

We are interested in studying this model when a harmonic relation exists
between the frequencies w;j in each of the J components s;(t;3;). We assume
that there exist J different fundamental frequencies 0 < 0; < 27, (j =1,...,J)
such that

wir=~k0j, k=1,...,K;foreach j=1,...,J. (7)

We refer to K; as the number of harmonics associated with the jth fundamental
frequency.

We define the parameter ¢ = (8{,...,35)" for the model under constraint

(7), where 3; = (Aj1,Bj1,---,AjKk;, BjK;,0;) for each j = 1,...,J. The pa-
rameters of this model are identifiable provided the frequency parameters wj
are different from each other.

Several authors have studied various forms of the model defined by (1) — (6)
with J = 1 and when no constraint, for example like (7), exists on the frequencies
wj k- Notice that if no constraint exists, even if J > 1, no relation exists between
the w;r,k = 1,...,K; and there is no need for the j indexes. Then we can
rewrite the model as

K
s(t; 8) = Y _{Agcos(wit) + Bysin(wyt)}, 8= (A1, B, ..., Ak, Br, w1, .. .,wr)'

k=1
(8)
with K = Y7, K;.

For this model Walker (1971) establishes weak consistency and asymptotic
normality for estimates that are asymptotically equivalent to least squares es-
timates under the assumption that the ¢ are distributed independently and
identically with mean zero and finite variance. For functions s(t;3) which do
not necessarily have the form (2),(3) or (8), but which satisfy certain regularity
conditions, Hannan (1971) finds estimates of by minimizing

T-1

Qr(B) =T ¢(\)I] (N;; B)

J=0
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with \; = 2nj/T, (j = 0,...,T — 1), #(\) > 0 a frequency domain weight
function, and

T 2
I7 (X B) = @rT) ™ D {ye — s(t; 8)exp(—idt)|
t=1

the residual periodogram. Hannan (1971) proves strong consistency and asymp-
totic normality for these estimates under the condition that the error process
{€&:} is a purely non-deterministic linear process. Furthermore, Hannan (1971)
shows that the asymptotic variance of the estimates is minimized by taking
#(A) = fZY(\). Hannan (1971, 1973) notices that for s(¢;3), as in (8), the
regularity conditions presented in Hannan (1971, pp.768-769) are not satisfied,
yet consistency and asymptotic normality, for the estimates obtained by mini-
mizing Q7 (), hold. Furthermore, Hannan (1973) notices that for this case the
asymptotic distribution is independent of ¢(A), and thus it is only necessary to
consider the case ¢(\) = 1, i.e. the least squares estimates. Hannan (1974) ex-
tends this result to the case where the constraint (7) holds and reports, without
proof, an expression for the asymptotic variance of the estimates. Brown (1990)
finds a minor mistake in this expression and derives a correct one by comput-
ing a first-order Taylor expansion of the gradient of Q7(3). Brown (1990) does
not take advantage of the fact that the asymptotic variance does not depend on
#()\); however, by computing the result for ¢(\) = f()\), he gives the correct
expression for the asymptotic variance.

The harmonic regression signal plus noise model is widely used, for example
for the study of biological rhythm data (Greenhouse, Kass and Tsay (1987)) and
sound analysis (Irizarry (1998)). In the latter example, models with multiple
fundamental frequencies can be used to study reverberated sound signals. Be-
cause the harmonic parameters may be time-varying we present the asymptotic
distribution of window-based estimates below.

2. Weighted Least Squares

In some applications, it may be useful to fit models in order to obtain es-
timates of parameter functions that depend on time. For these cases, it is only
natural to consider window-based estimates.

Given that we have T observations for which we approximate the time-
varying parameter with a constant 3, the weighted least squares method consists
of choosing B to minimize the criterion

T

Se(9) = - w() e — s(t: ) )

t=1
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with w(s) a weight function. Some of the results regarding the asymptotic be-
havior of these estimates require that the weight function satisfy the following
condition.

Condition 2. The function w(s) is non-negative, bounded, of bounded variation,
has support [0,1], Wy > 0, and W — WoWs # 0 where

1
Wn:/o s"w(s) ds. (10)

We are interested in finding the asymptotic properties of the weighted least
squares estimate of the parameter 3¢ of the model defined by (1) — (7). To do this
we extend the result developed by Hannan (1973) for the asymptotic behavior
of the weighted least squares estimates for this model, but without constraint
(7) and under the assumption that the error process is a linear process. In this
paper we extend this to the more general condition for the error process defined
by (6).

As mentioned, the model defined by (1)—(6) can be rewritten as model (8).
Because this is the model considered by Hannan (1973), for simplicity we consider
model (8) for the remainder of this section.

We define weighted versions of the estimates defined by Hannan (1973): for
k=1,....K,

T T

~ t N t
Apr =2 w(z)ycos(@rrt)) > w(=), (11)

= T = 7T

- Tt T
Brr =2 w(z)ysin(@rt)/ Y w(=), (12)

= T = T
where, if we write w = (w1,...,wk) and @r = (O1,7,...,0K 1), @r is such that
qr(or) = omax qr(w) (13)

and gp is defined by
; 2
fw(f)yt exp(itwg)| . (14)

M=

K
qr(w) = Z 7!
k=1 t=1
We notice that these estimates are asymptotically equivalent to the weighted
least squares estimates Ak,T, ék,T and wpr for k = 1,..., K, the values that
minimize (9). This result is best understood by first considering the case of one
sinusoidal component (K = 1)

s(t; Bo) = Ag cos(wot) + By sin(wot) (15)
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with By = (Ao, By, wp)’, and then generalizing to the case of several sinusoidal
components.
As done in Walker (1971) for the unweighted case, we notice that if we define

T T
Rr(B) = Zw(—)yt +-(A%+B? Zw 2Zw )yt { A cos(wt)+ B sin(wt)}
(16)

XT: w(i){(A2 — B?) cos(2wt) + 2AB sin(2uwt)}. (17)

Here St () is the weighted residual sum of squares of (9). The difference in (17)
is deterministic and, using Lemma 1 (Appendix C), we can show it is bounded
asT — o0 if 0 <w < 7.

By taking derivatives and setting to 0, we see that the w that maximizes the
periodogram of the tapered data w(t/T")y; also minimizes Ry(). This and (17)
may be used to show that the estimates in (11), (12), and (14) are asymptotically
equivalent to the weighted least squares estimates.

