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DENOISED LEAST SQUARES ESTIMATORS: AN APPLICATION

TO ESTIMATING ADVERTISING EFFECTIVENESS
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Abstract: It is known in marketing science that an advertiser under- or overspends

millions of dollars on advertising because the estimation of advertising effectiveness

is biased. This bias is induced by measurement noise in advertising variables, such

as awareness and television rating points, which are provided by commercial market

research firms based on small-sample surveys of consumers. In this paper, we

propose a denoised regression approach to deal with the problem of noisy variables.

We show that denoised least squares estimators are consistent. Simulation results

indicate that the denoised regression approach outperforms the classical regression

approach. A marketing example is presented to illustrate the use of denoised least

squares estimators.
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1. Introduction

When analyzing real data, ordinary least squares (OLS) estimators are most
often used for simple regression models. It is known that these estimators have
nice properties (e.g., consistency) if the relationship between dependent and in-
dependent variables is linear and the classical error assumptions (i.e., normality,
independence and homoscedasticity) are satisfied. In practice, however, both de-
pendent and independent variables may be a function of another variable (e.g.,
time) and both variables may contain measurement noise. In this case, OLS
estimators are not consistent (see Carroll, Ruppert and Stefanski (1995), and
Cheng and Van Ness (1999, pp. 3, 11)). A natural approach to overcome this
difficulty is first to denoise the data and then to fit a simple regression model to
the denoised data. We call this a denoised regression model, and the resulting
estimators denoised least squares (DLS) estimators.

There are several methods available in the literature which can be used to
screen out noise, but we use WaveShrink, developed recently by Donoho and
Johnstone (1994, 1995a and 1995b). It has been found particularly useful for
high frequency series and for sharp and short aberrant series. These appear
often in applied fields such as marketing (Blattberg and Neslin (1990)), medicine
and biology (Aldroubi and Unser (1996)), and image processing (Prasad and



1232 ZONGWU CAI, PRASAD A. NAIK AND CHIH-LING TSAI

Lyengar (1997)). The essential of wavelets theory for statistical applications and
data analysis can be found in Hubbard (1996) and Ogden (1997).

In the area of marketing, removing noise from data is important because
advertisers or advertising agencies face serious monetary issues. Typically an ad-
vertiser spends hundreds of millions of dollars to generate awareness for his/her
products and services. The advertiser tracks awareness generated by an adver-
tising campaign, and television rating points bought by his advertising agency,
to determine the effectiveness of advertising. Figures 1(a) and 1(b) show scatter-
plots (denoted by the symbol ◦) of Awareness and Television Rating Points for
Cadbury’s Dairy Milk chocolate brand in the U. K. over a period of 128 weeks.
These measures are based on a small-sample survey of consumers’ responses and
contain measurement noise.

Measurement noise induces positive or negative bias in the estimate of ad-
vertising effectiveness. If advertising effectiveness is under-estimated (negative
bias), then the advertiser spends less on advertising, losing valuable sales oppor-
tunities, and the advertising agency loses potential revenue from commissions
on buying media time and space. If advertising effectiveness is over-estimated
(positive bias), then an advertiser overspends on advertising, making less profit,
and the advertising agency runs the risk of adversely affecting the valuable client-
agency relationship. Thus, regardless of under- or over- estimation of advertising
effectiveness, advertisers are likely to make expensive sub-optimal marketing de-
cisions if the unreliability in advertising data is not controlled (see Naik and Tsai
(2000)).
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Figure 1(a). The observed and denoised advertising schedules for Cadbury’s
Dairy Milk chocolate brand over 128 weeks.
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Figure 1(b). The observed and denoised awareness responses over 128 weeks.

The purpose of this paper is to provide a solution to the problem of control-
ling measurement noise in advertising data such as those shown in Figure 1. A
natural approach is first to use WaveShrink to denoise both variables, and then
to fit them with a linear regression model.

We propose the DLS estimator and study its consistency as well as apply it
to the area of marketing science. Section 2 shows that DLS estimators are consis-
tent. Section 3 presents a Monte Carlo study to compare the performance of the
OLS and DLS parameter estimators by using WaveShrink to denoise both vari-
ables. The results show that DLS outperforms OLS. We illustrate this method-
ology by analyzing the aforementioned commercial advertising data. Section 4
gives concluding remarks. Finally, the Appendix presents the technical proof of
our result.

2. DLS Estimates

2.1. Model structure and DLS estimates

Suppose that {(ξi, ηi) : 1 ≤ i ≤ n} are unobservable “true” variables satis-
fying a linear relationship

ηi = α + β ξi, (2.1)

where α and β are unknown constants, ξi = ξ(ti), ηi = η(ti), and {ti : 1 ≤ i ≤ n}
are design points such that 0 ≤ t1 ≤ · · · ≤ tn ≤ 1. However, what we are able to
observe are {(xi, yi) : 1 ≤ i ≤ n}, the true variables plus additive measurement
errors {(δi, εi) : 1 ≤ i ≤ n}, such that

xi = ξ(ti) + δi and yi = η(ti) + εi. (2.2)
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Here we assume that δi and εi are mutually independent and identically dis-
tributed (i.i.d.) random errors with mean zero and variances of σ2

δ and σ2
ε ,

respectively. It is worth noting that (2.1) and (2.2) are different from the model
structure of errors-in-variables since both ξ and η are functions of the third vari-
able ti.

