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Abstract: Suppose we have a random sample of size n with multiple censoring. The

exact Fisher information in the data is derived and expressed in terms of matrices

when each block of censored data contains at least two order statistics. The results

are applied to determine how much Fisher information about the location (scale)

parameter is contained in the middle (two tails) of an ordered sample. The results

show that, for Cauchy, Laplace, logistic, and normal distributions, the middle 40%

(extreme half) of the ordered data contains more than 80% of the Fisher information

about the location (scale) parameter. These results provide insight into the behavior

of two well-known robust linear estimators of the location parameter.
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1. Introduction

Suppose X1, . . . ,Xn are i.i.d. random variables from c.d.f. Fθ(x) with con-
tinuous density fθ(x). Let X1:n, . . . ,Xn:n be their order statistics. When only m
of the n order statistics are available, denoted by X = (Xk1:n, . . ., Xkm:n) with
joint density fk1···km;n, the Fisher information about θ contained in X, under
some regularity conditions, is given by

Ik1···km;n(θ) =
∫ ∞

−∞
· · ·

∫ xk2:n

−∞
(

∂

∂θ
logfk1···km;n)2dFk1···km;n. (1)

How much Fisher information (FI) about θ is contained in X? Tukey (1965)
discussed this issue in terms of linear sensitivity of blocks of consecutive or-
der statistics. Nagaraja (1994) studied Tukey’s concept of linear sensitivity and
related it to asymptotic approximations of FI which were previously used in
comparing estimators based on order statistics (Ogawa (1951), Chernoff, Gast-
wirth and Johns (1967) and David (1981, p.276)). An exact FI expression in
the first r order statistics, I1···r;n(θ), was obtained by Mehrotra, Johnson and
Bhattacharyya (1979). Park (1996) also examined the FI in the first r order
statistics using a decomposition of FI, and expressed I1···r;n(θ) as a sum of r

single integrals.
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All these authors studied exact FI about the location and scale parameters
based on consecutive order statistics. In order to examine which parts of the
ordered data contain more FI, especially for the scale parameter, we need to
consider FI in scattered blocks. The recurrence relations for FI in several order
statistics, as provided by Park (1996), are not directly applicable to our problem
for scattered blocks. However, using an alternative decomposition, FI contained
in multiply censored data can be reduced to FI in right (left) and/or middle
censored data. The approach used by Mehrotra, Johnson and Bhattacharyya
(1979) to obtain FI in the right (left) censored data is utilized to obtain the result
for the middle censored data. For multiply censored data, a matrix formulation
enables one to easily obtain exact FI about a parameter. These exact results
are compared with their asymptotic approximations for a sample of size 20. In
Section 2, we give the exact and matrix expressions of FI. Asymptotic FI about
the location and scale parameters in multiply censored data is obtained from
the correlation of asymptotically most powerful grouped rank tests in Section 3.
Applications are presented in Section 4 where we plot the exact and asymptotic
percentages of FI about the location (scale) parameter in the middle portion
(two tails) of an ordered sample. For Cauchy, Laplace, logistic, and normal
distributions, the asymptotic percentages of FI are close to the exact values for
the scale parameter when the sample size equals 20. For the location parameter,
however, the proportion of FI in the middle two or four order statistics in a sample
of size 20 from the Laplace distribution is not well-approximated. In fact, the
sample median, the asymptotically optimum estimator of the location parameter
for Laplace distribution, only contains about 77.5% of the FI in a sample of size
15. Our results are used to provide insight into the properties of Tukey’s trimean
and Gastwirth’s estimate of the location parameter (Andrews, Bickel, Hampel,
Huber, Rogers and Tukey (1972), Cox and Hinkley (1974, Sec.9.4), Hogg (1974)
and Kennedy (1992, p.281)).

2. Exact Results

Let X = (Xi1:n, . . . ,Xi1+k1:n; · · · ;Xip:n, . . ., Xip+kp:n) be ordered data of a
random sample X1, . . . ,Xn where (Xi1:n, . . . ,Xi1+k1:n) is the first block of avail-
able consecutive order statistics and (Xip:n, . . ., Xip+kp:n) is the last one. Assume
these p blocks are disjoint. We will derive expressions for IX(θ) from (1).

