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Abstract: This paper studies boundary effects of the kernel density estimation and

proposes some remedies to the problems. Since the kernel estimate is designed for

estimating a smooth density, it introduces a large bias near the boundaries where

the density is discontinuous. Bandwidth selectors developed for the kernel estimate

that select a small bandwidth to reduce the bias can dramatically increase the

variation and roughness of the density estimate. In this paper, several boundary

adjusted procedures for estimating the density, as well as selecting the bandwidth,

are introduced. The proposed procedures greatly reduce the boundary effects and

is shown that these density estimates have the same optimal convergence rate as

that of the kernel density estimate of a smooth density. Some asymptotic results

about the boundary adjusted procedures are provided. Simulation studies were

carried out to check the empiric performance of the proposed procedures compared

to some existing boundary-corrected estimation procedures. In general, simulation

results indicate that for moderate to large sample sizes, the proposed procedures

reduce the boundary effects substantially, and are better than comparable existing

methods. As an example, we estimate a relevant density connected with some

coal-mining disaster data.
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1. Introduction

Given a random sample X1, . . . ,Xn from a distribution with density f , the
most commonly used nonparametric density estimation method is the kernel
estimate

f̂β(x) = (nβ)−1
n∑

j=1

w{(x−Xj)/β} (1.1)

(Rosenblatt (1956)), where w is a symmetric probability density function, and β
is the bandwidth. In practice, a critical step in density estimation is the selection
of β, which controls the smoothness of the density estimate.

The problem of bandwidth selection has been studied extensively, and several
data-driven methods have been proposed. Most of the research assumes that f is
a smooth function over the whole real line. Relatively little is known about the



1346 SHEAN-TSONG CHIU

case when f is discontinuous at the boundary of its support. It is well known,
see Gasser and Müller (1979), Rice (1984), Gasser, Müller and Mammitzsch
(1985) and Schuster (1985), that boundary effects cause many difficulties when
procedures designed for estimating smooth densities are applied to densities with
discontinuities. In Section 2, we give a brief background.
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Figure 1. The density estimates of the coal mining disaster data set. The
solid curve is the classical kernel density with the bandwidth 14.19; the dotted
and dashed curves are the symmetrized estimates with the bandwidths, re-
spectively, 35.64 and 130.79; the kernel is the normal density with bandwidth
the standard deviation.

Figure 1 illustrates the problems of applying the kernel estimate (1.1) to
a sample from a density discontinuous at the boundary. We use the Gaussian
kernel with standard deviation as bandwidth. The data are the periods, in days,
between consecutive major disasters of Britain coal mines from 1851 to 1962.
More details about the data are given in Section 6. The solid curve is the density
estimate (1.1) with bandwidth 14.19, selected by the stabilized selector of Chiu
(1991, 1992). The estimate is very rough, and the bandwidth is apparently too
small to smooth the density. Using a larger bandwidth introduces a large bias at
or near the origin, yet a smaller bandwidth dramatically increases the variation.

Several approaches for handling the boundary effects, for either nonpara-
metric regression or density estimation, have been proposed. Gasser and Müller
(1979), Rice (1984) and Gasser et al. (1985) consider using boundary kernels near
the boundaries. Hall and Wehrly (1991) and Cowling and Hall (1996) propose
creating some pseudo data by reflecting the data around the boundaries; the pro-
cedures for estimating smooth functions are then applied to the enhanced data
to select the bandwidth and estimate the density or the regression function. The
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main problem with these approaches is that the kernels used near the boundaries
are different from the one used in the interior; thus the simple structure of the
estimate (1.1) is lost. As a consequence, these approaches cannot easily apply
the better bandwidth selection procedures, and have to rely on the less reliable
cross-validation method.

Schuster (1985) suggests creating a mirror image of the data on the other
side of the boundary, and then applying the estimate (1.1) to the data set and
its reflection. As pointed out by Cowling and Hall (1996), this does not remove
the asymptotic bias caused by the discontinuity in the first derivative. Another
approach is based on semi-parametric models (cf. Eubank and Speckman (1990)),
in which a parametric function is first fit to the data, and a nonparametric method
is then applied to the residuals. The main problem here is that fitting a global
parametric model may not reduce the boundary effects enough.

The difficulties caused by the boundary effects can be explained easily from
the perspective of time series analysis. The estimate (1.1) is basically a low-pass
filter, which passes the low frequency components and suppresses the noise at the
high frequencies. For smooth densities, most information about f concentrates
at the low frequencies and the estimate (1.1) can efficiently pass the information
without passing too much noise. However, when f has discontinuities, either
at the boundary or other places, the high frequency components still contain
substantial information about f (particularly about the discontinuities). Thus
a low-pass filter will either suppress much of the information or pass too much
noise in order to pass most of the information. The basic idea of the proposed
procedures is to use the higher frequency components to estimate the boundary
effects and then adjust the boundary effects by subtracting or adding a function
to the empiric cumulative distribution function before applying the procedures
designed for estimating smooth densities.

On the surface, our proposed procedures may look like a hybrid of the re-
flection method of Schuster (1995) and the semi-parametric approach. However,
there is an important difference. We do not attempt to fit, even roughly, a para-
metric model to the data; instead, the sole goal is to reduce the boundary effects
on the high frequency components. Actually, our approaches is in the spirit of
the well-known prewhitening in spectrum density estimation, as suggested by
Blackman and Tukey (1959). We should remark that while it is not necessary to
use a function resembling the true density to adjust the boundary effects, using
one with a similar behavior at the boundary is usually beneficial.

In Section 3, we provide a detailed description of the boundary effects on the
density estimate (1.1). The optimal bandwidth for the estimate is of the order
n−1/3, which is extremely small. The impact from first order discontinuities at the
boundaries can be removed easily by using a symmetrized density estimate, which
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is equivalent to using only the real part of the sample characteristic function.
This simple step reduces the bias dramatically, and the optimal bandwidth for
the estimate is of the order n−1/4 when f ′ is discontinuous at the boundary. To
go further, we suggest some estimates of f ′ at the boundary in Section 4. For the
boundary adjusted density estimate, the optimal bandwidth is of the order n−1/5,
which is the order of the optimal bandwidth for estimating smooth densities. We
also briefly discuss a case when f is continuous at the boundary but f ′ is not. For
this case, the imaginary part can be used, and it is not necessary to estimate f ′ to
obtain the optimal convergence rate. Using the imaginary part only is equivalent
to the negative-reflection method of Silverman (1986).

The proposed boundary adjusted procedures were applied to some simulated
data. For comparison, we also applied the procedure of Cowling and Hall (1996),
and the boundary adjusted kernel of Rice (1984) and Gasser et. al (1985). Sim-
ulation studies and results are summarized in Section 5. The simulation results
clearly show the practical advantages of the proposed procedures. Section 6 pro-
vides a detailed description of the application to the coal-mining disasters data.

