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Abstract: In a multiple decision problem one has to choose the “correct” distribution

out of a number of different distributions for an observation x. When x is a random
sample, it is known that the minimum Bayes risk decays at exponential rate, which

coincides with that of the minimax risk, and is determined by an information–type

divergence between these distributions.

There are situations when it is desirable to allow new possible decisions. For

example, if the data x does not provide enough support to any of the models,
one may want to allow a “no-decision” or “rejection” option. Another example of

such a situation is the confidence estimation problem where the “correct” decisions

correspond to one-point sets, and new non-standard actions are formed by subsets

of the parameter space consisting of at least two elements.

In the version of the multiple decision problem with augmented action space,

we derive the optimal exponential rate of the minimum Bayes risk, and show that it
coincides with the mentioned information–type divergence in the classical multiple

decision problem. However, the component of the Bayes risk corresponding to the

error occurring when the decision belongs to the standard action space may decrease

at a faster exponential rate. In a binomial example the accuracy of two asymptotic

formulas for the risks containing oscillating (diverging) factors is compared.

Key words and phrases: Bayes risk, binomial distribution, Chernoff theorem, deci-

sion space, error probability, loss function, probabilities of large deviations.

1. Introduction

In a multiple decision problem different probability distributions P1, . . . , Pg

are given, and the goal is to classify an observation x as coming from one of these
distributions. With the parameter space Θ = {1, . . . , g}, the decision (action)
space in this statistical problem can be taken to be D0 = {d1, . . . .dg} where
the decision dθ has the meaning “distribution Pθ”. Assume that P1, . . . , Pg are
mutually absolutely continuous measures (with respect to a σ-finite measure µ),
so that the corresponding densities, p1, . . . , pg, can be chosen to be positive on
the same set {x : pθ(x) > 0}, which does not depend on θ.

Traditionally the performance of a multiple decision rule δ(x), taking values
in the decision space D0 is measured by the error probabilities

Pθ(δ(x) �= dθ) =
∑

η:η �=θ

Pθ(δ(x) = dη).
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In some situations a priori probabilities π1, . . . , πg can be assumed to be given.
Then the global characteristic of δ is

∑
θ πθPθ(δ �= dθ), which is minimized by

the Bayes rule
δ̃(x) = arg max

θ
[πθpθ(x)] . (1)

For the “default” uniform prior distribution, δ̃ is merely the maximum likelihood
rule.

For fixed probabilities π = (π1, . . . , πg) and P1, . . . , Pg, denote by eπ(D0) the
minimum Bayes risk

∑
θ πθPθ(δ̃ �= dθ). Observe that the form of the rule (1)

leads to the formula

eπ(D0) =
∫

[min
η

[
g∑
1

πθpθ(x)− πηpη(x)] dµ(x) = 1−
∫

max
θ

[πθpθ(x)] dµ(x). (2)

When the observation x = (x1, . . . , xn) is formed by a random sample from
one of distributions Fθ, θ = 1, . . . , g, so that Pθ = Fθ ⊗ · · · ⊗ Fθ and pθ(x) =∏n

j=1 fθ(xj), the limiting behavior of the minimum Bayes risk (or the minimax
risk) is given by the following result which goes back to Chernoff (1952) when
g = 2.

For real s and two probability distributions P and Q with densities p and q,
denote by

Hs (P,Q) = log
∫ [d P

d Q

]s
d Q = log

∫ [
p(x)

]s[
q(x)

]1−s
dµ(x) (3)

the logarithm of the Hellinger type integral. This information-type divergence
is known to be related to the information number K (P,Q) = EP log d P

d Q (X) as
K (P,Q) = d

dsHs (P,Q) |s=1. Intuitively both K (P,Q) and − infs>0 Hs (P,Q)
are characteristics of the degree of separation (or dissimilarity) between P and
Q.