2.1. Exact Fisher information

Mehrotra, Johnson and Bhattacharyya (1979) defined the following three
extended hazard rate functions:

K1(xj:n)=− F
′
θ(xj:n)

1−Fθ(xj:n)
,K2(xi:n)=

F
′
θ(xi:n)

Fθ(xi:n)
,K3(xi:n, xj:n)=

F
′
θ(xj:n)−F

′
θ(xi:n)

Fθ(xj:n)−Fθ(xi:n)
,
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where F
′
θ = ∂Fθ/∂θ. Let φθ = ∂ log fθ/∂θ and τ(i, j) = Eθ[φθ(Xi:n)φθ(Xj:n)].

The partial derivative of the log likelihood of X is a linear function of Ki and
φθ, i = 1, 2, 3. They studied and used the moment relations among K1,K2,K3

and φθ to derive the exact FI about θ contained in the first r order statis-
tics via the τ(i, j). For a complete sample, it can be shown that I1 2···n;n(θ) =∑n

i=1

∑n
j=1 τ(i, j) =

∑n
i=1 τ(i, i).

The calculation of FI in multiply censored data can be done in stages. This
enables one to reduce the problem to methods for obtaining FI in right (left)
and/or middle censored data. To describe the method, we consider two blocks of
order statistics. The idea is generalized to the multiply censored data in Example
2.1. To calculate Ir···u v···w;n(θ), where 1 ≤ r ≤ u ≤ v ≤ w ≤ n, we use three steps:
1) I1···w;n(θ) = I1···n;n(θ) − IR; 2) Ir···w;n(θ) = I1···w;n(θ) − IL; 3) Ir···u v···w;n(θ) =
Ir···w;n(θ) − IM . Thus, we have Ir···u v···w;n(θ) = I1···n;n(θ) − IL − IM − IR where
IL, IM , and IR depend only on where each censored block begins and ends,
respectively.

Theorem 2.1. When a block of order statistics is removed from the left, mid-
dle, or right, the change of FI is the same regardless of the previous censoring
patterns, i.e.,

IL = I1···n;n(θ) − Ir···n;n(θ)=I1···r j1 j2···jt;n(θ) − Irj1j2···jt;n(θ), (2)

IM =I1···n;n(θ)−I1···u v···n;n(θ)=Ii1 i2···isu···vj1j2···jt;n(θ)−Ii1 i2···isuvj1j2···jt;n(θ), (3)

IR = I1···n;n(θ) − I1···w;n(θ)=Ii1i2···isw···n;n(θ) − Ii1i2···isw;n(θ). (4)

Proof. We prove (3). The other two can be obtained similarly. Let v ≥ u + 2.
By the Markov property of order statistics (David (1981, p.20)), for 1 ≤ i1 ≤
i2 ≤ · · · ≤ is ≤ u < v ≤ j1 ≤ j2 ≤ · · · ≤ jt ≤ n, f(u+1)···(v−1)|i1i2···is u v j1j2···jt;n =
f(u+1)···(v−1)|u v;n where f(u+1)···(v−1)|i1i2···is u v j1j2···jt;n is the joint density of
Xu+1:n, . . . ,Xv−1:n given s + 1 smaller order statistics and t + 1 larger order
statistics. Thus,

∂

∂θ
logf(u+1)···(v−1)|u v;n =

∂

∂θ
logfi1i2···is u···v j1j2···jt;n − ∂

∂θ
logfi1i2···is u v j1j2···jt;n.