2. MISE and Bandwidth Selection for Smooth Densities

In this section, we provide a brief review of the density estimate, the mean
integrated squared error, the optimal bandwidth and bandwidth selection for
estimating smooth densities.

A commonly used measure of the performance of a density estimate f̂β is
the mean integrated squared error, MISEn(β) = E{ISEn(β)}, where ISEn(β) =∫ {f̂β(x) − f(x)}2dx. Unless indicated otherwise, the integration is over the real
line. Let φ(λ) =

∫
exp(iλx)f(x)dx be the characteristic function of f , and φ̃(λ) =

1
n

∑
exp(iλXj) =

∫
exp(iλx)dFn(x) be the sample characteristic function, where

Fn is the empiric cumulative distribution function. In the following discussion,
we borrow the terminology “frequency” for λ from time series analysis. The
decay rate of |φ(λ)| depends on the smoothness of f . For a smooth f , |φ(λ)|
decays quickly, and the information about f concentrates at the low frequencies.
Also, Var{φ̃(λ)} ≈ 1/n at high frequencies.

Defining W (λ) =
∫
w(x) exp(iλx)dx, the characteristic function of the esti-

mate f̂β at (1.1) is
φ̂β(λ) = φ̃(λ)W (βλ). (2.1)

The estimate f̂β can also be obtained as the Fourier transform: f̂β(x) = (2π)−1∫
φ̂β(λ) exp(−iλx)dλ. This and (2.1) show that the kernel estimate can be viewed

as a weighted average of sinusoid waves with the coefficients determined by the
sample characteristic function with weight concentrating at the low frequencies.
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By applying Parseval’s formula, ISEn(β) can be written as

ISEn(β) =
∫
{f̂β(x) − f(x)}2dx =

1
2π

∫
|φ(λ) − φ̃(λ)W (βλ)|2dλ. (2.2)

Letting φ̃d(λ) = φ̃(λ) − φ(λ) denote the noise part of φ̃, we expand (2.2) to get

ISEn(β) =
1
2π

∫
|φ(λ)|2{1 −W (βλ)}2dλ+

1
2π

∫
|φ̃d(λ)|2W 2(βλ)dλ

− 2
2π

∫
φ(λ)φ̃d(−λ)W (βλ){1 −W (βλ)}dλ. (2.1)

Define w2 = w∗w and note that |φ̃d(λ)|2 is approximately an exponential random
variable with mean {1 − |φ(λ)|2}/n. From (2.3),

MISEn(β) =
1
2π

∫
|φ(λ)|2{1 −W (βλ)}2dλ+

1
2πn

∫
{1 − |φ(λ)|2}W 2(βλ)dλ

≈ 1
2π

∫
|φ(λ)|2{1 −W (βλ)}2dλ+

w2(0)
nβ

. (2.4)

Now, since 1 −W (λ) ≈ 1 − λ2
∫
x2w(x)dx/2 as λ → 0, (2.4) is approximately

equal to, when f ′′ is of bounded variation,

1
2π

(β4/4)
∫
x2w(x)dx

∫
|φ(λ)|2λ4dλ+

w2(0)
nβ

= (β4/4)
∫
{f ′′(x)}2dx

∫
x2w(x)dx +

w2(0)
nβ

. (2.5)

Therefore, the optimal MISE(β) is of order n−4/5 and the optimal bandwidth,
which minimizes MISEn(β), is of order n−1/5. The asymptotic form of MISE(β)
is obtained in Hall and Marron (1987) and Scott and Terrell (1987).

Since f or φ is unknown, the MISE and the optimal bandwidth have to be
estimated from the data. Rudemo (1982) and Bowman (1984) proposed least
squares cross-validation, CVn(β) =

∫
f̂2

β(x) − n−1 ∑n
j=1 f̂β,j(Xj), where f̂β,j is

the kernel density estimate with the jth observation deleted from the sample.
Silverman (1986, p.62) shows that the cross-validation can be approximately
written as

CV(β) ≈ 1
2π

∫
{|φ̃(λ)|2 − 1/n}{W 2(βλ) − 2W (βλ)}dλ +

w2(0)
nβ

. (2.6)

Comparing (2.6) with (2.4), we see that cross-validation uses the first term in
(2.6) to estimate the bias term in MISE(β).

Up to a constant shift, CVn is an unbiased estimate of MISEn, see Scott and
Terrell (1987). The asymptotic properties of the bandwidth estimate are estab-
lished in Scott and Terrell (1987) and Hall and Marron (1987): the bandwidth
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estimate is consistent and is asymptotically normal, with a slow convergence rate
of n−1/10. In the simulation studies of Scott and Terrell (1987) and Chiu (1992),
it was found that cross-validation often selects smaller bandwidths. The difficulty
with cross-validation, as pointed out in Chiu (1991), is caused by including too
many higher frequency components in the estimation of the bias term in MISE.

Several bandwidth selection procedures have been proposed to remedy the
difficulty of cross-validation. For example, see Scott and Terrell (1987), Park
and Marron (1990), Chiu (1991b, 1992), Hall, Marron and Park (1992), Sheather
and Jones (1991), Hall, Sheather, Jones and Marron (1991), and Jones, Marron
and Park (1991). Except for the biased cross-validation of Scott and Terrell
(1987), these bandwidth estimates have a fast convergence rate. In particular,
the bandwidth estimates of Chiu (1991, 1992), Hall, Jones, Sheather and Marron
(1991), and Jones, Marron and Park (1991) are root n consistent when f is
sufficiently smooth. Chiu (1996) provides a review.

We modify the stabilized criterion of Chiu (1991),

S(β) =
1
2π

∫ Λ

−Λ
{|φ̃(λ)|2 − 1/n}{1 −W (βλ)}2dλ+

w2(0)
nβ

. (2.7)

The cut-off frequency Λ is used to reduce the variation from the high frequency
components which do not contain significant information about f . We select Λ
as the minimizer of

C∞
n (Λ) = −

∫ Λ

0
|φ̃(λ)|2dλ+ 2.55Λ/n. (2.8)

This is a modification of the CV∞
n proposed in Chiu (1992). A heavier penalty

coefficient 2.55 (instead of 2) is used to reduce the chance of selecting an un-
necessarily large Λ. The value 2.55 is chosen because the random walk with
increments −Zj +2.55, where Zj are independent exp(1) random variables, has a
probability 0.9 to have its minimum at zero. The probabilities and critical values
are computed by using the discrete arc sin distribution, see Woodroofe (1982)
and Feller (1966, 1968) for details.

Under some smoothness conditions, the stablized criterion provides a root n
consistent bandwidth estimator. Simulation results confirm that the procedure
gives a much better bandwidth estimate and density estimate than does cross-
validation criterion.