For the case of more than one frequency we use the previous result as done
in Walker (1971). The function corresponding to (16), whose minimization yields
approximate weighted least squares estimators, becomes

T
RT(ﬁ):Zw Y 4 = ZA + B?) Zw (18)
t=1

Mx

-2 Z fw(%)yt{Ak cos(wit) + By sin(wyt) }.

1t=1

B
Il

In this case, to obtain (18) from (9) we need terms of the form
t
ALA; Zw ) cos(wyt) cos(wyt) and BB Zw T ) sin(wyt) sin(w;t)

to be bounded, since they are included in S7(3) — Rp(3). Some conditions need
to be imposed to avoid having the wy’s too close together, thus preventing the
estimators of two or more frequencies from converging in probability to the same
value. An appropriate condition is limyp_, ming (T'|0r — &]) = oo. Walker
(1971) proposes maximizing g7 (w) subject to

1
i - =T 2. 1
1;?71&111(‘(’0"3 wil) 2 (19)
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We redefine the estimates of the w’s as those that maximize (13) but under
constraint (19).

We now can prove Theorem 1, in a way similar to Walker (1971) or Hannan
(1973) by using estimates that are asymptotically equivalent to the weighted least
squares estimates of interest. Appendix C has a sketch of the proof containing
the key differences for the weighted case.

Theorem 1. Let BT be the weighted least squares estimates of B for the model
defined in (8) obtained by minimizing equation (9), with w(s) satisfying Condi-
tion 2. Then BT is a consistent estimate of B and for k =1,..., K, the vectors
{T% (/lkT — Ag), T3 (BkT — By), T3 (Wg, 7 —wg)} converge in distribution to mu-
tually independent normal vectors with zero mean and covariance matrices

ClA%—I—Cng —c3AL By, —cy By

4 €€
Vk = %({;k; —CgAk;Bk CQA% + Cle C4Ak . (20)
k k —C4Bk C4Ak Co
Here cg, ..., cq are constants depending on the weight function w(s) and are de-

fined at (A.1) in Appendiz A.

Remark 1. If w(s) = 1 for all s, the constants above reduce to ¢; = 1, cg = 4,
c3 =3, ¢4 = 6 and ¢g = 12, and the covariance matrix reduces to that obtained
in the equally weighted case by, for example, Walker (1971).

3. Harmonic Model with Multiple Fundamentals

In this section we present results describing the asymptotic properties of the
weighted least squares estimates for the parameter ¢ of the model defined in
(1)—(7). As mentioned above, Brown (1990) finds the asymptotic distribution of
least squares estimates, w(s) = 1, for the case J = 1, by computing a first-order
Taylor expansion of the gradient VQr(3). This requires tedious computations,
especially if we consider J > 1. Using Theorem 1, and a technique similar to the
one used by Brillinger (1980) to estimate a bifrequency, a result for the weighted
least squares when J > 1 is obtained in a simpler manner. Computations showing
how this result is obtained are in Appendix D.

Corollary 1. Let @;T be the weighted least squares estimate of 55 for the model
defined by (1) — (7). For each j =1,...,J, let Nj(T) be a (2K; +1) x (2K;+1)
diagonal matriz whose first 2K; diagonal entries are T2 and whose (2K +1)st
diagonal entry is T®%. Then for each j =1,...,J, if w(s) satisfies Condition 2,
A;-’T is a consistent estimate of 85 and the N;(T')( A;,T — f35) converge in distri-
bution to mutually independent multivariate normal vectors with zero mean and
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covariance matrix

Kj —1 !
D;+c, E;E, FE;
A > K (AT + By fee(k0;) ( 7 0) (21)
k=1 J

where the matrices D; and Ej are defined at (A.3), (A.4), and (A.5) in Appendix
B.

Remark 2. Corollary 1 provides a useful approximation of the variance of the
estimates of the fundamental frequencies

K; -1
Var (0;7) ~ dmco T3 S k(A5 + B2 1)/ fee(K0;) , (22)
k=1

where ¢g is as in (A.1). Notice that the denominator in (22) is a sum of weighted
signal-to-noise ratios. This implies that the precision of the estimate increases
with the total magnitude of the respective harmonic components.

Remark 3. In some instances it might be useful to find estimates for the am-
plitudes of the harmonic components defined by p;i. = (A?k + Bik)l/ 2. Us-
ing Corollary 1, it is easy to verify that the amplitude estimates defined by
PjkT = (Ang + sz’k,T)l/z are consistent estimates of the p;;’s, and are asymp-
totically mutually independent normal. We may approximate the variance with
Var (pj k1) ~ 4mei T~ f(k0;) where c; is as in (A.1).

4. Model Selection

When considering the model defined by (1)-(7), the number of fundamental
frequencies .J, as well as the number of harmonics for each fundamental frequency,
Ki,...,Kj, can be considered to be unknown parameters. In practice we must
make a decision on how many to include in the model we fit to the data.

For models defined by (8), He (1984) suggests a simple intuitive procedure
to estimate the number of periodic components K, and proves the procedure to
be strongly consistent under some conditions. Quinn (1989) suggests an Akaike
information criteria (AIC) type estimator for K and proves strong consistency
when the noise process is a certain kind of white noise. Wang (1991) extends
these results under assumptions like that of Condition 2. In this section we extend
Wang’s criterion in order to use it when weight estimates are being considered,
then we extend it to the case of models with multiple fundamentals.

Consider the model defined by (8) with K sinusoidal components. We will
consider K to be the true number of sinusoidal components. To estimate K when
it is unknown consider the following scheme.
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Let Q1 = (0,7) and let &1 be the maximum point of ¢r(w) = [T~ L,
w(t/T) yexp(itw)|?. For | > 1, given that Q;_; and &;_; are defined, let Q; =
Q1 \ (&1 —up, &1 +ur) and @; be the value of w € € that maximizes gr(w).

One can repeat this procedure until (0,7) is exhausted. The w;’s will be
referred to as the maximum periodogram frequencies.

o A0 =23 w( Ly cos(h)) 3wl )
T = — T Yt — T/
T T '
Br(A) =2 w(=)y sin()\t)/Zw(f)
t=1 t=1
and, for any £k =1,2,..., let
1< ’
o2 (k) = T Z yr — Z{AT(@) cos(wt) + Brp(w;) sin(wt)}
t=1 =1

Notice that O'% is asymptotically equivalent to the residual mean squares if we
were fitting model (8). Notice also that 02 (k1) < 02 (kz) for all k1 > kg, thus o2
is not an appropriate criterion for estimating K.