Hence by the property of conditional expectation (Rao (1973, p.330)), we obtain

I(u+1)···(v−1)|u v;n(θ) = Ii1i2···is u···v j1j2···jt;n(θ) + Ii1i2···is u v j1j2···jt;n(θ)

−2E(
∂

∂θ
logfi1i2···is u···v j1j2···jt;n

∂

∂θ
logfi1i2···is u v j1j2···jt;n)

= Ii1i2···is u···v j1j2···jt;n(θ) − Ii1i2···is u v j1j2···jt;n(θ). (5)

Then (3) follows from (5) since the left hand side of (5) depends only on u and
v.
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The FI expression in k scattered order statistics of Park (1996) can be ob-
tained by Theorem 2.1. To calculate FI in middle censored data, we have

Theorem 2.2. If v > u, then

I1···(u−1)(v+1)···n;n(θ) = I1···n;n(θ) − [
v∑

i=u

τ(i, i) − 2
v − u

v−1∑
i=u

v∑
j=i+1

τ(i, j)]. (6)

Proof. The log likelihood of X = (X1:n,. . .,Xu−1:n,Xv+1:n,. . .,Xn:n) is given
by l ∼ ∑u−1

i=1 logfθ(Xi:n) +
∑n

i=v+1 logfθ(Xi:n) + (v − u + 1)log{Fθ(Xv+1:n) −
Fθ(Xu−1:n)}. Thus ∂l/∂θ =

∑n
i=1 φθ(Xi:n)−∑v

i=u φθ(Xi:n)+(v−u+1)K3(Xu−1:n,

Xv+1:n). Using Lemmas A.3 (iii) and (iv), A.4 (iii), and A.5 (i) of Mehrotra,
Johnson and Bhattacharyya (1979) and substituting g by φθ and h3 by K3, we
have

IX(θ) = E(∂l/∂θ)2 = I1···n;n(θ) +
v∑

i=u

v∑
j=u

τ(i, j) +
2(v − u + 1)

v − u

v−1∑
i=u

v∑
j=i+1

τ(i, j)

−2
n∑

i=1

v∑
j=u

τ(i, j) + 2
u−1∑
i=1

v∑
j=u

τ(i, j) + 2
n∑

i=v+1

v∑
j=u

τ(i, j)

= I1···n;n(θ) −
v∑

i=u

τ(i, i) +
2

v − u

v−1∑
i=u

v∑
j=i+1

τ(i, j).

Example 2.1. Mehrotra, Johnson and Bhattacharyya (1979) derived

I1···r;n(θ) = I1···n;n(θ) − [
n∑

i=r+1

τ(i, i) − 2
n − r − 1

n−1∑
i=r+1

n∑
j=i+1

τ(i, j)]. (7)

The FI in the left censored data, Is···n;n(θ), can be obtained by symmetry. From
Theorem 2.1, for X defined at the beginning of Section 2, we have

IX(θ) = I1···n;n(θ) −
p∑

j=0

[
ij+1−1∑

u=ij+kj+1

τ(u, u)

− 2
ij+1 − ij − kj − 2

ij+1−2∑
u=ij+kj+1

ij+1−1∑
v=u+1

τ(u, v)], (8)

where i1 > 2, ip +kp < n−1, and ij+1− ij −kj > 2, j = 1, . . . , p−1, i0 = k0 = 0,
ip+1 = n + 1.

From (8), we can see that FI in multiply censored data is equal to the total
FI minus IL, IM , and IR for censored blocks. The advantage of this approach is



WHERE IS THE FISHER INFORMATION IN AN ORDERED SAMPLE 1271

that once the values τ(i, j) are tabulated, FI in scattered order statistics can be
obtained as easily as that of a block of consecutive order statistics.

2.2. A matrix expression

Let T be the n×n symmetric matrix (τ(i, j))n×n. Define A�B = (aijbij)n×n

where A = (aij)n×n and B = (bij)n×n are two matrices. Suppose a block of con-
secutive order statistics P = (Xa:n, . . . , Xb:n) is censored from a full sample. De-
fine a block diagonal weighting matrix Wa b for the block P as Wa b = diag( Ia−1,

Cb−a, In−b ), where Ia−1 and In−b are identity matrices and Cb−a is a (b−a+1)×
(b−a+1) censoring matrix given by J/(b−a), where all off-diagonals of J are 1’s
and all diagonals are 0’s. Thus from Theorem 2.1 we have I1···(a−1)(b+1)···n;n(θ) =
1

′
(Wab � T)1, where 1 is a 1 × n vector of 1’s. Generally, with X defined as

in the beginning of Section 2, IX(θ) = 1
′
(W1 (i1−1);···;(ip+kp+1) n � T)1, where

W1 (i1−1);···;(ip+kp+1) n = diag (Ci1−2, Ik1+1, Ci2−i1−k1−2, . . . , Ikp+1, Cn−ip−kp−1)
depends only on which order statistics are censored. If no censoring occurs, then
the weighting matrix is the identity matrix In.