3. Boundary Effects and Boundary Adjusted Procedures

In deriving the asymptotic MISE (2.5) and the optimal bandwidth, we need
a critical assumption that

∫
λ4|φ(λ)|dλ exists. This assumption fails when either

f or f ′ are discontinuous. Compared with the problem of estimating a smoother
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f , the optimal bandwidth for the density estimate (1.1) is much smaller and the
optimal MISE is much larger. As shown below, since MISE is dominated by the
discontinuities, applying the procedures for estimating a smooth density cannot
provide a satisfactory result.

To simplify the discussion, we consider the case that f has support [0,∞).
Except for a discontinuities at zero, f is assumed to be a smooth function. The
case of finite support can be handled in a similar way and will be addressed in
Section 7.

Suppose that on [0,∞), f and f ′ are continuous and f ′′ is of bounded varia-
tion. The characteristic function of f can be written, by integration by part, as
φ(λ) = −f(0)/(iλ)−f ′(0)/λ2−φ2(λ)/λ2, where φ2(λ) =

∫ ∞
0 f ′′(x) exp(iλx)dx =

O(1/λ). Therefore φ(λ) is dominated by f(0)/(iλ) at high frequencies when
f(0) �= 0. Since φ(λ) decays slowly a low-pass filter, such as the kernel estimate
(1.1), needs a much smaller bandwidth in order to pass most of the information
about f .

The bias term in (2.4) is dominated by f2(0)
∫ {1 −W (βλ)}2/λ2dλ = O(β).

Thus, the optimal bandwidth is of the order n−1/3, which is extremely small,
cf. Hall (1981). From this, it is clear that the kernel estimate (1.1) and the
bandwidth selectors designed for smooth densities cannot be applied directly.

It is interesting to note that, at the high frequencies, a discontinuity of f at
zero affects only the imaginary part of φ, while, regardless the value of f(0), the
real part of φ(λ) is dominated by f ′(0)/λ2, which decays much faster than 1/λ.
This observation leads us to consider using only the real part of φ̃(λ) to estimate
the density. A concern is whether the real part of φ contains all the information
about f .

Note that the real part φr = Re{φ} is the characteristic function of the
symmetric density f(|x|)/2. Based on the original sample, we can create a sample
from the density f(|x|)/2 by defining X̃i = ZiXi, i = 1, . . . , n, where Zi are iid
random variables with Pr(Zi = 1) = Pr(Zi = −1) = 1/2. The real part of
the sample characteristic function of {X̃i} is identical to φ̃r = Re{φ̃}. Since for
a symmetric density, the imaginary part of the sample characteristic function
contains no information about the density, it is sufficient to use only the real
part to estimate the symmetric density.

Accordingly, we modify (2.1) and propose the density estimate f̂β(|x|)/2 =
(2π)−1

∫
φ̂β(λ) cos(xλ)dλ. whose characteristic function has the real part

φ̂β(λ) = W (βλ)φ̃r(λ). (3.1)

The derivative of the density estimate based on (3.1) is zero at x = 0, since
cos(λx) is symmetric about zero. The MISE is obtained by modifying (2.4),

MISEn(β) =
1
2π

∫
φ2

r(λ){1 −W (βλ)}2dλ+
w2(0)
2nβ

. (3.2)
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Note that the denominator in the second term above is 2n instead of n, as in
(2.4), since Var{φ̃r(λ)} = {1 − φ2

r(λ)}/(2n). Also, the MISE of f̂β is twice the
MISE in (3.2).

If f ′(0) = 0, (3.2) has an asymptotic form similar to (2.5) and the optimal
bandwidth is of order n−1/5. Otherwise, the bias term in (3.2) is dominated by
{f ′(0)}2

∫ {1 −W (βλ)}2/λ4dλ = O(β3). Thus, the optimal bandwidth for the
estimate (3.1) is of order n−1/4, larger than n−1/3 but smaller than n−1/5. Also,
(3.2) at the optimal bandwidth is of order n−3/4, which is bigger than the rate
n−4/5 when f ′(0) = 0.

When f ′(0) �= 0, we consider the density estimate whose characteristic func-
tion has the real part

φ̂β(λ) = W (βλ){φ̃r(λ)} − ψ(θ, λ)} + ψ(θ, λ), (3.3)

where ψ(θ, λ) = f ′(0)/λ2 +O(1/λ3) is used to remove the boundary effects from
f ′(0). The parameter θ is a function of f ′(0); the precise relationship depends
on the particular form of ψ being used.

Roughly speaking, the estimate (3.3) is similar to applying a kernel smoother
to the residuals obtained by subtracting from dFn(x) a function with the same
derivative f ′(0) at zero. The function subtracted is added back after the smooth-
ing. In the simulation study and application to the coal-mine data set, we use
ψ(θ, λ) = f ′(0)/{|f ′(0)|+λ2}. this is, ignoring the sign, the real part of the char-
acteristic function of the exponential distribution with mean θ = 1/|f ′(0)|1/2.

The MISE of the estimate f̂β,θ(|x|)/2 based on (3.3) is

MISEn(β) =
1
2π

∫
{φr(λ) − ψ(θ, λ)}2{1 −W (βλ)}2dλ+

w2(0)
2nβ

. (3.4)

For (3.4), since φr(λ) − ψ(θ, λ) = O(1/λ3),
∫
λ4{φr(λ) − ψ(θ, λ)}2dλ exists, and

the optimal bandwidth minimizing (3.4) is of order n−1/5; the optimal MISE
(3.4) is of order n−4/5.

In practice, f ′(0) is unknown and ψ(θ, λ) in (3.3) is replaced by ψ(θ̂, λ) ≈
f̂ ′(0)/λ2, where f̂ ′(0) is an estimate of f ′(0). We then modify the stabilized
criterion (2.7) and use

S(β) =
1
2π

∫ Λ

−Λ
[{φ̃r(λ) − ψ(θ̂, λ)}2 − 1/(2n)]{1 −W (βλ)}2dλ+

w2(0)
2nβ

(3.5)

to estimate (3.4). The cut-off frequency used in (3.5) is the minimizer of

C(Λ) =
∫ Λ

0
min{φ̃r(λ) − ψ(θ̂, λ), 1}2dλ+

3.23Λ
2n

. (3.6)
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Note that the penalty coefficient is 3.23 instead of 2.55 as in (2.8). The reason
is that φ̃2

r(λ) is approximately a χ2
1 instead of an exponential random variable.

Theorem 1 describes some asymptotic properties of the procedure. The
assumptions of the theorem are stated below, and the proofs are given in Section
8.

Assumption 1. Assume f (k) exists on [0,∞) for k = 1, . . . , 2l + 1, and that
f (2l+1) is of bounded variation with f (2l+1)(0) �= 0.