As done by Wang (1991) we let BICy(k) = T log 02.(k) + brk (best informa-
tion criterion) with the sequence {bp} satisfying by /T — 0 as T — oo. An AIC
type estimator for K can be defined by

K = min{k : BIC7(k) < BICp(k 4 1)}. (23)

From Theorem 4.5.1 in Brillinger (1981) we have that for €; satisfying Con-
dition 1,

dim sup|dr(A)| (TlogT)"/? < 2{2nlg sup fee(\)}'/* (24)
with probability 1, where
Lot
dr(\) = Zw(f)et exp(it\) (25)
t=1

is the discrete Fourier transform of the tapered errors and Uy is defined by (A.2)
in Appendix A.
This implies that by choosing the sequences {br} and {ur} so that

A)
b s fu
e RN LA VI

and up — 0 with (T'log T)"/?ur — oo (notice that if we use (19) this is satisfied),
we have that the amount we minimize the BIC when k > K, BICp(K)—BICp(k),
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is asymptotically corrected by the quantity bp(k — K). Similarly, for £ < K
the penalty by (K — k) is asymptotically negligible compared to the amount we
minimize the BIC by adding K — k parameters. In fact we can show that for
large enough T,

Kr=K (26)

with probability 1. See Wang (1991) for the details.

Now we turn our attention to estimating the number of fundamentals, J,
and their respective number of periodicities, K1,..., Ky, when considering the
model defined by (1)-(7). To do this we use the result just described for model
(8). )

First we find an estimate K of the total number of sinusoidal components
K = 237:1 K in the model defined by (1)—(7). From (26) we know that for large
enough T we have K = ijl K; with probability 1. To estimate the number of
fundamentals J, let My = {@wg), k =1,... ,K} be the set of ordered maximum
periodogram frequencies. Consider w; 1 = w(1) to be an estimate of what we
consider to be the first fundamental. The frequencies My = {w € My : |w —
ko] < T-1/2 for some k = 1,2,...} are considered to be the set containing the
harmonics related to wy 1. Given that we have defined fundamentals 1,...,7 —1
and their respective harmonics, contained in the sets Mj,..., M;_1, define the
jth fundamental &;; as the smallest frequency in My \ Uj_; ' M, and M; ={we
MO\UZ 1Ml |@j1—k@j1] < T7V2 for some k = 1,2,...}. Continue thls process
until all X maximum periodogram frequencies are exhausted The number of
fundamental frequencies found will be the estimate J of J and the number of
elements in M, will be the estimate K of K; for each j =1,. .

Theorem 1 implies that, since KT = K with probability 1 for large enough
T, J and K are consistent estimates of J and Kj for each j =1,...,J.

5. Estimating Time-Varying Parameters

In some applications the parameters of the harmonic structure may be time-
varying. For example, in the case of signals studied in musical sound analysis,
the performer generally changes the sound being produced by the instrument.
Examples here are changes of note or pitch, vibrato, and tremolo, to mention
a few. For this reason the model defined by (1) — (7) may not be appropriate.
Instead a version with time-varying parameters needs to be considered.

In signal processing in general, it is common that the sample rate (observa-
tions taken per unit time) is large. For the case of sound signals the harmonic pa-
rameters appear to change slowly in time. This motivates estimation procedures
where the fundamental frequency, and other harmonic parameters, are assumed
fixed within segments of short duration. The asymptotic theory presented in
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Theorem 1 and Corollary 1 may be used to give approximate distributions for
estimates obtained this way. To use this asymptotic theory we need the sampling
rate to be large so that the short segments considered for the estimation contain
enough observations. Furthermore, for the asymptotics to make sense, we need
the fundamental frequency, or frequencies, to be large enough so that within
small segments the signal still contains harmonic-type behavior. For sound sig-
nals, the application of interest in this paper, we have both these properties. In
this section we present these heuristic arguments in a theoretical framework.

Consider the following sequence of processes that are equivalent to the model
defined by (1)—(7), but with time-varying parameters

n o .,n
yn,NZS{NaﬂN(N)}"‘Gn,N form=1,..., NxD,N > 1. (27)

Here s{t: 5 ()} =Xy 506 B0 (O}, 85 (8) = {Bun (D), Ban (DY, ¢ € [0, D],
where each component s;{t; 5; n(t)} is a sum of K sinusoidal components with
time-varying parameters s;{t; 3; n(t)} = EkKil[Ak (t)cos{k8; n(t)t} + By(t)sin
{k0; n(t)t}] for j =1,...,J. The duration of the signal is assumed without loss
of generality to be D = 1, and B; n(t) = {A;1(t), Bj1(t),..., Ajk,(t), Bjx, (1),
0 n(t)} whence, for each k = 1,...,K;, j = 1,...,J, Aj,(t) and Bji(t) are
continuous bounded functions for ¢ € [0,1]. We make sure that each one of the
time-varying fundamental frequencies 0; v,j = 1,...,J is large with respect to
the sampling rate N by using the following assumption.

Condition 3. For each j = 1,...,J, there exists a continuous function ;(t) with
0 < 6;(t) < 2w for t € [0,1], such that the sequence of functions 0; n(t) — N6;(t)
converges uniformly to 0 for ¢ € [0, 1].

The sequence of stochastic processes is defined by considering, for each N >
1, {epn,n = 1,...,N} to be N observations of a stationary processes {e,}
satisfying Condition 1.

We must notice that the signal s{t, 85 (¢)} is different for each N. In fact,
if On(t) = On is constant in time for each N, then the number of cycles per
unit time N6y tends to infinity with IN. Therefore, we must not interpret the
asymptotics as having a fixed signal from which we can obtain better estimates
as we increase the sample rate N.

A more reasonable interpretation of the asymptotics is the following: as IV
increases we observe signals for which the size (in units of time) of segments
containing, say, H observations become smaller, thus the time-varying parame-
ters are closer to constant. Condition 3 assures that instantaneous fundamental
frequencies are large enough so that within such segments we have a model that
approximates the harmonic model defined by (1)—(7).
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To see this more clearly, for any ¢y € (0, 1) consider a small enough estimation
segment or estimation window size hy so that we can act as if the functional
parameters are constant in time, i.e., Oy (t) & Bn(to) for ¢ in the segment (g —
hn/2,to + hn/2).