For given observed data x = (x1, . . . , xn)′ and y = (y1, . . . , yn)′, we first
apply the denoising operator Hx and Hy to obtain the denoised data:

x∗ = Hx ◦ x and y∗ = Hy ◦ y, (2.3)

where x∗ = (x∗
1, . . . , x

∗
n)′, y∗ = (y∗1 , . . . , y∗n)′, and Hx and Hy are n×n smoothing

matrices (either linear, e.g. smoothing spline, kernel or locally weighted, or
nonlinear, e.g. wavelet). We then fit the denoised data via a linear regression
model

y∗i = α∗ + β∗x∗
i + ε∗i , (2.4)

where α∗ and β∗ are unknown parameters and ε∗ = (ε∗1, . . . , ε∗n)′ is distributed
with mean zero and variance σ2

ε∗Σ. Σ may be a function of Hx and Hy and it
usually does not have a closed-form expression. Hence we focus on studying the
properties of least squares estimators of α∗ and β∗.

Clearly (2.4) gives the denoised regression model and the resulting DLS
estimators of α∗ and β∗ are, respectively, α̂∗ = y∗ − β̂∗ x∗ and β̂∗ = Sx∗y∗/S2

x∗ ,
where x∗ =

∑n
i=1 x∗

i /n, y∗ =
∑n

i=1 y∗i /n, Sx∗y∗ =
∑n

i=1(x
∗
i − x∗)(y∗i − y∗)/n, and

S2
x∗ =

∑n
i=1(x

∗
i − x∗)2/n.

2.2. Consistency

Here we study consistency of DLS estimators. Let Sξη =
∑n

i=1(ξi − ξ)(ηi −
η)/n, S2

ξ =
∑n

i=1(ξi − ξ)2/n, and S2
η =

∑n
i=1(ηi − η)2/n, and let ||.||22,n denote

the usual squared l2n norm. Then we have Sξη = β S2
ξ and S2

η = β2 S2
ξ since the

true model is ηi = α + β ξi. We need the following assumptions.

Assumption 1. S2
ξ converges to σ2

ξ for some 0 < σ2
ξ < ∞ as n → ∞.

Assumption 2. ||x∗ − ξ||2,n = op(n1/2) and ||y∗ − η||2,n = op(n1/2).

Note that Assumption 2 is satisfied by well-known nonparametric estimators
(see Remarks 2 and 4 below for detail).

Theorem 1. Under Assumptions 1 and 2, α̂∗ and β̂∗ are consistent estimators
of α and β, respectively.

Remark 1. Consider the fixed design regression model with ξi = ξ(ti), where
{ti} are equi-spaced design points on interval [a, b]. Assumption 1 is satisfied if
0 <

∫ b
a (ξ(t) − ∫ b

a ξ(t)dt)2 < ∞.
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Remark 2. In wavelet regression models, Assumption 2 is fulfilled by equation
(7) and Corollary 1 in Donoho and Johnstone (1994).

Remark 3. Under some regularity conditions, the optimal mean square error
(MSE) of the local polynomial regression estimator of ξ(t∗i ) (or η(t∗i )) is of order
O(n−4/5) for p = 0 or 1, and O(n−8/9) for p = 2 or 3, where p is the order of
local polynomial function and {t∗i } are given real numbers in the interval [a, b].
Hence, Assumption 2 is satisfied. Detailed information about local polynomial
regression can be found in Fan and Gijbels (1996, Chapter 3).

Remark 4. Under some regularity conditions, the MSE of the cubic smoothing
spline estimator of ξ(t∗i ) (or η(t∗i )) is of order O(n−8/9). Hence, Assumption 2 is
satisfied. Detailed information about the cubic smoothing spline can be found in
Eubank (1988, Chapter 5).

2.3. Generalization to multiple regression models

Our approach can be generalized to multiple regression models in which
either all or some independent variables are measured with errors. Without loss
of generality, we assume that there is only one extra variable, zi, added into model
(2.1). We first study the case in which the zi, i = 1, . . . , n, are not functions of
the third variable. Hence, the true model is ηi = α + β ξi + γ zi and the fitted
model is y∗i = α∗ + β∗ x∗

i + γ∗ zi + e∗i , where y∗i and x∗
i are defined in equation

(2.3) and e∗ = (e∗1, . . . , e∗n)′ is distributed with mean zero and variance σ2
e∗Σ∗. Let

φ∗ = (α∗, β∗, γ∗)′, φ = (α, β, γ)′, and X∗ = (1, x∗, z), where z = (z1, . . . , zn)′.
Then the least squares estimate of φ∗ is φ̂∗ = (X∗′X∗)−1X∗′ y∗. To obtain the
asymptotic property of φ∗, we need one additional assumption.

Assumption 3.
∑n

i=1 z2
i /n is bounded.