Theorem 1.1. Assume that πθ > 0 for all θ ∈ Θ. Then for any classification
rule δ = δ(x) based on the random sample x = (x1, . . . , xn) from the family
P = {Pθ = Fθ ⊗ · · · ⊗ Fθ, θ = 1, . . . , g} one has

lim inf
n→∞

1
n

log max
θ

Pθ(δ(x) �= dθ) ≥ lim inf
n→∞

1
n

log
∑
θ

πθPθ(δ(x) �= dθ)

≥ lim inf
n→∞

1
n

log
∑
θ

πθPθ(δ̃(x) �= dθ) = max
η �=θ

inf
s>0

Hs (Fη , Fθ) = ρ. (4)

For an arbitrary g, Theorem 1.1 can be derived from Renyi (1970). This
theorem shows that the Bayes risk and the minimax risk cannot tend to zero
faster than at an exponential rate. The optimal exponential rate of the minimum
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Bayes risk does not depend on positive prior probabilities, coincides with that
of the minimax risk, and is determined by the information divergence ρ between
probability distributions in the given family P1, . . . , Pg.

2. Augmented Decision Spaces

In this paper we look at multiple decision problems where the decision space
D has the form Da = D0

⋃D1 with D0 = {d1, . . . , dg} having the interpretation
of the classical decisions and a finite set D1 forming the “augmented” part of D,
which corresponds to, say m = |D1|, new alternative decisions.

For example, D1 may consist of one element d0,“no-decision” or “rejection”
of all distributions Pθ, θ = 1, . . . , g (see Rukhin (1998)). The advantage of this
particular decision space is that one can find δ for which the individual error
probabilities Pθ(δ(x) �= dθ) are simultaneously small and which minimizes the
probability of no-decision (see, for example, Nikulin (1989)). The importance of
allowing a “no-decision” option has been illustrated recently by Berger, Boukai
and Wang (1997) who demonstrated that in the classical hypothesis testing situa-
tion, i.e. when g = 2, with this option one can achieve the same error probabilities
under frequentist and Bayesian approaches.

Another example is the set D1 formed by all subsets of Θ containing at least
two elements. The space Da corresponds to confidence estimation of the discrete
parameter θ. While the classical decisions correspond to one-point sets, the ad-
ditional “non-standard” decisions are formed by larger confidence regions. Such
a decision problem is described as a list scheme in electrical engineering, Forney
(1968). The practical situations where confidence sets are of interest include bio-
metric readings like signatures, face images, fingerprints, which provide basis to
a list of possible originators. Similar situations arise in the problems of subset
selection (Gupta and Panchapakesan (1979), especially Sec 18.2).

We define the loss function W (θ, d) in the following way: W (θ, dθ) = 0,
W (θ, dη) = 1 when η �= θ, dη ∈ D0, θ, η = 1, . . . , g; and to escape trivialities
assume that for d ∈ D1, 0 < W (θ, d) ≤ 1.

In our first example with D1 = {d0} one has to specify positive numbers
wθ = W (θ, d0) ≤ 1. In the second example a reasonable loss function can be
derived from an array ω(θ, t), t = 0, 1, . . . such that for any θ, ω(θ, 0) = 0 and
ω(θ, t) is an increasing sequence in t, representing the loss of including the θ-th
model when choosing a subset of size t + 1. One can put, with a positive c,

W (θ, d) =

{
ω(θ, |d| − 1), θ ∈ d,

ω(θ, |d| − 1) + c, θ �∈ d.

Note that for a suitable choice of ω and c, 0 < W (θ, d) < 1.
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When g = 2, in both of these examples, m = 1, i.e. there is just one
additional decision d0 which, however, has opposite meanings. In the latter
example it is a decision consisting of both d1 and d2, while in the former it is the
decision rejecting d1 and d2. In this situation the form of the Bayes rule is well
known (see Problem 2.5 in Devroy, Gyorfi and Lugosi (1996)).

In the general situation, the Bayes rule δ̂ has the following form. For θ =
1, . . . , g,

{δ̂(x) = dθ} =
{
πθpθ(x) = max

η:η=1,...,g
πηpη(x) ∨ max

d:d∈D1

g∑
η=1

[1 − W (η, d)]πηpη(x)
}

and for d0 ∈ D1,

{δ̂(x) = d0} =
{ g∑

η=1

[1 − W (η, d0)]πηpη(x)

= max
η:η=1,...,g

πηpη(x) ∨ max
d:d∈D1

g∑
η=1

[1 − W (η, d)]πηpη(x)
}
.