Letting Hy = |hn N | we have that within the estimation window the signal
s{t; 5% (t)} is approximately

J Kj
Z [Aj,k(to) COS{k 9]'7N(t0) (to — hN/2 + n/N)}+
j=1k=1
Bj,k(to) sin{k 9]'7]\] (to)(to — hN/2 + n/N)}] , N = 1, ce HN. (28)

If N is large, then Condition 3 suggests that 6; n(to)/N =~ 0;(to) with 0 <
0j(to) < 2m for each j = 1,...,J. Letting 0;0 = 0;(to), Ajro = Cadji(to),
and Bjro = CpBj(to) for all j,k, an approximation for (28) is Zj:l ZkKél
{A; kocos(kbon) +Bjosin(kbon)}, n = 1,..., Hy with constants C4 and Cp
not depending on n that correct for the phase, and are easily obtained using
trigonometric identities. If Hy — oo as N — oo, these approximations imply
that within the estimation segment we have a model that approximates the har-
monic model defined in (1)-(7) with a large number of observations Hpy. There-
fore, we should be able to obtain reasonable estimates of 3% (to) for large values
of N. Now we will make this asymptotic theory precise, but first we need an
assumption regarding the smoothness of the time-varying parameters 5% (%).

Condition 4. There exists an M such that foreach £ =1,... . K;,j =1,...,J,
suPseo,1] | 455 ()| suPsepo) [1B) £ ()], and supyepoq 16 n(¢)] are all bounded by M
for all V.

Intuitively this assumption prevents the local behavior of the function
s{t; 5% ()} from being too different from a sum of sinusoids and thereby pre-
serving some sort of local harmonic structure known to be present in sound
signals. We can now define an estimate of the time-varying parameters.

For each tg € (0, 1) define the local weighted least square estimate using span
hy in the following way. Let Hy = |hxy X N |, ng = |[to x N |, and | = ng— Hy /2,
u=ng+ Hy/2, then

Hy
n
Ajpn(to) —QH;A Ty ynNCOS(w]an/nZl HN)a (29)
Hy
Bjrn(to) =2 ) Yn, N SIN(Wj 5, N 1)/ ) (30)
- 3 hmsinGn) 3wl
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where, if we write w = (w11,...,wk,,7) and On = (V11N ..., WK, JN), N IS
such that
gn(@) = JBax qn (w), (31)

where gy (w) is now defined by:
2

J Kj Hyn n
an(w) =D D |(HN) 'Y Wl =) Yn+i, v exp(inwjp)| - (32)
i=1k=1 n=1 N

We obtain estimates éj, N(to) from the @, 1, n's using the method presented in the
proof of Corollary 1, namely

Syta) — ikt o) + By nlio)}
E - K. = —
Yply kA2 (to) + B2y y(to)}

(33)

foreach j=1,...,J.

Corollary 2. For any ty € (0,1) let the sequence of segment sizes {hy, N >
1} be such that hy | 0 and Hy = |hny X N| — o0 as N — oo. Then if
Condition 4 holds we have for each k = 1,...,K;, j = 1,...,J, fljk,N(to)
and Bj,k’ N(to) are consistent estimates of Aj(to) and Bj(to) respectively, and
Hmpy oo Hn|0;.5(to) — 0;(t0)| = 0 in probability for each j =1,...,.J, where the
estimates are defined by equations (29)—(33). Furthermore, for eachj =1,...,J,
let Hjn be a (2K; + 1) x (2K; + 1) diagonal matriz whose first 2K; diagonal
entries are H}V/g and whose (2K + 1)st diagonal entry is Hi,/g. Then the vectors
Hjn{Bijn(to) — Bi(to)},5 = 1,...,J converge in distribution to mutually inde-
pendent multivariate normal vectors with zero mean and variance matrix as in
(21) in Corollary 1, but with harmonic parameters the time-varying parameter
functions evaluated at tg.

The proof of Corollary 2 is in Appendix E. As done for Theorem 1, the
estimates considered in this Corollary may be shown to be equivalent to the
weighted least squares estimates.

Remark 4. Notice that in Corollary 2 the weight function w(s) may be defined
to be equally weighted, w(s) = 1,0 < s < 1. The asymptotics work since for the
local estimates only H  points are given positive weight regardless of the shape of
the weight function w(s). In practice, functions that give more weight to points
near the middle of the estimation window are used since there is an a priori
belief that there is more information about the time-varying parameter function
evaluated at tg, in points near ty. Exploring how different window functions may
provide more “efficient” estimates from a theoretical point of view is of interest,
but will not be discussed further in this paper.
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6. Applications in Sound Analysis

The study of musical sound has become a popular research field within sig-
nal processing. Stochastic harmonic regression models have been used to analyze
sound waves produced by musical instruments (see for example, Rodet (1997)).
Least squares estimation provides a way to obtain useful parametric representa-
tions of sound signals (Irizarry (1998)). Harmonic parameters in sound analysis
models are considered to be time-varying (Rodet (1997)), thus it is useful to
consider window-based estimates when performing estimation.

The sound studied in this example is a pipe organ playing two consecutive
notes, Ff (fundamental frequency of about 368 Hz.) and E (fundamental fre-
quency of about 325 Hz.), for a total duration of two seconds. The room where
the recording was made, Hertz Hall in U.C. Berkeley, is a concert hall character-
ized as having quite a bit of echo. When the second note is played, the first note
can still be heard. This is called reverberation.

During the recording of the organ sound, 44100 observations of the air wave
pressure were recorded per second. Figure la shows a time series plot of the
sound. Notice that after 1.1 seconds or so there appears to be an abrupt change,
due to the note change.

In Figure 1b we see a spectrogram of the data. To obtain the spectrogram,
the data was divided into 300 overlapping segments, each with 2647 observa-
tions (segments of approximately 60 milliseconds duration). For each segment,
the periodogram of the data is computed and plotted in an image plot, with
darker shades of grey representing higher values. When the data has periodic
components at certain frequencies, the periodogram will show peaks at these fre-
quencies, thus the spectrogram of a sound wave will show dark horizontal lines
at the frequencies corresponding to the fundamental frequency being played, and
corresponding harmonics. In this spectrogram, we can see that after 1.1 seconds
or so, the second note begins. The vertical line is at the note change. In this
figure we can see the frequency component related to the main fundamental fre-
quency change to a smaller value after 1.1 seconds, from about 368 Hz. to about
325 Hz. We also notice that frequency components of the first note remain during
the playing of the second note. As well, there is a relatively dark horizontal line
around a low frequency of 50 Hz.