Example 2.2. For a random sample from the exponential distribution with the
scale parameter θ, θ2I1 ··· 10;10(θ) = 10. To calculate I3 4 7;10(θ), blocks (1, 2), (5, 6)
and (8, 9, 10) are censored. Therefore, W1 2;5 6;8 10 = diag(C1, I2,C1, 1,C2) and
θ2I3 4 7;10(θ) = 1

′
(W1 2;5 6;8 10�T)1 = 6.8953. These results complement those of

Arnold, Balakrishnan and Nagaraja (1992, p.166) and Nagaraja (1994), giving
the FI in consecutive order statistics from an exponential random variable.

3. Asymptotic Results

We derive the asymptotic FI for multiply censored data from F ((x− θ1)/θ2)
based on the correlation of asymptotically most powerful grouped rank tests
(AMPGRT), see Gastwirth (1965a). The results can also be obtained directly
from the exact FI (Zheng (2000)), and from Chernoff, Gastwirth and Johns (1967)
and Sen (1967).

Assume only observations in the percentile ranges [pi, qi], i = 1, . . . , r, are
observed where 0 = q0 ≤ p1 < q1 < · · · < pr < qr ≤ pr+1 = 1. Let E =⋃r

i=1 [pi, qi]. From Gastwirth (1965a), the weight function Kj(u) corresponding
to AMPGRT for H0 : F (x) = G(x) against the alternative Hj where H1 : G(x) =
F (x−θ1) and H2 : G(x) = F (x/θ2), when we only observe samples in E, is given
by Kj(u) = Jj(u) if u ∈ E, or Kj(u) = cij , if qi−1 ≤ u < pi, where the cij ’s
are constants determined by

∫ pi
qi−1

(Jj(u)−Kj(u)) du = 0 for i = 1, . . . , r + 1 and
j = 1, 2, J1(u) = −f

′
(x)/f(x), J2(u) = −{1 + xf

′
(x)/f(x)}, and x = F−1(u).

Here Jj(u) is the weight function of AMPGRT for θj with full samples (Chernoff
and Savage (1958), Gastwirth (1965b), and Hájek and S̆idák (1967)).
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Under a quadratically integrable condition, i.e., 0 <
∫ 1
0 J2

j (u)du < ∞ for
j = 1, 2, from Hájek (1962) and van Eeden (1963), the limiting Pitman efficiency
of tests based on Kj(u) and Jj(u) is given by

ρ2
j =

{∫ 1
0 Jj(u)Kj(u) du}2

∫ 1
0 J2

j (u) du
∫ 1
0 K2

j (u) du
. (9)

This is also a ratio of the asymptotic FI contained in E and in [0, 1] since the
rank tests based on Kj(u) and Jj(u) are optimal, i.e.,

ρ2
j =

IE(θj)
I[0,1](θj)

=
IE(θj)
I1;1(θj)

. (10)

Denote the pith percentile of F as λpi . Then for the scale parameter,

∫ 1

0
J2(u)K2(u)du=

∫
E

J2
2 (u)du+

r+1∑
i=1

1
pi−qi−1

{
∫ pi

qi−1

J2(u)du}2 =
∫ 1

0
K2

2 (u)du. (11)

If xf(x) → 0 (f(x) → 0 for the location parameter) as x → ±∞, then
∫ pi

qi−1

J2(u)du=−
∫ λpi

λqi−1

f(x)dx−
∫ λpi

λqi−1

xf
′
(x)dx=−λpif(λpi)+λqi−1f(λqi−1).(12)

