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Abstract: Estimation is studied in a regression model for counting processes whose
baseline intensity processes are of semi-Markov form. Asymptotic normality is
established for a Breslow-type estimator of the cumulative baseline hazard for each
gap time of the counting process.
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1. Introduction

1.1. Let Ni(t), Na(t), ... be a sequence of independent and identically distributed
counting processes. Let Tj; = inf{t > 0 | N;(t) = i}. Assume that relative to a
filtration Fj;, N;(t) has an intensity process of the form

Aj(t) = Ajo(8)Y;(t) exp(f0Z;(t)), (1.1)

where Yj(-) > 0 and Z;(-) are bounded Fj;-predictable processes, 8y € © (a
bounded subset of ) is the relative risk coefficient, and

I
No(t) = SO (¢ — Tji)1ery, 1y (1) (1.2)
=1

for some functions hz(-o) > 0. Here 14 is the indicator function of a set A.
Let A;(t) = [3 hz(o) (u) du. The statistical problem is to estimate Aq(t), A2 (t),
..., A7(t) and 0y based on the data

NG (0,5, Z5 (D10 < ¢ < to,j = 1,..., T}, (1.3)

assuming that 1 o, ..., Fjco are independent. Here 0 < g < 00 is a termination
time.

We note that (1.1) provides a model for certain recurrent event data. In a
medical context, N;(t) is the number of events experienced by the jth individual
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at time ¢, while Y;(t) and Z;(t) indicate, respectively, the censoring status and
the covariate of this individual at time ¢.

When [ = 1, (1.1) is the classical Cox model for survival time studied by
Andersen and Gill (1982), among others. When hy = he = --- = hy, (1.1)
includes as a special case the modulated renewal processes studied by Oakes and
Cui (1994) (cf. Cox (1972) and Cox (1997)). The model (1.1) in this generality
was studied by Prentice, Williams and Petersen (1981), Keiding (1986), Cox
(1986), Commenges (1986) and Chang and Hsiung (1994), among others.

Except for the case I = 1 and the modulated renewal processes, estimation
for model (1.1) was studied mainly for 6p. In this paper we estimate Aj,..., As
and 6y simultaneously, which is useful even in the estimation of Ay for a modu-
lated renewal process.

1.2. The estimators to be studied in this paper are described as follows. Let

M) = Ny(0) = [ )i
Mji(t) = Mj((Tji_l A (Tﬂ — sz‘—l)) A t(]) M; (Tﬂ 1 A t(])

Since Mj(t) is an Fj;-martingale and Tj;—; is an Fj;-stopping time, we know
M;(Tji—1 +1t) is an Fj1;,_, +¢-martingale. This, together with the fact that T}; —
Tji—11s an Fj 1;,_, ++-stopping time, shows that M;;(t) is an Fj 1,,_, y;-martingale.
(cf. Chang and Hsiung (1994)).

Let

Yii(t) = Lo, -1, 1) () L (0,00) (Tji1 + )Y (Tji1 + 1),
Zji(t) = Zj(Tji—1 + 1),
Nji(t) = Nj(Tji-1 + t A (Tji = Tji-1)) Ato) — Nj(Tjio1 Ato).
Then
Mj;(t) = / B )ePoZii(w) qy, (1.4)

which says that, relative to Fjr;,_,+¢, the counting process Nj;i(t) is a Cox re-
gression model with intensity h(o)( )Y]Z(t) 9025i()  for each fixed i.
For k= 0,1, 2, we set SSI)(Q t) =7 Z] 1 ﬂ( )Z]I-‘;(t)eezii(t). Let

J S(l-)( )
(@) Ji \Po
Gy (0,t) = Zii(u) dNj;(u),
I .
G(0) =Y G (0,a:) (1.5)
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for some a7, ...,a; to be defined in Section 2.
The estimator 6 proposed by Prentice et al. (1981) is a root of G;(-) = 0.
For the estimation of A;(t), we propose the Breslow-type estimator

A0 / dN;(u). 1.6
J Z Ek Yis(u eeJZki(u) ji(uw) (1.6)

We note that, when 6y = 0, JA\S) (t) reduces to the Nelson-Aalen estimator
and exp(—/A\f]i) (t)) approximates the Kaplan-Meier estimator of the gap distribu-
tion Th; — Th;—1. Readers are referred to Fleming and Harrington (1991) for the
definitions of these terms and the related properties.