The spectrogram seen in Figure 1b seems to suggest that fitting harmonic
models to this data may be appropriate. By looking at Figure 1a, it is apparent
that when looking at the entire signal the total amplitude is slowly varying. It
seems appropriate to use the windowed estimation procedure described in Section
5.

An analysis like the ones typically found in this literature (Rodet (1997))
would consider segments of small duration (less than 20 milliseconds) and fit a
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model like (8) with large values of K to the data contained in such segments.
This analysis would fail to identify different fundamental frequencies and their
respective harmonic structure. Analyses that define a fundamental frequency
usually define only one. If we consider 368 Hz. and 325 Hz. to be the funda-
mental frequencies for the first and second parts of the signal, the time-varying
parameters within segments of 20 millisecond duration appear to be usefully con-
stant. As an example, in Figure 1c we show a 20 millisecond segment around
time ty = 0.115 seconds.

a) Pipe Organ Signal b) Data Spectrogram
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T 3
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¢) 20 ms Segment of the Pipe Organ Signal d) 60 ms Segment of the Pipe Organ Signal
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Figure 1. Time series plot of a sound with reverberation produced by a
pipe organ playing two consecutive notes, Ff followed by E and respective
spectrogram (in the spectrogram the vertical line is at the note change); two
segments around time ¢y = 0.115.

Figure 2a shows the estimates of the fundamental frequency when the model
defined by (1)—(7), with J = 1 and K; = 12, is fitted to each 20 millisecond
segment. The spectrogram of the residuals obtained from fitting this model can
be seen in Figure 2b. Notice that in the part of the spectrogram corresponding
to the part of the signal where the reverberation was occurring, the harmonic
structure produced by the echo of the previous note can be seen as well as the
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low frequency component observed in the spectrogram of the original data. This
model does not seem to provide an appropriate fit.

a) Fundamental Frequency Estimate b) Residual Spectrogram
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Figure 2. Estimated fundamental frequency with marginal + 2 standard er-
rors limits, when fitting a model with one fundamental; residual spectrogram
for this fit; estimated fundamental frequencies when fitting a model with
multiple fundamentals; residual spectrum for this fit; and the low frequency
component fundamental frequency estimate.

The fit is greatly improved by fitting a multi-fundamental model as described
in this paper. The location of the dark horizontal lines in the spectrograms seems
to suggest that for the part of the signal corresponding to the first note, a model
defined with two fundamentals (J = 2), one corresponding to the note being
played (368 Hz.) and one corresponding to the low frequency component at 50
Hz., may be appropriate. For the second part of the signal corresponding to the
second note, the spectrogram in Figure 1b suggests that we fit a model with 3
fundamentals (J = 3), one corresponding to the note being played (325 Hz.),
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one corresponding to the echo of the first note, and one corresponding to the low
frequency at 50 Hz.

Before fitting the model we must decide on the size of the segments we con-
sider. As mentioned in the discussion in Section 5, we need to choose segment
sizes such that the harmonic parameters are approximately constant within the
segments. For the analyses in this paper we chose the segment sizes in a heuristic
fashion. In Figure 1 we see two segments around time 0.115 seconds, the first with
20 millisecond duration and the second with 60 millisecond duration. The har-
monic parameters appear to be usefully constant in the first segment. However,
when examining many consecutive segments, we see that the total amplitude
seems to follow a sinusoidal pattern of about 50 Hz. This is in agreement with
the appearance of a dark horizontal line in both the spectrograms of the original
signal and the residuals after fitting the one fundamental frequency model. The
harmonic parameters for the second segment, if we consider there to be a funda-
mental frequency around 368 Hz. and another at 50 Hz., appear to be usefully
constant. If we consider segments of durations longer than 60 milliseconds, then
the slowly varying amplitude phenomenon, seen in Figure 1a, begins to be appar-
ent. Notice that segments of 60 millisecond contain 2650 data points. For these
segments we have around 20 oscillations related to the fundamental frequency
associated with the note being played and 3 oscillations associated with the lower
frequency of 50 Hz. Using the asymptotic approximations described in Section 5
seems appropriate.

We use the BIC described in Section 4 to verify the choice for the number
of fundamentals for the two parts of the sound and to choose the number of
harmonics for each fundamental. For the segments in the first part of the sound
signal we fit a harmonic model (1)-(7) with J = 2, K1 = 7 and Ky = 3. For
the segments in the second part we fit a model with J = 3, K1 = 7, Ky = 6,
and K3 = 3. In Figure 2c we see the estimates obtained for the fundamental
frequencies related to the note being played, and the echo of the first note for the
second part of the signal. In Figure 2e we see the estimate of the fundamental
frequency related to the low frequency component.

Using Corollary 2, the variance of the estimates may be approximated.
Marginal +2 standard errors around the estimates are included in Figures 2a,
2c, and 2e. Notice that the difference between the two estimates appears highly
significant. Furthermore, notice that the approximate standard errors are larger
for the estimate related to the reverberated note (F'f). This is due to the fact
that the signal-to-noise ratio is smaller for the part of the sound related to the
echo or reverberation, than for the part of the sound currently being produced
by the instrument (E).
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By looking at the residual spectrogram in Figure 2d we see the effect of re-
verberation in the residuals and the low frequency component have been removed
by the addition of the second and third fundamentals in the model.

7. Discussion and Extensions

We have presented a useful method for decomposing a sound signal into
harmonic components produced by different fundamental frequencies and noise.
Theoretical results needed to justify the approximations for the standard errors
of our estimates have been presented.

Furthermore, we have introduced a criterion useful for choosing the number
of fundamentals and harmonic frequencies to be included in the models being
fit. However, the results presented for this criterion are asymptotic. In practice
we need to choose the value of the penalty multiplier b7 somewhat arbitrarily
(for example, the asymptotics still hold if we multiply by by a constant) and
formal methods of selecting this parameter in practical situations is a subject of
future work. In the present work by was chosen to be log WyT and the resulting
estimates were in agreement with the spectrograms, and with what we hear when
listening to the original signals, to make appropriate choices for our models.