Note that
∫ 1
0 J2

2 (u)du = θ2
2 I1;1(θ2). Therefore, from (9), (10), (11), and (12), we

have

θ2
2 IE(θ2) =

∫
E

J2
2 (u)du +

r+1∑
i=1

[λpif(λpi) − λqi−1f(λqi−1)]
2

pi − qi−1
. (13)

Similarly, we can obtain the asymptotic FI for the location parameter as

θ2
2 IE(θ1) =

∫
E

J2
1 (u)du +

r+1∑
i=1

[f(λpi) − f(λqi−1)]
2

pi − qi−1
. (14)

Let E =
⋃r

i=1[pi, pi]. Then (13) (or (14)) becomes the asymptotic FI about
θ1 (or θ2) in r percentiles λp1, . . . , λpr , denoted as I[p1,p1]∪···∪[pr,pr](θi), i = 1, 2,
respectively. The values λp1 , . . . , λpr that maximize I[p1,p1]∪···∪[pr,pr](θi) are the
most informative r percentiles for θi. These most informative r percentiles are
equivalent to r optimum spacings in the sense that the best linear unbiased
estimator (BLUE) of θi using any r percentiles has maximum asymptotic relative
efficiency (R.E.) with respect to the Cramér-Rao lower bound (CRLB) when the
optimum spacings are used (Ogawa (1951) and David (1981, p.195)). From (13)
and (14), we obtain, for j = 1, 2,

∑r
i=0 I[pi,pi+1](θj) = I[0,1](θj) +

∑r
i=1 I[pi,pi](θj),
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where p0 = 0 and pr+1 = 1. Setting r = 2 and p1 = p2 = 1/2, it follows that
the sum of the proportions of FI in the first half and the second half of a sample
equals 1 plus the proportion of FI in the median. This result formalizes Tukey’s
(1965) insight that one order statistic “borrows” information from the others.

For a symmetric location-scale family F ((x − θ1)/θ2), we are interested in
finding an interval [p, p+ q], where 0 ≤ p < p+ q ≤ 1 and q is fixed, that contains
most of the FI about θ1. If p = (1−q)/2, then [p, p+q] is a symmetric interval of
length q with center 1/2. For a symmetric distribution, we only need to consider
p ∈ [0, (1 − q)/2]. Let h(x) = f(x)/{1 − F (x)} and define for the location and
scale parameters,

g1(x) = [
d

dx
logh(x)]2, g2(x) = [1 + x

d

dx
logh(x)]2, (15)

respectively, Then, from (13) and (14) for p ∈ [0, (1 − q)/2] and j = 1, 2,

d

dp
θ2
2I[p,p+q](θj) = gj(λp+q) − gj(λ1−p). (16)

When p = (1 − q)/2, (16) is zero, which implies that I[p,p+q](θj) has a local
extreme at p = (1− q)/2. Then by symmetry, I[p,p+q](θ1) has a global maximum
at this point when (16) is non-negative for p ∈ [0, (1 − q)/2]. The formal result
is given in

Theorem 3.1. Suppose F ((x − θ1)/θ2) is a symmetric distribution satisfying
regularity conditions, and gj , j = 1, 2 are defined as in (15). Then for p ∈
[0, 1− q], I[p,p+q](θj) is non-decreasing in p ∈ [0, (1− q)/2] and non-increasing in
p ∈ [(1 − q)/2, 1 − q] if and only if, for any p ∈ [0, (1 − q)/2] and j = 1, 2,

gj(λ1−p) ≤ gj(λp+q). (17)

Theorem 3.1 can be used to determine whether the middle portion of an
ordered sample contains more FI about the location parameter of normal, logistic,
Laplace, and Cauchy distributions. For normal and logistic distributions, g1(x) is
strictly decreasing for all x. Thus (17) is satisfied. For the Laplace distribution,
g1(x) is not decreasing for all x but (17) is still satisfied because the left hand side
of (17) is identically zero. Thus, for these three distributions the middle portion
of the data contains more FI about the location parameter than any other single
interval with the same length. For the Cauchy distribution, however, (17) is
not satisfied for all t. For q = 1/2, Figure 1 plots the asymptotic fraction of
FI contained in the percentiles [p, p + 1/2], for p ∈ [0, 1/4]. Notice that the
middle interval with p = 1/4 contains the smallest percentage of FI. This is
somewhat surprising, as this interval contains over 90% of the total FI, i.e.,
I[1/4,3/4](θ1) = .4526 and I[0,1](θ1) = .5.
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p

Figure 1. The asymptotic percentage of FI about the location parameter of
Cauchy distribution in percentiles p to p + 1/2, for p between 0 and 1/4.