Assumption 2. Let g(θ, x), x ≥ 0, be the function defined by ψ(θ, λ) =
Re{∫ g(θ, x) exp(iλx)dx}. Assume g(x) satisfies the conditions in Assumption
1 and that f (2k+1)(0) = g(2k+1)(θ0, 0) for k = 0, . . . , l − 1.

Assumption 3. For any θ1 and θ2, |ψ(θ1, λ) − ψ(θ2, λ)| ≤ M{(θ1 − θ2)/λ2 for
some constant M > 0.

Theorem 1. Suppose that f(x) and ψ(θ, λ) satisfy Assumptions 1 to 3 with
l ≥ 1, and that f̂ ′(0)−f ′(0) = O(n−2/7). Then n1/5(β̂−β0n) = O{f̂ ′(0)−f ′(0)},
where β0n is the bandwidth minimizing (3.4) and β̂ is the bandwidth estimate
minimizing (3.5).

In the next section we propose an estimate of f ′(0) which satisfies the requirement
of Theorem 1. We note that, in general, the procedure does not give a root n
consistent bandwidth estimate.

It may not be clear why an O(n−2/7) estimate of f ′(0) is sufficient for re-
moving the boundary effects from MISE. This is due to the fact that reflecting
already removes the effects caused by the discontinuity of f ; thus we are mak-
ing a secondary adjustment. The effects of the discontinuity of f ′ on MISE is
approximately proportional to β3f ′(0). The residual effect after the adjustment
is therefore of order n−3/5n−2/7, which is smaller than the order n−4/5 of the
optimal MISE

The discussion above concentrates on the case f(0) �= 0. If f(0) = 0, the
problem caused by the discontinuity of f ′ at zero can be handled more easily.
In this case Im{φ(λ)} = O(1/λ3) and, similar to the consideration leading to
(3.1), we can use only the imaginary part of φ̃ to estimate the density. More
specifically, the imaginary part of the characteristic function of the estimate is
W (βλ)Im{φ̃(λ)}. This estimate is equivalent to the kernel estimate applied to
sign(x)dFn(|x|)/2, an estimate of the function g(x) = sign(x)f(|x|)/2 (which
is not a density anymore). Since g′ is continuous at zero, it is not necessary to
remove the boundary effects to achieve the rate n−1/5 and n−4/5 for, respectively,
the optimal bandwidth and the optimal MISE. The optimal bandwidth can be
estimated by modifying (2.7) and (2.8) accordingly. Asymptotic results for the
bandwidth estimate can be obtained by following the arguments in Chiu (1991).
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One practical issue regarding the procedures based on Imφ̃(λ) is the assump-
tion f(0) = 0. This condition can be checked by comparing the graphs of φ̃2

r(λ)
with φ̃2

i (λ). If f(0) is substantially different from 0, φ̃2
i should be much larger

than φ̃2
r at high frequencies. Otherwise, the assumption that f(0) = 0 is a reason-

able one. Using the imaginary part only is equivalent to the negative reflection
estimate discussed in Silverman (1986, p.31).

4. Estimation of the Derivative at the Boundary

In this section, we propose procedures for estimating f ′(0), which can be
used in the density estimate (3.3) and the bandwidth selector (3.5). As noted
before, φr(λ) ≈ f ′(0)/λ2 at high frequencies. Thus λ2φr(λ) ≈ f ′(0) and λ2φ̃(λ) ≈
f ′(0)+λ2Re{φ̃d(λ)}. This observation suggests the following estimate, a weighted
average of λ2φ̃r(λ).

f̂ ′(0) = 3Λ3
∫ ∞

Λ
φ̃r(λ)/λ2dλ. (4.1)

It is necessary to exclude lower frequencies to avoid having a large bias. The
convergence rate of f̂ ′(0) is given in Theorem 2.

Theorem 2. Suppose that f (2l+1) is of bounded variation on [0,∞), and
f (2k+1)(0) = 0 for 0 < k < l, with f (2l+1)(0) �= 0. Assume that Λ → ∞ as
n → ∞. Then the variance of f̂ ′(0) is of the order Λ3/n and the bias is of the
order Λ−2l.

Theorem 2 provides some hints to the practical issue on selecting the cut-
off frequency. The best convergence rate of f̂ ′(0) depends on the smoothness
of f . Under the assumptions of the theorem, the optimal convergence rate is
n−2l/(4l+3), obtained by setting Λ = n1/(4l+3). Ideally, Λ could be selected to
minimize the mean square error of f̂ ′(0). But, since φ2(λ) is negligible at high
frequencies when f ′(0) �= 0, it would be a difficult task to estimate the bias.
Practically, we might be able to select Λ visually from the log-log plot of φ̃2

r(λ).
In any case, it is useful to have some automatic selection procedures.

We now discuss some methods of selecting Λ for f̂ ′(0) at (4.1). These
methods are subsequently applied to simulated data and the coal-mining dis-
aster data in Sections 5 and 6. It is natural to consider the criterion C1(Λ) =
− ∫ Λ

0 φ̃2
r(λ) + 3.23Λ/(2n). When f ′(0) �= 0, O(n1/4) = Λ = o(n1/4+δ) for some

constant δ > 0. Thus the convergence rate of f̂ ′(0) is approximately of order
n−1/8. On the other hand if f ′(0) = 0, Λ ≈ O(n1/(4l)) and the convergence rate
of f̂ ′(0) is approximately of order n−1+3/(4l). These results indicate that while
f̂ ′(0), based on Λ selected by C1, is a good estimate when f ′(0) is small, it has
a large variation when f ′(0) is big. We see from this that when f ′(0) has a
substantial effect, a much smaller Λ should be used than the one provided by C1.
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If f (3)(0) �= 0 the optimal convergence rate of f̂ ′(0) is n−2/7, obtained by
setting Λ = O(n1/7). This leads to the consideration of the criterion

C2(Λ) = −
∫ Λ

0
φ̃2

r(λ) + Λ(n/2)−4/7. (4.2)

For a Λ selected by C2, the rate is approximately n1/7 when f ′(0) �= 0 and n1/(7l)

when f ′(0) = 0. In both cases, the convergence rate of f̂ ′(0) is roughly n−2/7,
and thus satisfies the condition of Theorem 1 in the previous section.

Although this procedure provides a useful estimate of f ′(0) asymptotically,
our empiric experience indicates that the Λ selected by C2 could be too small
when φ2

r has a side lobe. To reduce the problem, we suggest using the criterion

C3(Λ) = −
∫ Λ

0
min[1, {φ̃r(λ) − f̂ ′0(0)/λ

2}2] + Λ/(n/2)−4/5 (4.3)

to select Λ, where f̂ ′0(0) is the initial estimate based on the Λ selected by C2. We
use this as the estimate of f ′(0) in the simulation studies.

5. Implementation and Simulation

To check the performance of the proposed procedures, we applied them to
some simulated data sets. The results from several typical cases are summarized
in this section. A detailed implementation of the procedures is also provided.
For comparison, we also applied the procedures based on boundary kernels and
on Cowling and Hall (1996).