In the example presented in this paper the segment sizes were chosen in a
heuristic fashion. Much work was put into choosing window sizes that provide
reasonable fits. Fitting models using different window sizes and comparing the
spectrograms of the residuals may be used as a way to verify that our choice is
reasonable. The residuals may also be played and heard. Residual analysis by
ear is a useful tool for detecting lack of fit. For example, when listening to the
residual obtained when ignoring the fundamental related to the low frequency
component at 50 Hz., a sound characteristic of wind going through pipes is heard
suggesting that an important component of the sound has not been included in
the model. Studying the usefulness of methods for choosing the window sizes
automatically is an important subject for future work.

The sounds associated with the analyses presented in this paper can be heard
by visiting a demo on the author’s home page at:
http://biosun01.biostat.jhsph.edu/~ririzarr/Demo/index.html.
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Appendix
A. Definition of constants referred to in Theorem 1
The constants are defined by:
co = apbg, 1 = U0W0_27 co = aphy
3 = agWi Wy 2(WEW Uy — WUy — 2WEWLU; + 2Wo Wi Wally)
s = ag(WoWiUs — WU — WoWaUy + WiWal) (A1)

where

ag = (WOW2 — W12)_2, al = (U()UQ — Ulg), ag = WO_Z(W()Ul — W1U0)2
by = W2Us + W1 (Wi i1Ug — 2W, Uy ), n = 0, 1.

Here Wy, W7, and Wy are defined by (10) and Uy, Uy and U, are defined by

U, = /01 s"w(s)? ds. (A.2)

B. Definition of matrices referred to in Corollary 1

The matrices needed to define the asymptotic variance in Theorem 2 are
given in the following way:
Dj is a 2K; x 2K matrix:

K; Dj71 ... O
Dj = (Z k(A% + B?,m/fge(kej)) SRR (A.3)
=1 O ...Djg,
where
D, = JeclB03) abodj, +a Bl asd;pBiy (A)
PR bo(AZ + B3 agdjkBjk a1 A+ cibo By '
and ,
Ej =C4 (—Bj71, Aj71, ceey _Kij,Kja KjAj,Kj> . (A5)

C. Proof of Theorem 1

Before proving Theorem 1 we need to prove a few simple results. Set AT())
= S w(t/T)t" exp(irt). We need the following result.

Lemma 1. If w(t) satisfies Condition 2 then we have for n =0,1,...,
lim T-™+YAT(\) =W, for A = 0,2, (A.6)

T—o0

AT(X) =0(T™), for 0 < X < 2m, (A7)
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with Wy, defined by (10).

Proof of Lemma 1. Fix n. To prove (A.6) notice that for A = 0,27 we have,
from the boundedness and bounded variation of w(s),

T 1
im T-HDATO) = inil:/n _
Jim T Ar(N) Tlggog(T) w(p)(p) = | wtwlu)de =W,
To prove (A.7), let 0 < A < 27 and define AY(\) = 3L_; exp(i\s), with the
convention that A°(\) = 0. Letting h(u) = u"w(u) and using summation by

parts we have

-t t+1
AT(A) =T" |h(1)AT (A {h——h—}AU\ :
) [() 0+ 3 ()~ A
Notice that if w(t) is bounded and has bounded variation on [0, 1], so does h(s).
Let M be sup, |h(s)| and V be the total variation of h(s). Then we have

AT <1 {M|AT(/\)\ +V max \At()\)|] .

We know, see for example Brillinger (1981), that |A*(\)| < L = 1/] sin(%)\)| for
all £. Notice that L depends on A, but given 0 < A\ < 27 it is constant for all ¢,
and |AT(X)| < T"L(M + V). This completes the proof of the Lemma.

To prove consistency and asymptotic normality for the weighted least
squares, or equivalently the estimates defined by (11)—(14), we need a result
concerning the behavior of the periodogram of the noise and its derivatives with
respect to w.

Lemma 2. Let the stationary noise process {€;} satisfy Condition 1 and let the
weight function w(s) satisfy Condition 2. Then if

T
pr(w) = |7+ Z w(%)t”et exp(—itw)
t=1

one has forn =0,1,..., limp_. supg<,<, pr(w) = 0, in probability.

Remark 1. Lemma 2 has been shown to be true under different assumptions
for the equally weighted case, w(s) = 1. In most cases the result for the weighted
case follows similarly. Walker (1971) proves the lemma for white noise with finite
variance. Hannan (1973) proves it under ergodic and purely non-deterministic
conditions. Brillinger (1986) proves a version for spatial point processes. Under
Conditions 1 and 2, Lemma 2 follows directly from Theorem 4.5.1 in Brillinger
(1981, p.98).
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Using Lemmas 1 and 2 we prove consistency in a way similar to Walker
(1971) or Hannan (1973).
Consider first the one sinusoidal case as defined by (15). We start by proving

Tlim T|&r — wp| = 0, in probability. (A.8)
—00

This is stronger than ordinary consistency, but is needed to prove the consistency
of the remaining two estimates and asymptotic normality.
Letting Dy = %(Ao —iBy) we have
=|T! T YDAl DoAl(wo— )} |* (A
gr(w) = T dr(w)| +|T7 {DoAg (wo +w) + Dolg (wo — w)} (A.9)
+ 20 ([T dp(w)| [T7H{DoAT (wo + w) + DoAT (wo — w)} )

with g7(w) defined in (13) and dr(w) defined by (25). By Lemma 1 we have, for
0<w<m, T7'AT(wg + w) = o(1) and

Wo @ w=w
T_lAT — = 0 0
0 (wo —w) { o(1) : otherwise.

Lemma 2 implies that for 0 < w < m, T~t|dr(w)| = 0p(1), so that

1
ar(@) = 203 [T AT —wn)|* +0,(1) and ar(wo) = 70305 + 0p(1).

1
4"
8),

To prove (A.8), for any b > 0, define

Pr(b) = {w: T|w — wo| > b}. (A.10)

Notice that

Pr(T|&r — wo| > b) < Pr ( sup gr(w) > qT(wo)>
WEPT(b)

=Pr ( sup ‘T_IAOT(W - wo)‘ > Wy + op(1)>
wEPT(b)

and that, using a Riemann integration argument, we can show that

sup ’T AT (w = wo) ’_ ‘/ s)exp{iT(w — wp)s} ds
wGPT(b

+o(1).

Let w* be such that

sup /01 w(s) exp{iT(w — wp)s}ds| .