For the scale parameter, however, we examine FI in the two tails using (13),
where E = [0, q/2] ∪ [1 − q/2, 1], since the two tails usually contain more FI
than a single block of order statistics. Numerical calculations and plots in Zheng
(2000) show that I[0,q/2]∪[1−q/2,1](θ2) ≥ I[p,p+q](θ2) for 0.15 < q < 0.90 and any
p ∈ (0, (1 − q)/2], for all four distributions, and equality holds for the Cauchy
when p = (1 − q)/2.

4. Applications

The information in selected order statistics has been useful in several appli-
cations. Sometimes very large data sets are collected, but only a few summary
measures and values can be stored. Several informative order statistics can then
be usefully employed (Eisenberger and Posner (1965)). Sometimes the determi-
nation of the status of an observation can be quite costly. In ranked set samples,
one uses a cheaper proxy measurement before one selects the sample for a more
careful measurement. Öztürk and Wolfe (2000) use the information in the order
statistics of the proxy measurements to select those for the second stage. In
genetic linkage analysis, Risch and Zhang (1995) found that tests using extreme
discordant sib pairs are most powerful. Usually, the cost of measuring the trait,
e.g., blood pressure, is much less than the cost of genotyping. Consider the ab-
solute difference between the trait values of the two sibs. The upper quantiles
now correspond to extreme discordant sib pairs. The intuition underlying the
Risch and Zhang (1995) procedure is supported by an analysis of FI in the upper
portion of the data.

4.1. Information about location and scale parameters

For the location-scale family F ((x − θ1)/θ2)/θ2, we compute the exact per-
centage of FI of θ1: I(11−k)···(10+k);20(θ1)/I1···20;20(θ1) for k = 1, . . . , 8. For the
scale parameter, we calculate I1···k(21−k)···20;20(θ2)/I1···20;20(θ2) for k = 1, . . . , 9.
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Similarly, we calculate these percentages for n = 15. Table 1 reports some re-
sults for the Cauchy, Laplace, logistic, and normal distributions. For the Laplace
distribution, ∂f(x − θ1)/∂θ1 does not exist when θ1 = x. However, under a
quadratically integrable condition, i.e., 0 <

∫
[f ′(x)/f(x)]2f(x)dx < ∞, τ(i, j)

exists and plays the role of Fisher information (Johnson (1974) and Mehrotra,
Johnson and Bhattacharyya (1979)).

From Table 1, the middle 40% of the data contains over 80% of the FI
about θ1 for all four distributions. For the scale parameter, the extreme 20% of
the order statistics contains nearly 80% of the FI for the Laplace, logistic, and
normal distributions. The extreme 50% of the data (25% in each tail) contains
at least 80% of the FI for all four distributions. To see what the percentage FI
in Table 1 tells us, we calculate the variance of the BLUE of θ1 (θ2) based on
censored data using David (1981, p.131). For n = 20, Table 2 reports the R.E.
of the BLUE based on the central statistics (two tails) for θ1 (θ2) to the BLUE
using the complete sample.

Table 1. Exact percentage of FI contained in ordered data.