Thus, this procedure coincides with the classical one for g+m distributions family
with densities pd(x) =

∑g
η=1[1 − W (η, d)]πηpη(x)/

∑g
η=1[1− W (η, d)]πη , d ∈ D1,

and appropriate prior probabilities.
Possible ties can be broken in any fashion without affecting the minimum

Bayes risk, eπ(Da), which has the form

eπ(Da) =
∑
θ

πθEθW (θ, δ̂(x)) =
∑
θ

∑
d∈Da

πθW (θ, d)Pθ(δ̂(x) = d)

=
∫

min
d∈D

[ ∑
θ

πθW (θ, d)pi(x)
]

dµ(x)

= 1 −
∫ [

max
θ

πipθ(x) ∨ max
d:d∈D1

g∑
η=1

[1 − W (η, d)]πηpη(x)
]

dµ(x). (5)

It is obvious from the comparison of (5) and (2) that the minimum Bayes
risk in the problem with the decision space Da cannot exceed the minimum Bayes
risk eπ(D0) in the traditional multiple decision problem, i.e.

eπ(Da) ≤ 1 −
∫

max
η

[πηpη(x)] dµ(x) = eπ(D0). (6)

Also, according to (5),

1 − eπ(Da) ≤
∫ [

max
θ

πθpθ(x) ∨ max
d:d∈D1

g∑
η=1

[1 − W (η, d)]max
θ

πθpθ(x)
]

dµ(x)

=
[

max
d:d∈D1

g∑
η=1

[1 − W (η, d)] ∨ 1
][

1 − eπ(D0)
]
, (7)
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so that a multiple decision problem with large eπ(D0) necessarily leads to a large
value of eπ(Da). Clearly, if maxd:d∈D1

∑g
η=1[1 − W (η, d)] < 1, then eπ(Da) =

eπ(D0).
Because of (6) and Theorem 1.1, for i.i.d. observations x = (x1, . . . , xn),

the asymptotic decay of the Bayes probability is at least exponential with the
rate ρ. We show now that the asymptotic behavior of the probability of non-
standard decisions from D1, and of the minimum Bayes risk eπ(Da) for any
decision space Da, is the same as in the classical multiple decision problem.
However, the component of the Bayes risk corresponding to the error occurring
when the decision belongs to D0 may decrease at a faster exponential rate.

To describe this rate let, for a fixed θ, ηθ denote any parametric value such
that K(Fθ, Fηθ

) = minγ:γ �=θ K(Fθ, Fγ) and let hθ = infs>0 Hs (Fηθ
, Fθ). (If ηθ is

not defined uniquely, hθ is the largest of all infima above.) Also put

ρa = max
θ

hθ.

Clearly ρa ≤ ρ, and, as we will see, for g ≥ 3 strict inequality is possible.

Theorem 2.1. Assume that πθ > 0 and 0 < W (θ, d) < 1 for all θ = 1, . . . , g, d ∈
D1. Then for the Bayes rule δ̂ taking values in Da

lim
n→∞

1
n

log
[ ∑

θ

πθPθ(δ̂(x)∈D1)
]
= lim

n→∞
1
n

log
[ ∑

θ

∑
d∈D1

πθW (θ, d)Pθ(δ̂(x)=d)
]

= lim
n→∞

1
n

log eπ(Da) = max
η �=θ

inf
s>0

Hs (Fη, Fθ) = ρ. (8)

However,

lim
n→∞

1
n

log
[ ∑

θ

πθPθ(δ̂(x) �= dθ, δ̂(x) ∈ D0)
]

= ρa. (9)

For any procedure δ with values in Da,

lim
1
n

log
[ ∑

θ

πθPθ(δ(x) �= dθ, δ(x) ∈ D0)+
∑
θ

∑
d∈D1

πθW (θ, d)Pθ(δ(x) = d)
]
≥ ρ.

Proof. The proof of (8) follows closely that of Theorem 2.1 in Rukhin (1998)
and is omitted.