'/ s)exp{iT(w* —wp)s}ds| =
WEPT(b)
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Let b* = T|w* — wp| > b > 0. Then, by the definition of Pr(b) given at (A.10),
we have

Thm Pr (T|or— w0|>b)< hm Pr(

s) exp(ib*s) ds|+o(1) > Wy + 0,(1 ))

Since Wy > 0 is a deterministic constant and b* > 0,

Wg—‘/ dS

and we have (A.8).
To prove consistency for Ap and By, let r(t,3) = {Dgexp(iwgt) + Do exp
-1
(—iwpt)} and L = 2 {Zthl w(t/T)} . By Lemma 1 and the Mean Value Theo-
rem we have that, for some wy satisfying |[wr — wo| < |0 — wol,

/\w s) exp(ib*s |ds>‘/ s)exp(ib*s) ds

T
|Ar — Ay + i(Br — Bo)| = Z r(t; B)it exp(iwrt)(Or — wo)| + o(1).

The first term in the right hand side of the above equation is smaller than
LZthl w(t/T)|r(t; B)|t|or — wo| < po T|wr — wo| = 0p(1) and thus |(Ar — Ag) +
i(Br — Bp)| = o0p(1). Because both the real and imaginary parts converge in
probability to 0, consistency for the one sinusoidal case is proven. The general
case, for various harmonic components, follows in the same way. See Irizarry
(1998) for details.

To show asymptotic normality, consider first the one sinusoidal case as de-
fined by (15). Using Theorem 4.4.2 in Brillinger (1981, p.95) we have that the
vector u, with components

_1 t _1 t .
=Tz Zw(f)et cos(wot) , ug=T72 Zw(f)et sin(wot)
=T Z ettcos wot) , ug =T Z ettsm (wot) (A.11)

is asymptotically multivariate normal with zero mean and variance matrix

Uo 0U; O
0 Uy 0U;
Uy 00Uz O
0 UL 0 Us

U= ere(wﬂ)

Expanding ¢/-(w) about wp, we can write:

1 3, . _ _ _ ~
T 2gp(wo) = —T2 (o — wo)T 2} (@r), |@r —wo| < |@r — wol. (A.12)
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Notice that calculating the derivative and by repeated use of Lemmas 1 and 2
we can show

T_%q'T(wo) = —WiBoui + Wi Agug + WoBoug — WoAgua + Op(l). (A.13)

Since T|wr — wp| converges to zero in probability, the second derivative and
repeated use of Lemmas 1 and 2 yields

T2} (@) = 5(43 + B — WolW) + 0,(1) (A.14)

Using (A.12), (A.13) and (A.14) we can express the vector of standardized esti-
mates as a linear combination of the vector u, defined by equation (A.11), plus a
quantity converging to 0 in probability: {T%(AT — Ay), T3 (Br — By), T%(&T —
wo)} = Au+ o0p(1), with

B3W, + AR(W, — W) — AoloWy ~B2W, AgBoW;

_ A 2
A= O@OW AW + B3(Wa — k) AgBoWi —A3W,
—ByW; AW BgW, —AgW,

By Condition 2 we know that all the denominators in the components of A are
not 0. This implies that Au is asymptotically multivariate normal with variance
matrix AUA’. By computing AUA’ we obtain the variance expression (20).
This proves Theorem 1 for the one sinusoidal case.

Taking derivatives of gr(w) we notice the dgr(w)/0wy does not depend on
w; when [ # k. Furthermore, under condition (19), the @;’s are asymptotically
independent, see for example Brillinger (1981). Theorem 1 now follows for the
general case K > 1.

D. Proof of Corollary 1

As mentioned above, if we do not impose constraint (7) on the model, then
we can rewrite it as model (8) with K = Z}-le Kj. For this model let 7 =
(ALT, BLT, . ,AK,T, BK,T, o171, --.,WK,1) be the estimates of 3, the parameter
of the model defined by (1)-(6), as defined by (11) — (14). Notice that from
Theorem 1 we know the asymptotic distribution of Gr.

Without loss of generality, assume the Wy r’s are in ascending order. Now
define @1 17 = @17 and, for each 1 < [ < Kj, define @y ;7 to be the w; 7 that
minimizes |0y 7 — lw1,1,7|. Let Wa1 7 be the smallest of the (K — K1) terms @; 7
that are not used to define the @y ;. 7’s, and find Wy for [ = 2,..., K, as done
for 7 = 1. Repeat this procedure for ] =3,...,J. Now for each j=1,...,J
define ﬁj T = (A],I,T7 B],I,Tawj,l,Ta “e AJ K;,T BJ KJ,Tawj K; T) with the AJ k,T ’s
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and Bj’k,T’s defined as the corresponding estimates to the w;; r using (11) and
(12), respectively.

As done in Brillinger (1980), for the case of estimating a bifrequency, we
notice that finding the weighted least squares estimate of (3¢ is asymptotically
equivalent to estimating (¢ via the following regression model:

Bir
| =xp 40
Brr
where X is a block diagonal matrix with jth entry.
X1 ... 0 1X2 10 0
Do : , where X; = [ 01| and Xo = [0 |,
0 ...X1 K;Xo 00 1

and the vector ¢ has mean 0 and variance matrix V' defined by a block diagonal
matrix with matrices Vj, defined in (20), in its (k — 1 4 SJ_, K;)th diagonal
entry.

Consistency and asymptotic normality follow from the fact that the estimates
obtained from the regression are linear combinations of the estimates known to
be consistent and jointly asymptotically normal from Theorem 1. To find the
covariance matrix, we apply weighted regression and see that the new estimates
have covariance matrix equal to (X’V~1X)~!. Using the result in Rao (1973,
p.33), we can directly compute (X’V~1X)~! to obtain the desired result.

E. Proof of Corollary 2

For this proof we assume all sums are over 1,..., Hy, unless otherwise spec-
ified. Without loss of generality assume that Hy is even.
Similar to the proof of Theorem 1 we let

H n k .
AN (N) = Z w(H—N)n exp(iAn). (A.15)
Next we develop a parallel result to that of Lemma 1 for the quantity in (A.15).
Lemma 3. If Hy is a sequence of integers such that Hy — oo, then
lim Hy® AT (\) =Wy, for A=0,2r, (A.16)
Hpn—o00

AN (X) = O(HY), for 0 <\ < 27, (A.17)

with Wy, defined by (10) for k=0,1,2.
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This follows by noticing that AfN()\) = Y w(n/Hy)nF exp(iin) is a subse-
quence of "N w(n/N)nF exp(idn). Then from the proof of Lemma 1, (A.16)
and (A.17) hold.

