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1. Introduction

1.1. Let N1(t), N2(t), . . . be a sequence of independent and identically distributed
counting processes. Let Tji = inf{t > 0 | Nj(t) = i}. Assume that relative to a
filtration Fj,t, Nj(t) has an intensity process of the form

λj(t) = λj0(t)Yj(t) exp(θ0Zj(t)), (1.1)

where Yj(·) ≥ 0 and Zj(·) are bounded Fj,t-predictable processes, θ0 ∈ Θ (a
bounded subset of �) is the relative risk coefficient, and

λj0(t) =
I∑

i=1

h
(0)
i (t − Tji−1)1(Tji−1,Tji](t) (1.2)

for some functions h
(0)
i ≥ 0. Here 1A is the indicator function of a set A.

Let Λi(t) =
∫ t
0 h

(0)
i (u) du. The statistical problem is to estimate Λ1(t),Λ2(t),

. . . ,ΛI(t) and θ0 based on the data

{Nj(t), Yj(t), Zj(t)|0 ≤ t ≤ t0, j = 1, . . . , J}, (1.3)

assuming that F1,∞, . . . ,FJ,∞ are independent. Here 0 < t0 ≤ ∞ is a termination
time.

We note that (1.1) provides a model for certain recurrent event data. In a
medical context, Nj(t) is the number of events experienced by the jth individual
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at time t, while Yj(t) and Zj(t) indicate, respectively, the censoring status and
the covariate of this individual at time t.

When I = 1, (1.1) is the classical Cox model for survival time studied by
Andersen and Gill (1982), among others. When h1 = h2 = · · · = hI , (1.1)
includes as a special case the modulated renewal processes studied by Oakes and
Cui (1994) (cf. Cox (1972) and Cox (1997)). The model (1.1) in this generality
was studied by Prentice, Williams and Petersen (1981), Keiding (1986), Cox
(1986), Commenges (1986) and Chang and Hsiung (1994), among others.

Except for the case I = 1 and the modulated renewal processes, estimation
for model (1.1) was studied mainly for θ0. In this paper we estimate Λ1, . . . ,ΛI

and θ0 simultaneously, which is useful even in the estimation of Λ1 for a modu-
lated renewal process.

1.2. The estimators to be studied in this paper are described as follows. Let

Mj(t) = Nj(t) −
∫ t

0
λj(u)du,

Mji(t) = Mj((Tji−1 + t ∧ (Tji − Tji−1)) ∧ t0) − Mj(Tji−1 ∧ t0).

Since Mj(t) is an Fj,t-martingale and Tji−1 is an Fj,t-stopping time, we know
Mj(Tji−1 + t) is an Fj,Tji−1+t-martingale. This, together with the fact that Tji −
Tji−1 is an Fj,Tji−1+t-stopping time, shows that Mji(t) is an Fj,Tji−1+t-martingale.
(cf. Chang and Hsiung (1994)).

Let

Yji(t) = 1(0,Tji−Tji−1](t)1(0,t0 ](Tji−1 + t)Yj(Tji−1 + t),

Zji(t) = Zj(Tji−1 + t),

Nji(t) = Nj((Tji−1 + t ∧ (Tji − Tji−1)) ∧ t0) − Nj(Tji−1 ∧ t0).

Then
Mji(t) = Nji(t) −

∫ t

0
h

(0)
i (u)Yji(u)eθ0Zji(u) du, (1.4)

which says that, relative to Fj,Tji−1+t, the counting process Nji(t) is a Cox re-

gression model with intensity h
(0)
i (t)Yji(t)eθ0Zji(t), for each fixed i.

For k = 0, 1, 2, we set S
(k)
J,i (θ, t) = 1

J

∑J
j=1 Yji(t)Zk

ji(t)e
θZji(t). Let

G
(i)
J (θ, t) =

J∑
j=1

∫ t

0

(
Zji(u) − S

(1)
J,i (θ, u)

S
(0)
J,i (θ, u)

)
dNji(u),

GJ(θ) =
I∑

i=1

G
(i)
J (θ, αi) (1.5)
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for some α1, . . . , αI to be defined in Section 2.
The estimator θ̂J proposed by Prentice et al. (1981) is a root of GJ(·) = 0.

For the estimation of Λi(t), we propose the Breslow-type estimator

Λ̂(i)
J (t) =

J∑
j=1

∫ t

0

1∑J
k=1 Yki(u)eθ̂J Zki(u)

dNji(u). (1.6)

We note that, when θ0 = 0, Λ̂(i)
J (t) reduces to the Nelson-Aalen estimator

and exp(−Λ̂(i)
J (t)) approximates the Kaplan-Meier estimator of the gap distribu-

tion T1i − T1i−1. Readers are referred to Fleming and Harrington (1991) for the
definitions of these terms and the related properties.