For the procedure of Cowling and Hall (1996), the pseudodata X(−j) were
created as

X(−j) = −5X(j/3) − 4X(2j/3) + (10/3)X(j), j = 1, . . . , n,

where X(0) = 0 and X(j) are the order statistics. For non-integer j/3 or 2j/3,
the values are obtained by linear interpolation. As the authors note, the pseu-
dodata are not necessarily negative. They suggested truncating the pseudo-
data at the “turning point”, which is not defined explicitly. In the following
simulation studies, we considered the turning point to be the location of the
global minimum. The density estimate was obtained by applying the kernel
w(x) = (3/4)(−x2 + 1), |x| ≤ 1 to the pseudodata set created. The bandwidth
is selected by cross-validation,

∫ ∞
0 {f̂(x)}2dx−2/n

∑n
j=1 f̂−j(Xj), where f̂−j(Xj)

is the leave-one-out estimate at Xj .
For the procedure based on boundary kernels, we applied the kernel w(x)

mentioned above to the interior, and the kernel uq(x) = (ax + b)w(x), q > −1,
around the boundary, where a, b are constants satisfying

∫ 1
−q uq(x)dx = 1 and
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∫ 1
−q xuq(x)dx = 0. Following Hall and Wherly (1991), the bandwidth at the

boundary x = 0 is set at 2β, and 2β−x at 0 < x < β. The bandwidth is selected
by cross-validation. For both procedures, the minimum was searched over the
interval (0, 3].

Several densities were considered in the simulation studies and we report
the results from four of them: (1) the standard half normal density; (2) N(1, 1)
truncated at zero; (3) N(−1, 1) truncated at zero; and (4) a mixture of an ex-
ponential and a normal density, 0.75 exp(1)+0.25N(3, 0.82). These densities are
fairly smooth on (0,∞).

The half normal density is very smooth and f (2k+1)(0) = 0 for all k; the
curve decays faster than any linear (on the log-log scale) trend. For the trun-
cated normal (2), the plot of log |φ| suggests that we would not get an accurate
estimate of f ′(0) when the sample size is small. In fact, we expect |f̂ ′(0)| to
overestimate |f ′(0)|. But for the truncated normal (3) and the mixture (4), an
accurate estimate of f ′(0) can be obtained from moderate samples. Also, since
f ′(0) has dominant effects for the truncated normal (3) and the mixture (4), we
expect the boundary adjusted procedures to make substantial improvement, in
terms of ISE, over the non-adjusted estimates.

For each density, 1000 replicates were simulated for each of the sample sizes
n = 100, 400 and 1600. Each simulated data set is discretized by defining
Yt = Fn(zt) − Fn(zt−1), t = 1, . . . , N, where zt = tU/N , t = 0, . . . , N . In the
simulation studies, we set U = 32 and N = 16384 = 214. We then applied
the fast Fourier transform to Yt to obtain an approximation of φ̃r(λj), where
λj = 2πj/U . Integrations needed for estimates or criteria were obtained from
the corresponding summations based on the approximate φ̃r(λj).

After obtaining an estimate of f ′(0) by the procedure described at the end
of the previous section, we used ψ(θ̂, λ) = f̂ ′(0)/{|f̂ ′(0)| + λ2} to reduce the
boundary effects on φ̃r. The function ψ(θ, λ) for a given θ �= 0 is, ignoring the
sign, the real part of the characteristic function of an exponential density. We
chose the exponential density for its simplicity and smoothness (except at zero).

The cut-off frequency Λ was obtained according to (3.6), and then the band-
width estimate by minimizing (3.5). For an easier comparison, we used the same
kernel w(x) = (3/4)(−x2 + 1), |x| ≤ 1 to estimate f(x). The minimizer was
found by a numeric method over the region (0, 4].

Table 1 summarizes the results concerning the estimates f̂ ′(0). The num-
bers in the parenthesis below each of the densities are the true values of
f ′(0). For Cowling and Hall (1996), the estimate of f ′(0) is given by f̂ ′(0) =
(nβ2)−1 ∑

j u
′(Xj/β), where the summation is over all available data, including

the pseudodata. For the boundary kernel based procedure, since the bandwidth
is also a function of x, we estimated f ′(0) numerically by {f̂(0.01) − f̂(0)}/0.01.
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From Table 1, we see that our procedure provides a reasonable estimate
of f ′(0). In general, the proposed estimate is much better than the two it is
compared with. Cowling and Hall (1996) does not work well when f ′(0) < 0; the
boundary kernel based estimate has a large variation for all cases.

Table 1. The sample means and sample standard deviations of various esti-
mates of f ′(0).

Sample size

Desity Estimate n = 100 n = 400 n = 1600

f ′(0) SD{f ′(0)} f ′(0) SD{f ′(0)} f ′(0) SD{f ′(0)}
(1) Half Normal Proposed −0.43 0.37 −0.32 0.25 −0.21 0.15

(0.00) Boundary kernel −0.22 3.54 −0.11 1.31 −0.14 1.21

Cowling and Hall 0.41 0.65 0.20 0.61 0.05 0.70

(2) Trunc. Normal Proposed 0.21 0.26 0.34 0.18 0.42 0.14

(0.29) Boundary kernel 0.25 1.22 0.27 0.75 0.28 0.46

Cowling and Hall 0.17 0.22 0.19 0.26 0.20 0.21

(3) Trunc. Normal Proposed −1.74 0.80 −1.74 0.49 −1.74 0.27

(−1.53) Boundary kernel −1.21 4.50 −1.35 2.24 −1.43 1.36

Cowling and Hall 1.41 2.41 1.04 1.36 0.75 0.97

(4) Mixture Proposed −0.45 0.47 −0.68 0.24 −0.71 0.13

(−0.75) Boundary kernel −0.50 1.65 −0.58 1.00 −0.60 0.84

Cowling and Hall 0.45 0.61 0.36 0.43 0.21 0.90

In Tables 2 and 3, we summarize the sample means of β̂, the ratios of the
standard deviation to the corresponding sample mean of β̂, and the sample means
and standard deviations of ISE(β̂). In addition, we include the results when the
true f ′(0) was used to adjust the boundary effects.

In general, the boundary adjusted procedures give a much larger bandwidth
estimate when the boundary effects are substantial, as for the truncated normal
(3) and the mixture (4). In these cases, the average ISE is dramatically reduced
for moderate to large sample sizes. Adjusting the boundary effects provides a
mild improvement when f ′(0) is small, such as for the truncated normal (2). As
expected, for the half normal with f ′(0) = 0, making the adjustment gives a larger
bandwidth and increases the average ISE. For the small sample size n = 100, the
average ISE of the proposed estimate is larger than the non-adjusted one for the
cases of the half normal (1) and the mixture (4); the average ISE of the proposed
estimate is smaller for the other two cases.