The asymptotic properties of 0 s are studied by Chang and Hsiung (1994).
In this paper we establish the asymptotic distribution of J/2 (/A\Sl) ()=A1(5), ...,
/A\(JI) (-)=Az(+)). This suggests that we can estimate Aj(-) by a linear combination
of IAXF;)(-)’S when A; = --- = A;. In fact, care is taken so that the data is fully
utilized in the sense that the «; in (1.5) is chosen as large as possible.

This paper is organized as follows. Section 2 contains the main results con-
cerning the asymptotic normality of the Breslow-type estimator, and Section 3
consists of the lemmas needed in establishing the main results.

2. Asymptotic Normality of the Breslow Estimator

Let H={hlh="(hq,...,h),hi : [0,c;)—[0,00)}. Here a; =inf{u| [*n\") (t)dt
= oo}, which implies that P(Tj; — Tji—1 > ;) = 0. The parameter space is
O x H. We assume «; < tg, fori=1,...,1.

Let hgy = (h\”,...,h{"), (’“)(9 t) = E(SY)(6,1)) for k = 0,1,2. Then

(0 i
3( ) s ), 5 ) are bounded on © x [0, ;). Assume sz(-o) is positive, and, for i =

)

I, k=0,1,2, that sz(- ) is continuous on © x [0, ;), and

i hz(o) (u)sgo) (0o, u) du < o0, (2.1)
0
(677 2
lim sup E Sgoi) (0o, u)hz(-o) (u) du) =0. (2.2)
t—ai j=12, t ’

Under these conditions, we show that sup;_; 5 E(Supp<icq, \GE;) (60, 1)|*) < 0,
an important step to establish uniform integrability in the proof of Lemma 3.2.

To simplify notation, we extend the domain of definition of G(Ji) (0,t) in (1.5)
by Gg) 0,t) = Gg) (0, ;) if t > «;. Similar extensions are made also for hgo),
Sf,];) and sl(-k). Let §J denote the solution to G(0,ty) = 0.
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Let
Tt S0, u)
(@) Jyi
Hy(0,t) =~ / i(u), (2.3)
! 2l 500
Jj=1 0 SJ,i (907 ’U,)
Then
TVAP (1) - Ai(t)
_ (o
=0 D@0 S5 (00,u)
1/2 Lo 1 (0
+J / / h du) + 1
<]z=:1 0 JS( )(90, {EZ:IYM(U)>O} u> op(1)

1

:JH()(GJ, )(J 880G (9J,t0> j(J 1/2GJ(90 to))-i—J 1/2W5-)( t)+o,(1), (2.5)

where both 0% and 7] 7 are between 0 7 and 6g.
Let

to sV g )2
V(to) Z / 2 (09, u) %)hﬁo)(u)du. (2.6)

The main result of this paper is the following theorem concerning the asymptotic
distribution of J1/2(A% (¢) — A, (t)).

Theorem 2.1. Assume (1.1), (1.2), (2.1), (2.2) and V(top) > 0. Then for
0§m§%<mJ=L%~LJW@9m%ﬂﬂm~Ap()Aﬁm
converges weakly to a mean 0 Gaussian process (Ui(t1),...,Ur(tr)) satisfying
h(o)( )
(60, u)

t g u u
v (to) ( /0 Si(o)iﬁhl(”)(u)du)( /0 Loa)h,(f)(u)du).

EU(t)Uk(tr)) = L=k /tmtk du

Since the theorem follows directly from Lemmas 3.2-3.5, (2.5) and the contin-
uous mapping theorem for weak convergence of stochastic processes, we remark
only that the asymptotic normality of J/2 (05 —0p) is a by-product of this argu-
ment.



A PROPORTIONAL HAZARD MODEL FOR SEMI-MARKOV COUNTING PROCESS 1261

Corollary 2.2. Under the conditions of Theorem 2.1, and assuming th) =
héo) = ... = hgo) = ho, let a;(t) > 0, and X! a;(t) = 1. Then, for 0 <
t <ad < miin o, JYA(XL ai(t)/AXF;)(t) — Ay (t)) converges weakly to a mean
0 Gaussian process U(t) satisfying EU?(t) = i<ij<r @i(t)a;(t)Vij(t), where
Vij(t) = EU(t)U; ().