Location parameter (θ1) Scale parameter (θ2)
n=15 n=20 n=15 n=20

% Data % FI % Data % FI % Data % FI % data % FI
Cauchy 7% .7221 10% .7755 13% .2588 10% .2009

20% .8160 20% .8330 27% .4926 20% .3932
33% .8711 30% .8689 40% .6834 30% .5634
47% .9075 40% .8939 53% .8254 40% .7043
53% .9382 50% .9158 67% .9207 50% .8140

Laplace 7% .7747 10% .8464 13% .6269 10% .5707
20% .8993 20% .9271 27% .8241 20% .7704
33% .9639 30% .9707 40% .9127 30% .8690
47% .9901 40% .9902 53% .9579 40% .9241
53% .9980 50% .9974 67% .9820 50% .9566

Logistic 7% .7529 10% .7857 13% .6260 10% .5662
20% .8353 20% .8442 27% .8350 20% .7786
33% .8971 30% .8909 40% .9262 30% .8828
47% .9412 40% .9273 53% .9687 40% .9383
53% .9706 50% .9545 67% .9885 50% .9686

Normal 7% .6556 10% .6810 13% .7125 10% .6601
20% .7323 20% .7368 27% .8901 20% .8482
33% .7984 30% .7867 40% .9553 30% .9267
47% .8552 40% .8312 53% .9823 40% .9640
53% .9034 50% .8708 67% .9938 50% .9826

NOTE: % Data is the percentage of the middle portion of the ordered sample for
the location parameter and the percentage of sample in two tails for the scale.



1276 GANG ZHENG AND JOSEPH L. GASTWIRTH

In Table 2, the efficiency for the scale parameter based on two tails is not
computed for the Cauchy distribution, because the first and last order statistics
of the Cauchy distribution have infinite variance. Comparing Table 1 with Table
2 we find, for the scale parameter, the R.E. is close to the exact percentage of
FI for all three distributions. For the location parameter, the exact percentage
of FI is close to the R.E. for logistic and normal distributions.

Table 2. Efficiency of the BLUE based on censored data relative to the BLUE
based on full samples (n=20).

Cauchy Laplace Logistic Normal
% data θ1 θ1 θ2 θ1 θ2 θ1 θ2

10% .9011 .9579 .5610 .7947 .5610 .6808 .7051
20% .9254 .9879 .7847 .8535 .8052 .7365 .8870
30% .9263 .9982 .8884 .9000 .9127 .7864 .9538
40% .9311 .9999 .9425 .9354 .9626 .8309 .9814
50% .9485 1.000 .9721 .9613 .9854 .8706 .9931

NOTE: % Data is defined as in Table 1.

For Cauchy and Laplace distributions, the exact percentage of FI is not close
to the R.E. of the BLUE for a small proportion of order statistics in the case of
the location parameter, since the CRLB is not attained for finite samples from
the Cauchy and Laplace distributions. Asymptotically, however, L-estimators
for the location parameters of these distributions are fully efficient. In Zheng
(2000), it is shown, through simulation, that the variance of the BLUE based on
the entire sample is within 10% of the CRLB for the Cauchy when n = 50, and
about 11% for the Laplace when n = 100.

To assess how well the asymptotic FI approximates exact FI for n = 20, for
the location parameter, we focus on FI in the central portion of the data and
plot I[11.5/21−p, 9.5/21+p](θ1) with I(11−k)···(10+k);20(θ1), both divided by total FI,
where p = k/21, k = 1, . . . , 8. For the scale parameter, we concentrate on FI
in tail portions of data and plot I[0,p]∪[1−p,1](θ2) with I1···k(21−k)···20;20(θ2), both
divided by total FI, where p = k/21, k = 1, . . . , 10. Figures 2 to 5 present the
plots.

4.2. On robust linear estimators of the location parameter

Several simple robust estimators based on linear combinations of order statis-
tics for the location parameter were proposed in the 1960’s, and examined in the
Princeton study (Andrews et al. (1972)). In an ordered sample of size n (n odd),
Tukey’s trimean (TRI) using the 25th, 50th, and 75th percentiles and Gast-
wirth’s estimator (GAS) (Gastwirth (1966)) using the 331

3 rd, 50th, and 662
3 rd
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percentiles, for the location parameter, are defined as follows:

TRI = 0.25X[n/4]:n + 0.5X(n+1)/2:n + 0.25Xn+1−[n/4]:n,

GAS = 0.3X[n/3]:n + 0.4X(n+1)/2:n + 0.3Xn+1−[n/3]:n.