Comparing with the other two procedures we see that, except for one case,
the average ISE(β̂) of the proposed estimate is much smaller. The case of the
mixture (4) with n = 100 is the exception. When f ′(0) < 0, the procedure of
Cowling and Hall (1996) is substantially worse than the others. We note that
the standard deviations of the ISE’s are quite large (compared with the average
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ISE). This is caused by the fact that the distributions of ISE have a heavy right-
hand tail. We also note that the standard deviation of the ISE of the proposed
estimate is substantially smaller than that of the compared estimates.

Table 2. Summary, for the half normal and the truncated normal density
(2), of the sample means of β̂, the ratios of the standard devation of β̂ to the
corresponding sample mean, and the sample means and standard deviations
of ISE(β̂) for various estimates. Results are based on 1000 replications for
each case.

Density n Estimate/Adjust β̂ SD(β̂)/Mean(β̂) ISE(β̂) SD(ISE)
None, 0 0.711 0.167 8.4e-3 1.2e-2

100 Proposed 1.334 0.351 9.3e-3 9.9e-3
Boundary kernel 1.013 0.424 1.6e-2 2.2e-2

Cowling and Hall 0.894 0.410 1.3e-2 1.5e-2
None, 0 0.528 0.112 2.6e-3 3.0e-3

1: Half Normal 400 Proposed 0.739 0.261 3.0e-3 2.7e-3
Boundary kernel 0.707 0.404 4.4e-3 4.4e-3

Cowling and Hall 0.748 0.392 4.2e-3 4.2e-3
None, 0 0.397 0.086 9.0e-4 9.4e-4

1600 Proposed 0.474 0.124 9.7e-4 9.0e-4
Boundary kernel 0.454 0.383 1.5e-3 1.4e-3

Cowling and Hall 0.557 0.456 1.6e-3 1.4e-3
None, 0 0.939 0.304 8.9e-3 6.4e-3

True f ′(0) 0.911 0.139 6.2e-3 6.0e-3
100 Proposed 1.021 0.238 8.4e-3 7.5e-3

Boundary kernel 0.902 0.451 1.2e-2 1.2e-2
Cowling and Hall 1.053 0.436 1.0e-2 1.0e-2

None, 0 0.573 0.186 3.1e-3 2.3e-3
True f ′(0) 0.652 0.114 2.3e-3 2.0e-3

2: Trunc. Normal 400 Proposed 0.669 0.105 2.6e-3 2.2e-3
Boundary kernel 0.616 0.316 3.8e-3 3.6e-3

Cowling and Hall 0.677 0.332 3.6e-3 3.3e-3
None, 0 0.406 0.115 1.1e-3 6.3e-4

True f ′(0) 0.478 0.070 7.7e-4 5.2e-4
1600 Proposed 0.485 0.051 9.0e-4 5.7e-4

Boundary kernel 0.465 0.283 1.2e-3 9.4e-4
Cowling and Hall 0.494 0.294 1.2e-3 9.5e-4

For most cases, as expected, the relative standard deviation of the proposed
bandwidth estimate is much smaller than the other two estimates. The proposed
estimate has a large variation when it is difficult to distinguish the density from
an exponential density. The results also indicate that the relative convergence
rate of the proposed estimate better than that of the other two estimates.
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Table 3. Same as Table 2, but for the truncated normal (3) and the mixture
(4).

Density n Estimate/Adjust β̂ SD(β̂)/Mean(β̂) ISE(β̂) SD(ISE)
None, 0 0.411 0.217 1.9e- 2.1e-2

True f ′(0) 1.103 0.255 1.0e- 1.7e-2
100 Proposed 1.377 0.613 1.2e- 1.7e-2

Boundary kernel 0.650 0.379 2.3e- 3.0e-2
Cowling and Hall 0.517 0.445 2.8e- 2.4e-2

None, 0 0.285 0.182 6.7e- 5.3e-3
True f ′(0) 0.680 0.262 3.4e- 3.6e-3

3: Trunc. Normal 400 Proposed 0.781 0.440 3.4e- 4.2e-3
Boundary kernel 0.508 0.334 6.9e- 7.6e-3

Cowling and Hall 0.456 0.387 1.0e- 7.9e-3
None, 0 0.198 0.158 2.3e- 1.5e-3

True f ′(0) 0.400 0.174 9.7e- 1.1e-3
1600 Proposed 0.512 0.172 9.7e- 1.1e-3

Boundary kernel 0.404 0.304 1.9e- 1.6e-3
Cowling and Hall 0.420 0.316 3.9e- 2.3e-3

None, 0 0.747 0.335 1.2e- 9.9e-3
True f ′(0) 1.594 0.381 5.5e- 7.1e-3

100 Proposed 2.278 0.438 1.5e- 9.6e-3
Boundary kernel 1.047 0.449 1.3e- 1.5e-2

Cowling and Hall 0.870 0.579 1.9e- 1.5e-2
None, 0 0.4711 0.200 4.5e- 2.5e-3

True f ′(0) 0.978 0.139 1.8e- 1.6e-3
4: Mixture 400 Proposed 1.045 0.347 3.0e- 2.5e-3

Boundary kernel 0.717 0.307 4.3e- 3.8e-3
Cowling and Hall 0.642 0.404 6.3e- 4.0e-3

None, 0 0.316 0.165 1.6e- 8.4e-4
True f ′(0) 0.679 0.111 6.0e- 4.7e-4

1600 Proposed 0.670 0.102 7.7e- 5.8e-4
Boundary kernel 0.542 0.267 1.3e- 1.2e-3

Cowling and Hall 0.535 0.351 2.3e- 1.6e-3

Next, we make some pointwise comparison of the density estimates. In Table
4, we compare estimates of f(0). For most cases, the MSE of the proposed
estimate is substantially smaller than the other two estimates. The variation of
the boundary-kernel estimate is often much larger than the others. The estimate
of Cowling and Hall (1996) often has the largest bias. To check the MSE in the
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interior part, we plot pointwise MSE of the density estimates for n = 400 in
Figure 2.

(1) (2)

x x

(3) (4)

x x

Figure 2. The pointwise mean squared errors of the estimates. The solid
curves are of the proposed estimate, the dotted ones the estimate of Cowling
and Hall (1996) and the dashed ones the boundary-kernel estimate.

In general, the MSE of the proposed estimate is substantially smaller than
the compared estimate at the boundary, as well as at the interior points. The
improvement in the interior is due to using the more stable bandwidth selector.

Besides the density estimate with f ′(0) based on Λ selected by C3, we also
check the performance of the estimate with Λ selected by C2. There is not much
difference between them for most cases, which indicates that the density estimate
is not too sensitive to the selection of Λ.