Notice that the equivalent result to Lemma 2, that the quantity defined by
pn(N) = [(Hy)~® D S w(n/Hy)nPe, 1 n exp(—idn)| is such that

lim sup py(A) =0, in probability (A.18)
N—o0o g<a<r
follows, since {Hy, N > 1} is a subsequence of {N, N > 1}.
We first show consistency and asymptotic normality for the case J =1, K1 =
1. Because J = 1 and K7 = 1 we suppress the indexes j and k for simplicity. We
start by noticing that

2
'HNI Z ) €n+1,N €xp(ind)

2

4 ’H]QIZw(HLN) [”“
+2R [(HK,I Zw(HLN) EntlI,N exp(in9)> X

(i3 S wigms [t (e expinn) )] (a19)

B (™ l)} exp(inf)

As in Theorem 1 (A.18) implies that the first expression on the right goes to 0
in probability.
By the Mean Value Theorem we have

s{t; Bn (1)} = {A(to) + Mi(t — to)} cos [{On(to) + M3(t — to)}1]
+ {B(to) + MQ(t — to)} sin [{HN(tQ) + Mg(t — to)}t] . (A.20)

By Condition 4, the constants Mj, My and M3 are bounded. Since sin(¢) and
cos(t) are bounded functions we can write (A.20) as

S{t; ,BN(t)} = A(to) COS{GN(to)t + M3t(t — to)} + B(to) Sin{@N(to)t
+M3t(t - to)} + M4(t - t(]), (A.21)

where M, is a bounded constant. Notice that by Condition 3 and applying the
Mean Value Theorem to the first term on the right of equation (A.21) we have
cos{On (to)t+ Mst(t—to)} = cos{NO(to)t+o(1) t+ Mst(t—tog)} = cos{ NO(to)t}+
Ms{o(1) t+ Mst(t —t9)} where M5 is a bounded constant. We may find a similar
expression for the second term on the right side of equation (A.21).

Let Ag= A(ty), Bo= B(ty), 8o =0(to) and, suppressing the N, Sy = Gn(to).
Then since [t| < 1 we have that by the continuity of A(t), B(t), and 6(t),



TIME-VARYING PARAMETER ESTIMATES IN A HARMONIC MODEL 1065

s{n/N;Bn(n/N)} = r(n,Bo) + Mg (n — ng)/N + o(1), with Mg bounded and
7(n, Bo) = Ag cos(fon) + By sin(6gn). Now notice |Hx' 3 (n — Hy/2)/N exp(ifn)|
<(Hn+2)/4N =o0(1). Since w(t) is bounded and of bounded variation, a summa-
tion by parts argument like that in the proof of Lemma 1, gives |H " 3> w(n/Hy)
(n — Hn/2)/N exp(ifn)| = o(1). Now we can write the second term in equation
(A.19) as

'Hﬁl Zw(HLN) s [nT—H, ﬂN(nTH)] exp(i@n)‘

= ’H;,l Zw(HLN) r(n+1, Bp) exp(ifn) + 0(1)‘

and r(n+1, By) = {Do exp(ion) + Do exp(—ibon)} exp(ifl), where Dy = 1(Ag—
iBy) as before. Next notice that

-1 n 7’L—|—l .
Hy Zw(H—N)T(T,ﬁo)eXP(%Qn)
= H [DoAIY (60 + 0) + Do ALY 8y — 0)] exp(ifiol).

By Lemma 3 we have that, for 0 < 6 < 7, Hy'AY™ (6 + 6) = o(1) and that

H;]]'A(I]—IN(Q()—Q):{WO : 9:907

o(1) : otherwise.

Using this fact and (A.18), we have that the third term in (A.19) converges to 0
in probability and g () = |Hy' [DoAY™ (6o + 0) + DoA™ (6 — 6)] exp(ifol) +
0p(1)| +0p(1) = F(AG + BY) Hy' Ag™ (6 0) | + 0p(1).
Therefore 1
ax(00) = (43 + BYWE + 0p(1). (A.22)
Finally, for any b > 0, define
Pn(b) =160 : Hy|0—6y| > b}. (A.23)
Notice that as in the proof of Theorem 1, Pr(Hy|0n(to) — 6(to)| > b) < Pr
(SUPgepy () | (HN) LAGN (B — 0)] > Wo + 0,(1)) and that Hy'AJ™N (0 — 6p) =
Hy' S w(n/Hy)nexp{i(0—0o)n} =3 w(n/Hy)(n/Hy) exp{iHn (0—00)n/Hy}.

Again, as in Theorem 1 we have

sup |H;,1A(I){N(9 —6p)| = sup

1
/ w(s)exp{iHyN(0 — 6)s} ds| + o(1),
0ePn(b) 0Py (b) I/0

and thus limy .o Pr (Hy|0n(to) — 0(to)| > b) = 0.
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Now we will prove consistency for AN(tO) and BN(tg). As above, let By =
Bn(to), Ao = A(tg) and By = Bl(to). Then we have Ay (to) = 2(Wg™) 13,4
w((n —1)/Hy) [s{n/N, B(n/N)} + en.n] cos{On(to) n}, with | = ng — Hy /2, u =
no+ Hy/2, and WOHN =Y w(n/Hy). As before we use the Mean Value Theorem
to obtain

U fw(nH—Nl)s{%,ﬂ(%)}cos{ﬁjv(tg)n}

n

=I+1
= ) S W ) cos{O(to) ) + o(1)
n=I[l+1

Then Ay (to)= (We™) 150y w((n—1)/Hy) {r(n, Bo) + en} cos{f (to) n}+
o(1). In the same way we obtain By(tg) = (WOHN)_l >on—ir1 w((n —1)/Hy)
{r(n, Bo) + enn} sin{fn(to) n} + o(1). Since the parameter 3y is constant over
time the result now follows as the proof of Theorem 1.

To prove asymptotic normality, we see that expanding ¢ (0) a Taylor series
about 6(tg), we can write H;,l/zqﬁv{ﬁ(to)} = —H]i/Z {On(to) — O(t0)} Hyd%
{On (o)} for some |An(to)| such that |67 (to) — O(to)| < |On(to) — O(to)|. Using
(A.22), Lemma 3, and the argument to obtain (A.18), we can proceed as in the
proof of Theorems 1 and Corollary 1 to arrive at the desired result for the general
case.
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