The asymptotic properties of θ̂J are studied by Chang and Hsiung (1994).
In this paper we establish the asymptotic distribution of J1/2(Λ̂(1)

J (·)−Λ1(·), . . . ,
Λ̂(I)

J (·)−ΛI(·)). This suggests that we can estimate Λ1(·) by a linear combination
of Λ̂(i)

J (·)′s when Λ1 = · · · = ΛI . In fact, care is taken so that the data is fully
utilized in the sense that the αi in (1.5) is chosen as large as possible.

This paper is organized as follows. Section 2 contains the main results con-
cerning the asymptotic normality of the Breslow-type estimator, and Section 3
consists of the lemmas needed in establishing the main results.

2. Asymptotic Normality of the Breslow Estimator

Let H ={h|h=(h1, . . . , hI), hi : [0, αi)→ [0,∞)}. Here αi =inf{u| ∫ u
0 h

(0)
i (t)dt

= ∞}, which implies that P (Tji − Tji−1 ≥ αi) = 0. The parameter space is
Θ × H. We assume αi ≤ t0, for i = 1, . . . , I.

Let h(0) = (h(0)
1 , . . . , h

(0)
I ), s

(k)
i (θ, t) = E(S(k)

J,i (θ, t)) for k = 0, 1, 2. Then

s
(0)
i , s

(1)
i , s

(2)
i are bounded on Θ × [0, αi). Assume s

(0)
i is positive, and, for i =

1, . . . , I, k = 0, 1, 2, that s
(k)
i is continuous on Θ × [0, αi), and

∫ αi

0
h

(0)
i (u)s(0)

i (θ0, u) du < ∞, (2.1)

lim
t→αi

sup
J=1,2,...

E
( ∫ αi

t
S

(0)
J,i (θ0, u)h(0)

i (u) du
)2

= 0. (2.2)

Under these conditions, we show that supJ=1,2,... E(sup0≤t<αi
|G(i)

J (θ0, t)|4) < ∞,
an important step to establish uniform integrability in the proof of Lemma 3.2.

To simplify notation, we extend the domain of definition of G
(i)
J (θ, t) in (1.5)

by G
(i)
J (θ, t) = G

(i)
J (θ, αi) if t > αi. Similar extensions are made also for h

(0)
i ,

S
(k)
J,i and s

(k)
i . Let θ̂J denote the solution to GJ (θ, t0) = 0.
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Let

H
(i)
J (θ, t) = −

J∑
j=1

∫ t

0

S
(1)
J,i (θ, u)

(S(0)
J,i (θ, u))2

dNji(u), (2.3)

W
(i)
J (t) =

J∑
j=1

∫ t

0

1

S
(0)
J,i (θ0, u)

dMji(u). (2.4)

Then

J1/2(Λ̂(i)
J (t) − Λi(t))

=J−1/2
J∑

j=1

∫ t

0

( 1

S
(0)
J,i (θ̂J , u)

− 1

S
(0)
J,i (θ0, u)

)
dNji(u)

+J1/2
( J∑

j=1

∫ t

0

1

JS
(0)
J,i (θ0, u)

dNji(u) −
∫ t

0
h

(0)
i (u)1{

∑J

k=1
Yki(u)>0}du

)
+ op(1)

=J−1/2H
(i)
J (θ∗J , t)(θ̂J − θ0) + J−1/2W

(i)
J (t) + op(1)

=
1
J

H
(i)
J (θ∗J , t)

(−1
J

∂

∂θ
GJ(θ̃J , t0)

)−1
(
J−1/2GJ (θ0, t0)

)
+J−1/2W

(i)
J (t)+op(1), (2.5)

where both θ∗J and θ̃J are between θ̂J and θ0.
Let

V (t0) =
I∑

i=1

∫ t0

0

(
s
(2)
i (θ0, u) − (s(1)

i (θ0, u))2

s
(0)
i (θ0, u)

)
h

(0)
i (u) du. (2.6)

The main result of this paper is the following theorem concerning the asymptotic
distribution of J1/2(Λ̂(i)

J (t) − Λi(t)).