Just as the procedures for estimating smooth densities should not be applied
blindly, the boundary adjusted procedures should be applied with caution. It is
vital to examine the plot of φ̃2

r . As the simulation results indicated, substantial
improvement can be obtained when f ′(0) has a dominant effect. In this case, the
boundary effects would be visible from the plot of φ̃2

r ; otherwise, as in some small
sample cases, adjustment made by using an inaccurate estimate can introduce
more errors to the density estimate.
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Table 4. Summary of the biases, standard deviations and the mean squared
errors of the various estimates of f(0).

Proposed 0.037 0.111 0.014
100 Boundary kernel 0.017 0.188 0.036

Cowling and Hall -0.091 0.096 0.018
Proposed 0.023 0.068 0.005

1: Half Normal 400 Boundary kernel 0.010 0.097 0.010
Cowling and Hall -0.040 0.071 0.007
Proposed 0.013 0.038 0.002

1600 Boundary kernel 0.008 0.059 0.004
Cowling and Hall -0.013 0.052 0.003
Proposed 0.027 0.094 0.010

100 Boundary kernel 0.009 0.106 0.011
Cowling and Hall 0.040 0.068 0.006
Proposed -0.003 0.057 0.003

2: Trunc. Normal 400 Boundary kernel 0.000 0.062 0.004
Cowling and Hall 0.024 0.049 0.003
Proposed -0.007 0.035 0.001

1600 Boundary kernel 0.001 0.035 0.001
Cowling and Hall 0.016 0.030 0.001
Proposed -0.064 0.167 0.032

100 Boundary kernel -0.044 0.290 0.086
Cowling and Hall -0.304 0.179 0.124
Proposed -0.024 0.096 0.010

3: Trunc. Normal 400 Boundary kernel -0.028 0.147 0.022
Cowling and Hall -0.228 0.104 0.063
Proposed -0.003 0.052 0.003

1600 Boundary kernel -0.015 0.073 0.006
Cowling and Hall -0.173 0.064 0.034
Proposed -0.085 0.126 0.023

100 Boundary kernel -0.034 0.156 0.026
Cowling and Hall -0.189 0.098 0.045
Proposed -0.011 0.066 0.004

4: Mixture 400 Boundary kernel -0.017 0.088 0.008
Cowling and Hall -0.130 0.063 0.021
Proposed -0.007 0.034 0.001

1600 Boundary kernel -0.011 0.051 0.003
Cowling and Hall -0.090 0.046 0.010

6. Application to the Coal Mining Disaster Data

We applied the boundary adjusted procedures to the Coal Mining Disaster
Data from Jarrett (1979). The data set consists of 190 intervals, in days, between
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consecutive major coal mining disasters in Britain from 1851 to 1962. This data
set is a popular example in the change point literature. For example, Raftery and
Akman (1986) and Worsley (1986) model the data set as independent exponential
random variables with a step mean function.

The range of the data is from 0 to 2366. We replaced the only 0 in the data
set by 0.5 to make sure that the data point was counted when we discretized
the data. We next divided the data by the sample mean 213.4 and applied the
procedures, with the setting U = 32, N = 214 and the normal kernel. Since all
procedures used are scale equivariant, the bandwidth and density estimate can
be easily transformed back to the original scale.

First, we blindly applied the kernel density estimate (1.1) to the data. The
bandwidth 0.0665 · 213.4 = 14.19 is selected by the stabilized procedure (2.7)
described in Section 2. The density estimate (1.1) with the bandwidth is shown in
Figure 1 as the solid curve. The curve is very rough due to the use of an extremely
small bandwidth. Next, we considered the estimates and the bandwidth selection
procedures based on φ̃r. For the estimate (3.1) based on φ̃r, the bandwidth
obtained from (3.5) is 0.1670 · 213.4 = 35.64. The density estimate based on
(3.1) with the bandwidth 35.64 is also shown in Figure 1 as the dotted curve.
The density is obtained by applying the Fourier transform on (3.1). Although
the bandwidth is more than double the bandwidth 14.19 of the estimate (1.1),
the density estimate is still rough.

To estimate f ′(0) we first obtain Λ = 2.553/(213.4)2 , selected by (4.2),
and the estimate of f̂ ′(0) is −2.302/(213.4)2 . Using this as the initial esti-
mate, we then obtain Λ = 2.749/(213.4)2 from (4.3) and the final estimate
f̂ ′(0) = 2.531/(213.4)2 =5.52e-5. Based on this, criterion (3.5) is used to select
the bandwidth for the density estimate based on (3.3). The bandwidth selected is
0.6129 · 213.4 = 130.79, almost 4 times wider than the bandwidth 35.64 selected
when no boundary adjustment is made. Figure 3 shows the proposed density
estimate (solid line) with the bandwidth 130.79. For comparison, we show the
density estimate (3.1) with bandwidth 130.79 as the dashed curve in Figure 1.
It is clear that the estimate severely underestimates f(0) and overestimates the
density near zero.

The data set may contain some change points. Raftery and Akman (1986)
use a step function with one discontinuity at 124 to fit the data. The sample
mean for the data points from 1 to 124 is 114.8, and the sample mean for the
rest of the data points is 398.6. Under this model, the density is a mixture of
two exponential densities. We also plot the parametric density estimate

(124/190) exp(−x/114.8)/114.8 + (66/190) exp(−x/398.6)/398.6.
in Figure 3 to compare (dotted line) with the nonparametric estimate obtained
earlier. The two densities are in good agreement.
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Figure 3. The proposed density estimate (solid curve), the parametric density
estimate (dashed curve) and the boundary-kernel estimate of the coal mining
disaster data set.

For comparison, we also applied the boundary kernel based procedure and
Cowling and Hall (1996) to the same data set. The bandwidths are, respectively,
115 and 55 and the estimated f ′(0) are -6.62e-5 and 3.56e-5. Adjusting the band-
widths 115 and 55 by the factor 1.6, the asymptotically equivalent bandwidths for
the normal kernel is 71.88 and 34.38, much smaller than 130.79 obtained by the
proposed procedure. Figure 3 also shows the boundary-kernel density estimate
(dashed line). It is clear that the estimates are still too rough.

7. Bounded Support

In this section, we extend the proposed procedures to the case that the
density f has a finite support. Without loss of generality, we assume that the
support is [0, 1].

The characteristic function of f is
∫ 1
0 f(x) exp(iλx)dx. Integration by parts

yields

φ(λ) = {exp(iλ)f(1)−f(0)}/(iλ)+{exp(iλ)f ′(1)−f ′(0)}/λ2 −φ2(λ)/λ2, (7.1)

where φ2(λ) =
∫ 1
0 f

′′(x) exp(iλx)dx. A function with a bounded support can
be represented by a Fourier series, instead of an integration, see Edwards (1979,
Chap. 1). More precisely, f can be represented as a Fourier series with coefficients
φ(λ) at the frequencies λ2j = 2πj. At the frequencies λ2j = 2πj, (7.1) becomes
φ(λ2j) = {f(1) − f(0)}/(iλ2j) + {f ′(1) − f ′(0)}/λ2

2j − φ2(λ2j). As in the case
with the support [0,∞), the discontinuities in f dominate the imaginary part of
φ(λ2j). Following the arguments in Section 3, we try to use only the real part of
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φ̃ to estimate f . Using the real part is essentially the same as using the expanded
data set including the original ones and their images on [−1, 0].