To demonstrate (9) notice that for any fixed θ, θ = 1, . . . , g,

Pθ(δ̂(x) �= dθ, δ̂(x) ∈ D0)

≤ (g − 1) max
η:η �=θ

Pθ

(
πθpθ(x)≤πηpη(x), max

d∈D1

g∑
γ=1

[1 − W (γ, d)]πγpγ(x)≤πηpη(x)
)

≤ (g − 1) max
η:η �=θ

max
d∈D1

Pθ

(
πηpη(x) ≥ max

γ �=η
[1 − W (γ, d)]πγpγ(x)

)
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= (g − 1) max
η:η �=θ

max
d∈D1

Pθ

( n∑
j=1

log
fη

fγ
(xj) ≥ log

[1 − W (γ, d)]πγ

πη
for all γ �= η

)
.

By the multivariate Chernoff Theorem (Groeneboom, Oosterhoff and Ruymgaart
(1979)) the limit of the logarithm of the probability in the right-hand side divided
by n is maxη:η �=θ infsγ≥0,γ �=η log Eθ

∏
γ,γ �=η [fη/fγ ]sγ .

To show that this quantity (which will be shown to be equal to hθ) also pro-
vides the lower bound, let again zγ = πγpγ(x)/

∑
η πηpη(x) denote the posterior

probabilities, and let us also fix η, η �= θ. With

ω = min
d∈D1

W (η, d)
W (η, d) + maxγ:γ �=η[1 − W (γ, d)]

,

the event zη = maxγ zγ > 1−ω implies that maxd∈D1

∑g
γ=1[1−W (γ, d)]zγ < zη.

Indeed as
∑

γ:γ �=η zγ < ω, for any d, ω maxγ:γ �=η[1−W (γ, d)] ≤ (1−ω)W (η, d) <

W (η, d)zη , so that by the definition of ω,

g∑
γ=1

[1 − W (γ, d)]zγ < [1 − W (η, d)]zη + ω max
γ:γ �=η

[1 − W (γ, d)] < zη.

Therefore for g ≥ 3,

Pθ(δ̂(x) �= dθ, δ̂(x) ∈ D0)

≥ max
η:η �=θ

Pθ

(
πθpθ(x) < πηpη(x), max

d∈D1

g∑
γ=1

[1 − W (γ, d)]πγpγ(x) < πηpη(x)
)

≥ max
η:η �=θ

Pθ

(
πηpη(x) > (1 − ω)

∑
γ

πγpγ(x)
)

≥ max
η:η �=θ

Pθ

(
ωπηpη(x) > (1 − ω)(g − 1)max

γ �=η
πγpγ(x)

)

= max
η:η �=θ

Pθ

( n∑
j=1

log
fη

fγ
(xj) ≥ log

(g − 1)(1 − ω)πγ

ωπη
for all γ �= η

)
.

The multivariate Chernoff Theorem shows again that the logarithm of the latter
probability divided by n has the same limit, which we prove now to be equal to
hθ. In other terms we prove that

max
η:η �=θ

inf
sγ≥0,γ �=η

log Eθ

∏
γ:γ �=η

[
fη

fγ

]sγ

= hθ. (10)

Indeed for each fixed η, the infimum in the left-hand side can be taken only
with regard to sγ , γ �= η, such that the derivative of the convex function
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log Eθ
∏

γ:γ �=η [fη/fγ ]sγ evaluated at sγ = 0 is negative. This condition means
that K(Fθ, Fη) < K(Fθ, Fγ), and by the definition of ηθ, for any η,

inf
sγ≥0,γ �=ηθ

log Eθ

∏
γ:γ �=η

[
fηθ

fγ

]sγ

= inf
s>0

Hs (Fηθ
, Fθ) .

On the other hand for any η such that Eθ log fη/fηθ
< 0,

inf
sγ≥0,γ �=η

log Eθ

∏
γ,γ �=η

[
fη

fγ

]sγ

≤ inf
s≥0,t≥0

log Eθ

[
fη

fηθ

]t [
fη

fθ

]s

= inf
s,t

log Eθ

[
fη

fηθ

]t [
fη

fθ

]s

≤ inf
s

log Eθ

[
fη

fηθ

]−s [
fη

fθ

]s

= inf
s>0

Hs (Fηθ
, Fθ) .