Theorem 2.1. Assume (1.1), (1.2), (2.1), (2.2) and V (t0) > 0. Then for
0 ≤ ti ≤ α′

i < αi, i = 1, 2, . . . , I, J1/2(Λ̂(1)
J (t1) − Λ1(t1), . . . , Λ̂

(I)
J (tI) − ΛI(tI))

converges weakly to a mean 0 Gaussian process (U1(t1), . . . , UI(tI)) satisfying

E(Ul(tl)Uk(tk)) = 1{l=k}
∫ tl∧tk

0

h
(0)
l (u)

s
(0)
l (θ0, u)

du

+V −1(t0)
( ∫ tl

0

s
(1)
l (θ0, u)

s
(0)
l (θ0, u)

h
(0)
l (u) du

)( ∫ tk

0

s
(1)
k (θ0, u)

s
(0)
k (θ0, u)

h
(0)
k (u) du

)
.

Since the theorem follows directly from Lemmas 3.2-3.5, (2.5) and the contin-
uous mapping theorem for weak convergence of stochastic processes, we remark
only that the asymptotic normality of J1/2(θ̂J − θ0) is a by-product of this argu-
ment.
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Corollary 2.2. Under the conditions of Theorem 2.1, and assuming h
(0)
1 =

h
(0)
2 = · · · = h

(0)
I = h0, let ai(t) ≥ 0, and

∑I
i=1 ai(t) = 1. Then, for 0 ≤

t ≤ α′ < min
i

αi, J1/2(
∑I

i=1 ai(t)Λ̂
(i)
J (t) − Λ1(t)) converges weakly to a mean

0 Gaussian process U(t) satisfying EU2(t) =
∑

1≤i,j≤I ai(t)aj(t)Vij(t), where
Vij(t) = EUi(t)Uj(t).

Remark 1. When we have modulated renewal processes, we can first estimate
Vij(t) and then find â

(i)
J (t) so that

∑I
i=1 â

(i)
J (t) = 1 and

∑I
i=1 â

(i)
J (t)Λ̂(i)

J (t) is
asymptotically normal with the smallest variance among all estimators

∑I
i=1 ai(t)

Λ̂(i)
J (t) studied in Corollary 2.2.

Remark 2. In order to elaborate on the conditions (2.1) and (2.2), we consider
the important situation that Yj(t) = 1(0,Cj ](t) for some independent censoring
variable Cj.

In this case, for some constant C > 0,∫ αi

0
h

(0)
i (u)s(0)

i (θ0, u) du =
∫ αi

0
h

(0)
i (u)EY1i(u)eθ0Z1i(u) du

≤ C

∫ αi

0
h

(0)
i (u)E1(0,T1i−T1i−1](u)1(0,t0 ](T1i−1 + u)1(0,C1](T1i−1 + u) du

≤ C

∫ αi

0
h

(0)
i (u)E1(0,T1i−T1i−1](u)E1(0,C1 ](u) du

= C

∫ αi

0
h

(0)
i (u)P (T1i − T1i−1 ≥ u)P (C1 ≥ u)du, (2.7)

and

E
( ∫ αi

0
S

(0)
J,i (θ0, u)h(0)

i (u) du
)2

= E
( ∫ αi

0

( 1
J

J∑
j=1

Yji(u)eθ0Zji(u)
)
h

(0)
i (u) du

)2

≤ CE
( ∫ αi

0

( 1
J

J∑
j=1

Yji(u)
)
h

(0)
i (u) du

)2

≤ CE
( ∫ αi

0
Y1i(u)h(0)

i (u) du
)2

≤ CE
( ∫ αi

0
h

(0)
i (u)1(0,T1i−T1i−1](u)1(0,C1](u) du

)2

≤ CE
( ∫ αi

0
h

(0)
i (u)1(0,T1i−T1i−1](u) du

)( ∫ αi

0
h

(0)
i (u)1(0,C1 ](u) du

)

= C
( ∫ αi

0
h

(0)
i (u)P (T1i − T1i−1 ≥ u) du

)( ∫ αi

0
h

(0)
i (u)P (C1 ≥ u) du

)
. (2.8)
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Thus, a sufficient condition for (2.1) and (2.2) is
∫ αi
0 h

(0)
i (u)P (T1i − T1i−1 ≥

u) du < ∞ and
∫ αi
0 h

(0)
i (u)P (C1 ≥ u) du < ∞. Other sufficient conditions can be

derived by examining the calculations in (2.7) and (2.8).

3. Lemmas and Proofs

Lemma 3.1. Assume that (2.1) and (2.2) hold. Then

sup
J=1,2,...

E( sup
0≤t≤αi

(J−1/2G
(i)
J (t))4) < ∞, (3.1)

sup
J=1,2,...

E( sup
0≤t≤α′

i

(J−1/2W
(i)
J (t))4) < ∞, (3.2)

where 0 < α′
i < αi (θ0 is suppressed in G

(i)
J ).