Remark 1. When we have modulated renewal processes, we can first estimate
Vi;(t) and then find A(Z)( t) so that Y"1 1A(Z)( t) =1 and Y1 IA(Z (t)A(JZ) (t) is
asymptotically normal with the smallest variance among all estimators Zle a;(t)
/A\(Jl) (t) studied in Corollary 2.2.

Remark 2. In order to elaborate on the conditions (2.1) and (2.2), we consider
the important situation that Y;(t) = 1(o,c;)(t) for some independent censoring
variable C}.

In this case, for some constant C' > 0,

"R >( )5 (00w du = [ b () EYii () du
< C/ hy’ (W) EL 0,1y, —10 11w L (0,60) (T1i-1 + )L (0,c41(Thim1 + u) du
<0 [ KO W EL g1, 1y, (W) EL ey (u) du
= 2O (W) P(T1; — Thiiy > w)P(Ch > u)du, (2.7)

and

- 5( /0 h (% jé Vyi(u)e% ) 1O () du)”

<coB( /0% (% ]z::l Vi) h”) (u) du)

< oB( /0 Y () du)’

< CB( [ W @)L, 1100031 (w) )

< oB( /0 O )03,y () ) Oai h) ()10, () dur)

e /0 " hO () P(Ty — Thic > u)du))( Oai hO () P(Cy > u)du). (2.8)
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Thus, a sufficient condition for (2.1) and (2.2) is [;* hgo) (w)P(Ty; — Thioq >
u) du < oo and [§" p0 (u)P(C1 > u)du < co. Other sufficient conditions can be

)

derived by examining the calculations in (2.7) and (2.8).

3. Lemmas and Proofs

Lemma 3.1. Assume that (2.1) and (2.2) hold. Then

sup E( sup (J_l/gGF;)(t))4) < 00, (3.1)
J=1,2,... 0<t<ey
J=1,2,...  0<t<d

where 0 < o < ay (0 is suppressed in Gg)).
Proof. We prove (3.1), (3.2) can be done similarly. It follows from the Burkholder-
Davis-Gundy inequality (cf. Burkholder, Davis and Gundy (1972) and Lenglart,
Lepingle and Pratelli (1980)) that, for some constant C; > 0,

E( sup (GY (1)) < 1E[GP,, (3.3)

0<t<ay;
where [G(Ji)]ai is the optional quadratic variation process of G(Ji).
Since Gf;) is a process of finite variation, we know from Elliott (1982, p.97),
for example, that

i i 2
EGYR, =E( 3 (a6Y1)?)
tfai
J (o7 S(l)(eg u) 2 2
—F Z/ Zii(u) — 22N AN (u)
(j:1 0 ( ’ 55?2 (‘90,”)> ! )
<2E <GV 52 2B, ()2, (3.4)

where < - > is the predictable variation process, and

J oy
mlo) =3 [ (200 -

Using the predictable variation formula, we have

S(l)(eg,u) 2
‘(’7) dM;;(u).

SO (8, u)

)

E )2
ST (n, (i)
1E(1 Z/a (Z (W) Sfrli)(QOau)>4h 0 ()Y ()% (g )
= sup -— — ilu) — ’ w)Ysi;(u)e e U
J=1,2,..J szl 0 ! sf,,j(eo,u) ’
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< sup @E</ i SSOi)(QO,u)hEO) (u) du) < 00, (3.5)

J=12,.. J o
by (2.1), and
sup %E < Gf,i) >2
J=12,..J !
B [ (2t S‘(’IB(GO’“))W( V(e 2 )

= sup - i(u) — —2——=) h; ' (u)Yji(u)e*?"™ du
s=12. N Jo VY 5&?2(90711) !

< sup CgE(/ Sf,oi)(ﬁg,u)hgo)(u)du> < 00, (3.6)
J=12,... 0 ’

by (2.2). Here Cy and Cs are some constants. From (3.3), (3.4), (3.5) and (3.6),
we get (3.1). This completes the proof.

Lemma 3.2. Assume that (2.1) and (2.2) hold. Then

(i) J_l/g(Gsl)(Hg,-),...,GSI)(QO,-), §1)(-),..., §I)()) converges weakly to a
multivariate mean 0 independent Gaussian martingale (G1(-),...,Gr(+),

Wi(e),...,Wi(+)) on [0,d'] satisfying

2y — [ (@ B0 )y 0
630 = [ (s 0.0 Dy W 6D
2y [T (W)

where 0 <t <o < min a;.
1<i<I

(ii) The weak convergence of J_l/g(Gsl)(Ho,t), .. ,GSI) (0o, 1)) is also valid for
0<t <.
We note that EG?(t) = EG?(t A «;) for every t > 0.