The penultimate equality here holds since the (global) infimum of Eθ [fη/fηθ
]t

[fη/fθ]
s is attained in the positive quadrant. Thus (10) is established, and

limn→∞ 1
n maxθ log Pθ(δ̂(x) �= dθ, δ̂(x) ∈ D0) = ρa.

The last formula of the theorem is true because the Bayes risk of any proce-
dure δ cannot be smaller than the minimum Bayes risk corresponding to δ̃.

Theorem 2.1 shows that the optimal rate of the exponential decay of the
minimum Bayes risk in the decision problem with a no-decision option coincides
with that in the traditional setting. In particular, it is independent of positive
prior probabilities and of the values W (θ, d), 0 < W (θ, d) < 1, of the loss function.

As an example consider the situation with three normal distributions on the
real line F1 = N(0.7, 0.07), F2 = N(0.15, 0.06) and F3 = N(0, 1). In this case F θ

is a two-parameter exponential family for the vector (x,−x2/2)T . When η is the
mean of a normal distribution and κ is its variance, the natural parameter vector
of this exponential family has the form θ = (v,w)T = (η/κ, 1/κ)T . Thus with
θ = (v,w)T , the logarithm of the moment generating function is χ(θ) = (v2/w −
log w)/2. One has, with t = (t1, t2)T , 2K(F θ, F t) = w( t1

t2
− u

w )2 + w
t2
− log w

t2
− 1

and infs>0 Hs(F θ, F t) = χ(sθ+(1−s)t)−sχ(θ)− (1−s)χ(t), where s, 0 < s < 1,
is found from the condition (θ − t)T χ′(sθ + (1 − s)t) = χ(θ) − χ(t).

Calculation after these formulas shows that infs>0 Hs (F1, F2) = −0.2928..,
infs>0 Hs (F1, F3) = −0.4785.., infs>0 Hs (F2, F3) = −0.4518.., while K(F1, F2) =
1.2667.. > K(F1, F3) = 0.9871.., and K(F2, F1) = 1.0860.. > K(F2, F3) =
0.9423... Thus in this case η1 = η2 = 3, but ρa = −0.4518.. < ρ = −0.2928....

Note that for one-parameter exponential families one has ρa = ρ.

3. Example: Exact Asymptotics of the Error Probability

According to Theorem 2.1, n−1 log eπ(Da) and n−1 log Pθ(δ̂ ∈ D1), have a
common limit. However convergence can be fairly slow. When m = 1 and the
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distribution of the likelihood ratios has an absolutely continuous component, the
asymptotic expansions for the minimum Bayes risk and the minimax risk are
derived in Rukhin (1998). These expansions give much more accurate approxi-
mations to the corresponding error probabilities than exp{nρ}.

Here we look at the example of two binomial distributions. Let g = 2, π1 =
1/2, F1 = Bin(1, p1), F2 = Bin(1, p2) with p1 < p2. It is easy to see that in the
classical two-action problem δ̃(x1, . . . , xn) = 1 if and only if

X = x1 + · · · + xn < n
log 1−p1

1−p2

log (1−p1)p2

(1−p2)p1

= nq.

In this situation with X denoting a binomial random variable, eπ(D0) =
1
2 [P1 (X ≥ nq) + P2 (X < nq)]. Let c(x) denote the ceiling function so that for
an integer X, X ≥ nq if and only if X ≥ c(nq). The asymptotic representation
of the binomial distribution function by Fu and Wong (1980) (see also Fu, Leu
and Peng (1990)) shows that

P1 (X ≥ nq) = P1 (X ≥ c(nq)) =
(1 − p1)Γ(n)

(q − p1)Γ(c(nq))Γ(n + 1 − c(nq))

× exp{c(nq) log p1 + (n − c(nq)) log(1 − p1)}
[
1 + O

(
1
n

)]

and

P2 (X < nq) = P2 (X < c(nq)) = P2 (X ≤ c(nq) − 1)

=
p2Γ(n)

(q − p2)Γ([nq] + 1)Γ(n − [nq])
exp{c(nq) log p2 + (n − c(nq)) log(1 − p2)}

×
[
1 + O

(
1
n

)]
.