Proof. We prove (3.1), (3.2) can be done similarly. It follows from the Burkholder-
Davis-Gundy inequality (cf. Burkholder, Davis and Gundy (1972) and Lenglart,
Lepingle and Pratelli (1980)) that, for some constant C1 > 0,

E( sup
0≤t≤αi

(G(i)
J (t))4) ≤ C1E[G(i)

J ]2αi
, (3.3)

where [G(i)
J ]αi is the optional quadratic variation process of G

(i)
J .

Since G
(i)
J is a process of finite variation, we know from Elliott (1982, p.97),

for example, that

E[G(i)
J ]2αi

= E
( ∑

t≤αi

(∆G
(i)
J (t))2

)2

= E
( J∑

j=1

∫ αi

0

(
Zji(u) − S

(1)
J,i (θ0, u)

S
(0)
J,i (θ0, u)

)2
dNji(u)

)2

≤ 2E < G
(i)
J >2

αi
+2E(η

J
(αi))2, (3.4)

where < · >αi is the predictable variation process, and

η
J
(αi) =

J∑
j=1

∫ αi

0

(
Zji(u) − S

(1)
J,i (θ0, u)

S
(0)
J,i (θ0, u)

)2
dMji(u).

Using the predictable variation formula, we have

sup
J=1,2,...

1
J2

E(η
J
(αi))2

= sup
J=1,2,...

1
J

E
( 1
J

J∑
j=1

∫ αi

0

(
Zji(u) − S

(1)
J,i (θ0, u)

S
(0)
J,i (θ0, u)

)4
h

(0)
i (u)Yji(u)eθ0Zji(u)du

)
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≤ sup
J=1,2,...

C2

J
E

( ∫ αi

0
S

(0)
J,i (θ0, u)h(0)

i (u) du
)

< ∞, (3.5)

by (2.1), and

sup
J=1,2,...

1
J2

E < G
(i)
J >2

αi

= sup
J=1,2,...

E
( 1
J

J∑
j=1

∫ αi

0

(
Zji(u) − S

(1)
J,i (θ0, u)

S
(0)
J,i (θ0, u)

)2
h

(0)
i (u)Yji(u)eθ0Zji(u) du

)2

≤ sup
J=1,2,...

C3E
( ∫ αi

0
S

(0)
J,i (θ0, u)h(0)

i (u) du
)2

< ∞, (3.6)

by (2.2). Here C2 and C3 are some constants. From (3.3), (3.4), (3.5) and (3.6),
we get (3.1). This completes the proof.

Lemma 3.2. Assume that (2.1) and (2.2) hold. Then
(i) J−1/2(G(1)

J (θ0, ·), . . . , G(I)
J (θ0, ·),W (1)

J (·), . . . ,W (I)
J (·)) converges weakly to a

multivariate mean 0 independent Gaussian martingale (G1(·), . . . , GI(·),
W1(·), . . . ,WI(·)) on [0, α′] satisfying

EG2
i (t) =

∫ t

0

(
s
(2)
i (θ0, u) − (s(1)

i (θ0, u))2

s
(0)
i (θ0, u)

)
h

(0)
i (u) du, (3.7)

EW 2
i (t) =

∫ t

0

h
(0)
i (u)

s
(0)
i (θ0, u)

du, (3.8)

where 0 ≤ t ≤ α′ < min
1≤i≤I

αi.

(ii) The weak convergence of J−1/2(G(1)
J (θ0, t), . . . , G

(I)
J (θ0, t)) is also valid for

0 ≤ t ≤ t0.
We note that EG2

i (t) = EG2
i (t ∧ αi) for every t > 0.

Proof. It follows from the Martingale Central Limit Theorem that both J−1/2

G
(i)
J (θ0, ·) and J−1/2W

(i)
J (·) converge weakly as random elements in the Skorohod

space D[0, α′]. Let Gi(·) and Wi(·) denote their limiting processes respectively.
It is straightforward to see both (3.7) and (3.8) are satisfied. This implies that
J−1/2(G(1)

J (θ0, ·), . . . , G(I)
J (θ0, ·),W (1)

J (·), . . . ,W (I)
J (·)) is a tight sequence in the

product space (D[0, α′])2I . With this understanding, it suffices to show that
every weakly convergent subsequence has the same limiting distribution. For
this, we will show that EGl(s)Gk(t) = EWl(s)Wk(t) = 0 for 1 ≤ k �= l ≤ I, and
0 ≤ s ≤ t ≤ α′.
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It follows from Lemma 3.1 and the Schwarz inequality that

sup
J

E(
1
J

G
(l)
J (s)G(k)

J (t))2

≤ sup
J

E
1
2 (J−1/2G

(l)
J (s))4E

1
2 (J−1/2G

(k)
J (t))4

≤ (sup
J

E
1
2 (J−1/2G

(l)
J (s))4)(sup

J
E

1
2 (J−1/2G

(k)
J (t))4) < ∞.