Proof. It follows from the Martingale Central Limit Theorem that both J—1/2
G(Ji) (Ao, -) and J—/ QWY) () converge weakly as random elements in the Skorohod
space D[0,d/]. Let G;(-) and W;(-) denote their limiting processes respectively.
It is straightforward to see both (3.7) and (3.8) are satisfied. This implies that
J_l/Q(GE,I)(Qo,-),...,GE,I)(HO,-),WF)(-),..., }I)()) is a tight sequence in the
product space (D[0,a/])?!. With this understanding, it suffices to show that
every weakly convergent subsequence has the same limiting distribution. For
this, we will show that EG(s)Gy(t) = EW;(s)Wy(t) =0for 1 <k #1 <1, and
0<s<t<d.
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It follows from Lemma 3.1 and the Schwarz inequality that

1
5G9 ()65 (1)

<sup B2 (J 726G (5) B2 (J72GP (1))
J

sup E(
J

< (sup E2(J2GY ()Y (sup B2 (J26P (4))4) < .
J 7 J 7

This shows that {J_le]l) (S)Gsk) (t)|J = 1,2,...} is uniformly integrable. This,
together with weak convergence, shows that ifl <k, EG|(s)Gg(t ) =limj .o E5 1
G(5)6P (1) = i }EGY () BGD (0]61) = 0, whete ) = r{F1,0d
j =1,...,J}. Similarly, we can show the orthogonahty of other components.
This proves (i). Since (ii) can be proved in the same manner, the proof is omitted.

Lemma 3.3.
(i) supp<i<a |J_1H (6o, t) + f
ity, where 0 < o < Q;.

(ii) supo<t<a/ J- 1|H (0%,t) — H(i)(Qo, t)| converges to 0 in probability, where
% is given in (2.5), (md 0 < < a.

90’

(0)( ) du| converges to 0 in probabil-

The proof for Lemma 3.3 is omitted, see Andersen and Gill (1982).
Lemma 3.4. 0; converges to 6y in probability.

Proof. Let

5 0,u
xP(0,t) = 12/ 9 00)Z,4 )—og$ AN
SJ,i(eoau)

]l 7 J )
Sff?i) (907 u)
2 (0,u)
5“’)(9 w)
Xy) 0,t) — Af;) (0,1) is a martingale, we know

which is equal to [ ((0 — 90)5{(]?2 (6o, u) —log -SS?B (o, u))hz(-o) (u) du. Since

E(X$(0,05) — AD(0,01))?

J o S( )(9 u) 9
) ‘ _ () Jyi (0) . 00 Zji(u)
=y /0 (0 00)Zji(w) %8 S )) B () Vi ()P0 %5 gy
j=1 Ji
<c gt [ 8000w () du, (3.9)
0 b

which converges to 0 in probability as a consequence of (2.2).
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Let

(0, u)

, t
AD (9, 1) = / (0 = 00)5" (00, 1) — log =& s (00, w)) h” () du.
0 s; (6o, u)

7

It follows from (2.1) and (2.2) that A® (0, ;) is well-defined, and for every
t € (0,a), lim E(AY(0,t) — AD(6,1))2 = 0, and lim sup; B(AY (0, a;) —

A%(0,1))?> = 0. These imply that E(Af;) (0,;) — AD(0, ;)% converges to 0.
This together with (3.9) shows that Xgi) (0, ;) converges to AW (6, a;) in prob-
ability. Hence Zile Xﬁi) (0, ;) also converges in probability to Zi]:1 AD (B, a;).
It now follows from the convex analysis arguments used in Andersen and Gill
(1982) that 0 J converges to Ay in probability. This completes the proof.

Lemma 3.5.
(i) J_I%GJ(QOJO) + V(to) converges to 0 in probability,
(ii) J_l%gj(ej,to) - J_l%GJ(QO,tO) converges to 0 in probability,
where 05 is given in (2.5) and V (to) is given in (2.6).

Since (i) can be proved using the arguments in the proof of Lemma 3.4, and
(ii) is an easy consequence of Lemma 3.4, we omit the proof.
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