Approximate standard errors for them have been developed by Patel, Mudholkar
and Indrasiri Fernando (1988) and Basset and Koenker (1978), who showed how
they and other L-estimators can be used in regression analysis. We indicate how
FI provides insight into their properties.

p p

Figure 2a. The percentage of FI for Figure 2b. The percentage of FI
the Cauchy location parameter. for the Cauchy scale parameter.

p p

Figure 3a. The percentage of FI for Figure 3b. The percentage of FI
the Laplace location parameter. for the Laplace scale parameter.

p p

Figure 4a. The percentage of FI for Figure 4b. The percentage of FI
for the logistic scale parameter. the logistic location parameter.
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p p

Figure 5a. The percentage of FI for Figure 5b. The percentage of FI
the normal location parameter. for the normal scale parameter.

For n = 19, TRI = 0.25X5:19 +0.5X10:19 +0.25X15:19 and GAS = 0.3X6:19 +
0.4X10:19 + 0.3X14:19. Andrews et al. (1972) and Huber (1972) indicated that
these estimators are efficiency robust when the parent family of distributions
underlying the data includes both the normal and a long-tailed distribution, e.g.,
Cauchy. Table 3 presents the percentage of FI in the middle three scattered
order statistics (X10−r:19,X10:19,X10+r:19), r = 3, . . . , 9, for four distributions
and samples of size 19. From Table 3, three order statistics in TRI (GAS) have
minimum FI at the Cauchy (normal) distribution.

The large and small sample performance of TRI, GAS, and other robust
estimates were evaluated using their large sample variances and simulation in
Andrews et al. (1972). We are using the FI to provide insight into why these
estimates have good efficiency properties in small samples, as well as in large
samples. From Table 3, two largest minimum percentages of FI are GAS and
TRI, about 85%, suggesting that an appropriate combination of these three order
statistics might achieve 75% to 80% of the available FI simultaneously for all four
models, as GAS and TRI do. The results also indicate that when heavier tailed
distributions, e.g., the Cauchy, are not plausible models for the data, the estima-
tor TRI should have slightly higher relative efficiency than GAS. The reverse is
true for heavier tailed distributions.

Table 3. Exact percentage of FI about the location parameter in the middle
three scattered order statistics for four distributions.

Robust Percent of FI
Estimator Samples Cauchy Laplace Logistic Normal Minimum

(X7:19, X10:19, X13:19) .862 .923 .910 .814 .814
GAS (X6:19, X10:19, X14:19) .858 .894 .932 .851 .851
TRI (X5:19, X10:19, X15:19) .845 .863 .940 .879 .845

(X4:19, X10:19, X16:19) .830 .836 .932 .895 .830
(X3:19, X10:19, X17:19) .815 .817 .910 .896 .815
(X2:19, X10:19, X18:19) .800 .804 .872 .875 .800
(X1:19, X10:19, X19:19) .776 .794 .820 .815 .776
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Hájek, J. and S̆idák, Z. (1967). Theory of Rank Tests. Academic Press, New York.

Hogg, R. V. (1974). Adaptive robust procedures: a partial review and some suggestions for

future applications and theory. J. Amer. Statist. Assoc. 69, 909-923.

Huber, P. J. (1972). Robust statistics: a review. Ann. Math. Statist. 43, 1041-1067.

Johnson, R. A. (1974). Asymptotic results for inference procedures based on the r smallest

observations. Ann. Statist. 2, 1138-1151.

Kennedy, P. (1992). A Guide to Econometrics. 3rd edition. MIT Press, Cambridge, MA.

Mehrotra, K. G., Johnson, R. A. and Bhattacharyya, G. K. (1979). Exact Fisher information

for censored samples and the extended hazard rate functions. Comm. Statist. Theory

Methods 15, 1493-1510.

Nagaraja, H. N. (1994). Tukey’s linear sensitivity and order statistics. Ann. Inst. Statist.

Math. 46, 757-768.

Ogawa, J. (1951). Contributions to the theory of systematic statistics, I. Osaka Math. J. 3,

175-213.
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