This shows that {J−1G
(l)
J (s)G(k)

J (t)|J = 1, 2, . . .} is uniformly integrable. This,
together with weak convergence, shows that if l < k, EGl(s)Gk(t) = limJ→∞ E 1

J

G
(l)
J (s)G(k)

J (t) = limJ→∞ 1
J EG

(l)
J (s)E(G(k)

J (t)|G(k)
J,0 ) = 0, where G(k)

J,t ≡ σ{Fj,Tjk+t|
j = 1, . . . , J}. Similarly, we can show the orthogonality of other components.
This proves (i). Since (ii) can be proved in the same manner, the proof is omitted.

Lemma 3.3.
(i) sup0≤t≤α′

i
|J−1H

(i)
J (θ0, t) +

∫ t
0

s
(1)
i (θ0,u)

s
(0)
i (θ0,u)

h
(0)
i (u) du| converges to 0 in probabil-

ity, where 0 < α′
i < αi.

(ii) sup0≤t≤α′
i
J−1|H(i)

J (θ∗J , t) − H
(i)
J (θ0, t)| converges to 0 in probability, where

θ∗J is given in (2.5), and 0 < α′
i < αi.

The proof for Lemma 3.3 is omitted, see Andersen and Gill (1982).
Lemma 3.4. θ̂J converges to θ0 in probability.

Proof. Let

X
(i)
J (θ, t) = J−1

J∑
j=1

∫ t

0

(
(θ − θ0)Zji(u) − log

S
(0)
J,i (θ, u)

S
(0)
J,i (θ0, u)

)
dNji(u),

A
(i)
J (θ, t) = J−1

J∑
j=1

∫ t

0

(
(θ − θ0)Zji(u) − log

S
(0)
J,i (θ, u)

S
(0)
J,i (θ0, u)

)
h

(0)
i (u)Yji(u)eθ0Zji(u) du,

which is equal to
∫ t
0((θ−θ0)S

(1)
J,i (θ0, u)− log

S
(0)
J,i (θ,u)

S
(0)
J,i

(θ0,u)
·S(0)

J,i (θ0, u))h(0)
i (u) du. Since

X
(i)
J (θ, t) − A

(i)
J (θ, t) is a martingale, we know

E(X(i)
J (θ, αi) − A

(i)
J (θ, αi))2

= J−2
J∑

j=1

∫ αi

0

(
(θ − θ0)Zji(u) − log

S
(0)
J,i (θ, u)

S
(0)
J,i (θ0, u)

)2
h

(0)
i (u)Yji(u)eθ0Zji(u) du

≤ C · J−1
∫ αi

0
S

(0)
J,i (θ0, u)h(0)

i (u) du, (3.9)

which converges to 0 in probability as a consequence of (2.2).
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Let

A(i)(θ, t) =
∫ t

0

(
(θ − θ0)s

(1)
i (θ0, u) − log

s
(0)
i (θ, u)

s
(0)
i (θ0, u)

· s(0)
i (θ0, u)

)
h

(0)
i (u) du.

It follows from (2.1) and (2.2) that A(i)(θ, αi) is well-defined, and for every
t ∈ (0, αi), lim

J→∞
E(A(i)

J (θ, t) − A(i)(θ, t))2 = 0, and lim
t→αi

supJ E(A(i)
J (θ, αi) −

A(i)(θ, t))2 = 0. These imply that E(A(i)
J (θ, αi) − A(i)(θ, αi))2 converges to 0.

This together with (3.9) shows that X
(i)
J (θ, αi) converges to A(i)(θ, αi) in prob-

ability. Hence
∑I

i=1 X
(i)
J (θ, αi) also converges in probability to

∑I
i=1 A(i)(θ, αi).

It now follows from the convex analysis arguments used in Andersen and Gill
(1982) that θ̂J converges to θ0 in probability. This completes the proof.

Lemma 3.5.
(i) J−1 ∂

∂θGJ (θ0, t0) + V (t0) converges to 0 in probability,
(ii) J−1 ∂

∂θGJ (θ̃J , t0) − J−1 ∂
∂θGJ (θ0, t0) converges to 0 in probability,

where θ̃J is given in (2.5) and V (t0) is given in (2.6).

Since (i) can be proved using the arguments in the proof of Lemma 3.4, and
(ii) is an easy consequence of Lemma 3.4, we omit the proof.
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