Since the length of the support of the expanded density is doubled, we need
to consider the characteristic functions at the frequencies λj = πj at odd j’s as
well as at the even j’s. For an odd j, φ(λj) = −{f(1) + f(0)}/(iλj) − {f ′(1) +
f ′(0)}/λ2

j − φ2(λj). Letting c1 = −{f ′(1)− f ′(0)} and c2 = −{f ′(1) + f ′(0)}, we
have φr(λj) ≈ c1/λ

2
j for odd j and φr(λj) ≈ c2/λ

2
j for even j

Similar to (4.1), c1 and c2 are estimated by, respectively, ĉ1 =
∑

j>J1
φ̃r(λ2j+1)

/λ2
2j+1/

∑
j>J1

(1/λ4
2j+1) and ĉ2 =

∑
j>J2

φ̃r(λ2j)/λ2
2j/

∑
j>J1

(1/λ4
2j), where J1

and J2 are selected as described in Section 4, with some modification for switch-
ing from integration to summation. For the current case, we suggest using a
quadratic function ax2 + bx to reduce the boundary effects. The coefficients are
a = −c2/2 and b = (c2 − c1)/2.

Finally, we outline the implementation of the procedures. We first discretize
the data in the interval [0, 1] by defining Yt = Fn(t/N) − Fn{(t − 1)/N}, t =
1, . . . , N. In order to obtain φ̃(λ) at λ = πj, N zeros are appended to the series
Yt. Applying the Fourier transform to the expanded series gives us φ̃(λj). Except
for estimating c1 and c2, the remaining part of the implementation is essentially
the same as in the case of infinite support. We estimate c1 by using φ̃r(λj) at
odd j’s and c2 at even j’s.

8. Proofs

We first prove Theorem 1 when f (3) is of bounded variation and f (3) �= 0
(l = 1). We redefine φ̃d = φ̃r −φr as the noise part of φ̃r. Since φ̃r(λ)−ψ(θ̂, λ) =
φr(λ)−ψ(θ, λ)+ φ̃d(λ)−{ψ(θ̂, λ)−ψ(θ, λ)}, the difference between the first term
in (3.4) and (3.5) can be decomposed to a few terms, D1+D2+D3+D4+D5+D6,
where

2πD1 =
∫
|λ|>|Λ

{φr(λ) − ψ(θ, λ)}2{1 −W (βλ)}2dλ,

2πD2 =
∫ Λ

−Λ
{φ2

d(λ) − 1/(2n)}{1 −W (βλ)}2dλ,

2πD3 =
∫ Λ

−Λ
φd(λ){φr(λ) − ψ(θ, λ)}{1 −W (βλ)}2dλ,

2πD4 =
∫ Λ

−Λ
{ψ(θλ) − ψ(θ̂, λ)}2{1 −W (βλ)}2dλ,

2πD5 =
∫ Λ

−Λ
φd(λ){ψ(θλ) − ψ(θ̂, λ)}{1 −W (βλ)}2dλ,

2πD6 =
∫ Λ

−Λ
{φr(λ) − ψ(θ, λ)}{ψ(θ, λ) − ψ(θ̂, λ)}{1 −W (βλ)}2dλ.
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Under the assumption of Theorem 1, the Λ selected by (3.6) satisfies
O(n1/7) = Λ = o(n1/7+δ) for any constant δ > 0. In the following, δ is used
as a positive generic constant whose meaning depends on the context in which it
is used. The convergence of the terms Dj/β

4, j = 1, 2, 3 can be established
by using the arguments in Chiu (1992). For the remaining terms, we have
β−4D4 = O{(θ̂ − θ)2Λ} = o(n−1/2), since 1 −W (βλ) = O(β2λ2) as βλ → 0.
Since φ̃d(λ) = O(n−1/2), β−4D5 = O{n−1/2(θ̂ − θ)Λ3} = o(θ̂ − θ). For the last
term , β−4D6 = O(θ̂ − θ), since φr(λ) − ψ(θ, λ) = O(1/λ4). The consistency of
the bandwidth estimate follows from these results.

To obtain the rate of convergence, it is essential to find the order of the terms
dDj/dβ, j = 1, . . . , 6, when β = O(n−1/5). Similar to the argument above, or
in Chiu (1992), β−3D′

j = O(n−1/2), for j = 3, 4, 5. For the second term, since
the variance of

∫ Λ
−Λ φ̃

2
r(λ)λ4dλ is of the order n−2Λ9, β−3D′

2 = O(n−1Λ9/2) =
o(n−2/7). The bias is dominated by the first term. We have β−3D′

1 = O(Λ−3) =
O(n−3/7). The last term dominates the variance. Under Assumption 1, ψ(θ̂, λ)−
ψ(θ, λ) = O{(θ̂ − θ)/λ2}. Therefore β−3D′

6 = O(θ̂ − θ).
It is easy to extend the above proof under the stronger condition that f(x)

and ψ(θ, λ) satisfy Assumptions 1 and 2 with l ≥ 2. In this case, φr(λ) −
ψ(θ, λ) = O(1/λ2l+2) and O(n1/(4l+3)) = Λ = o(n1/(4l+3)+δ). Thus, β3D′

1(β) =
O(n−(4l−1)/(4l+3)), which is of the order o(n−1/2) when l ≥ 2. Also, β−3D′

2(β) =
o(n−1/2). Therefore the last term is the only one with an order greater than
n−1/2, and the proof of Theorem 1 is finished.

To prove Theorem 2, we write f̂ ′(0) − f ′(0) = B1 +B2, where

(3Λ3)−1B1 =
∫ ∞

Λ
{φr(λ) − f ′(0)/λ2}/λ2dλ (8.1)

and (3Λ3)−1B2 =
∫ ∞
Λ φd(λ)/λ2dλ. Since (8.1) is of order Λ−2l−3, the bias term

B1 = O(Λ−2l). For the variance, we note that

Var{Λ−3B2} = n−1
∫ ∞

Λ

∫ ∞

Λ
λ−2µ−2{φr(λ− µ) − φr(λ)φr(µ)}dλdµ.

Since
∫ ∞
Λ µ−2

∫ µ−Λ
Λ−µ (λ + µ)−2φr(λ)dλdµ is of order Λ−3, the variance of f̂ ′(0) is

of order Λ3/n, as stated in the theorem.
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