By combining these two formulas one obtains, with Ip(q) = q log p+(1−q) log(1−
p),

eπ(D0) =
1
2

[ Γ(n)(1 − p1)
Γ(c(nq))Γ(n + 1 − c(nq))(q − p1)

exp
{

nIp1

(
c(nq)

n

)}

+
Γ(n)p2

Γ(c(nq))Γ(n+1−c(nq))(q−p2)
exp

{
nIp2

(
c(nq)

n

)} ] [
1+O

(
1
n

)]
.

(11)

One can derive from (11) the approximation obtained from the asymptotic rep-
resentation of the binomial distribution function by Bahadur (1960, Corollary 2,
p.50). Indeed let

Hp(q) = −
[
q log

q

p
+ (1 − q) log

1 − q

1 − p

]
= Ip(q) − Iq(q)
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denote the classical relative entropy function. According to this representation

eπ(D0) =
e−nHp1 (q)∆n

2
√

2πn

[
1 + O

(
1
n

)]
,

where

∆n =
(1 − p1)

√
q√

1 − q(q − p1)

[
q(1 − p1)
p1(1 − q)

]c(nq)−nq

+
p2
√

1 − q√
q(p2 − q)

[
q(1 − p2)
p2(1 − q)

]nq+1−c(nq)

.

This formula immediately shows that ρ = Hp1 (q) = Hp2 (q) , which also can be
checked directly. More precisely,

log eπ(D0)
n

= ρ − log n

2n
+

1
n

log
(

∆n

2
√

2π

)
+ O

(
1
n2

)
.

However this formula is less accurate numerically than the one obtained from
(11). Also observe that the sequence c(nq) − nq does not converge, so that the
probabilities of large deviations in general do not have the form e−nρn−1/2bn with
a convergent sequence bn.

With only one additional decision d0 (like ‘no-decision’ or a confidence set
consisting of both d1 and d2) when W (1, d0)=W (2, d0)=w < 1/2, δ̂(x1, . . . , xn)=
d1 if and only if

X < nq − log 1−w
w

log (1−p1)p2

(1−p2)p1

= nq − r.

Also δ̂(x1, . . . , xn) = d2 when X > nq + r, with the decision d0 taken if nq − r ≤
X ≤ nq + r. Therefore,

eπ(Da) =
1
2

[
P1 (X ≥ nq + r) + P2 (X < nq − r)

+w
[
P1 (nq − r ≤ X < nq + r) + P2 (nq − r ≤ X < nq + r)

]]
=

1
2

[
(1 − w)P1 (X ≥ nq + r) + wP1 (X ≥ nq − r) + (1 − w)P2 (X < nq − r)

+wP2 (X < nq + r)
]
.

As above,

2eπ(Da) ∼ 1 − p1

q − p1

[ (1 − w)Γ(n)
Γ(c(nq + r))Γ(n + 1 − c(nq + r))

exp
{
nHp1

(c(nq + r)
n

)}

+
wΓ(n)

Γ(c(nq − r))Γ(n + 1 − c(nq − r))
exp

{
nHp1

(c(nq − r)
n

)}]

+
p2

q − p2

[ wΓ(n)
Γ(c(nq + r))Γ(n + 1 − c(nq + r))

exp
{
nHp2

(c(nq + r)
n

)}

+
(1 − w)Γ(n)

Γ(c(nq − r))Γ(n + 1 − c(nq − r))
exp

{
nHp2

(c(nq − r)
n

)}]
. (12)
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Figure 1 shows the behavior of the sequences n−1 log eπ(D0) and n−1 log
eπ(Da) along with the approximations from (11), (12) and Bahadur’s approxi-
mation when p1 = 0.3, p2 = 0.5, π1 = 1/2. The constant line there represents the
value of ρ = −0.0213..; the lowest curve corresponds to n−1 log eπ(Da) calculated
from the exact formula for the binomial distribution function; the upper curve is
Bahadur’s approximation; the middle curve depicts (12). This Figure shows that
(12) provides a much better approximation to the exact value of eπ(Da) than
does Bahadur’s approximation.
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Figure 1. Plots of the sequence n−1 log eπ(Da) and the approximations from
(12) and Bahadur’s approximation for n = 15, . . . , 120.
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