Under Assumptions 1, 2 and 3, φ̂∗ is a consistent estimate of φ. Detailed
proof can be obtained from the first author upon request.

Next we consider the case when zi is a function of the third variable ti.
Specifically, zi = τi+νi, τi = τ(ti) and {νi} are i.i.d. random variables with mean
zero and variance σ2

ν . In addition, the νi are independent of {(δi, εi)}. The true
model is ηi = α+β ξi +γ τi, and the fitted model is y∗i = α∗ +β∗ x∗

i +γ∗ z∗i + ẽi
∗,

where z∗i is the ith component of the n × 1 vector z∗ = Hzz, Hz is the n × n

smoothing matrix, and ẽ∗ = (ẽ1
∗, . . . , ẽn

∗)′ is distributed with mean zero and
variance σ2

ẽ∗Σ̂
∗. Let φ and φ∗ be defined as above and X̃∗ = (1, x∗, z∗).

Then the least squares estimator of φ∗ is φ̃∗ = (X̃∗′X̃∗)−1X̃∗′ y∗. To obtain the
asymptotic property, we need two additional assumptions.

Assumption 4. S2
τ =

∑n
i=1(τi − τ)2/n converges to σ2

τ for some 0 < σ2
τ < ∞ as

n → ∞.
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Assumption 5. ||z∗ − τ ||2,n = op(n1/2).

Under Assumptions 1, 2, 4 and 5, φ̃∗ is a consistent estimate of φ. Detailed
proof for this case can also be obtained from the first author upon request.

3. Numerical Properties

In this section, we illustrate the proposed method via two examples. In
the first example, we use simulated data to evaluate the performance of DLS
estimators. We then apply the method to the advertising data mentioned in the
introduction.

3.1. A simulated example

Here we present the results of a Monte Carlo study that examines the per-
formance of the OLS and DLS estimators for a simple regression model in two
situations: the signal-to-noise ratios for independent and dependent variables are
the same or are different. The purpose of using different signal-to-noise ratios
(snr) is to assess the effect of snrx against snry on parameter estimation. We
generated the true model as follows: η(ti) = α + β ξ(ti), with α = β = 1 and
ti = i/n, where ξ(·) is the mean function given in Donoho and Johnstone (1994)
(Blocks, Bumps, HeaviSine and Doppler). The signal-to-noise ratios are denoted
by snrx = SD(ξ)/σδ and snry = SD(η)/σε. Since all the Donoho and Johnstone
functions give similar results in our simulation studies, only the Doppler case is
presented here.

For given snrx and snry, with n = 1024, {xi} and {yi} are generated from
equations (2.1) and (2.2), where {δi} are i.i.d. from N(0, σ2

δ ), {εi} are i.i.d. from
N(0, σ2

ε) and they are independent. For the first case when snrx = snry, 1000
realizations are generated and snrx ranges from 0.1 to 8 in increments of 0.1. For
the second case, we draw 1000 realizations by assuming that snry = 10−snrx and
snrx ranges from 0.1 to 8 in increments of 0.1. Both variables x and y are denoised
via wavelet computations using the GAUSS-TSM package with the Daubechies
Least Asymmetric (8) wavelet. Although we use the default thresholds set by the
universal method with shrinkage applied to only the 6 finest levels, other choices
of wavelet thresholding can be considered (see Nason (1996) and Hurvich and
Tsai (1998)).

Figure 2(a) presents estimated values of the two parameters when snrx =
snry. In this case β̂∗

DLS outperforms β̂OLS . As snrx gets larger, both β̂OLS and
β̂∗

DLS more closely resemble the true parameter, β = 1. In order to further explore
the impact of snrx versus snry in parameter estimation, we next consider the
case snry = 10−snrx. Figure 2(b) depicts values for the two parameter estimates
as snrx increases. It shows clearly that β̂∗

DLS outperforms β̂OLS . In summary,
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the signal-to-noise ratio of the independent variable plays a more important role
than the signal-to-noise ratio of the dependent variable for estimating β. This
finding is not surprising, since large variations in a dependent variable have only
a small impact on the contribution of a strong signal of the independent variable
to the regression line. In conclusion, both simulation studies show that we should
use the denoised least squares approach to estimate unknown parameters.
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Figure 2(a). Parameter estimates of β, β̂∗
DLS (solid line) and β̂OLS (dotted

line), when snrx = snry.
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Figure 2(b). Parameter estimates of β, β̂∗
DLS (solid line) and β̂OLS (dotted

line), when snry = 10 − snrx, and snrx ranges from 0.1 to 8.
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3.2. A real example

We now continue the marketing example mentioned in the introduction to
illustrate our proposed method. These data were collected by Millward Brown
International for an advertising tracking study of Cadbury’s Dairy Milk chocolate
brand, one of the major chocolate brands in England. Detailed descriptions of
these data can be found in Brown (1986), Migon and Harrison (1985) and Colman
and Brown (1983). In marketing science, it is of interest to study the linear
relationship between the percentage of awareness of the advertisement (y) and
the Television Rating Points (x) (see Naik, Mantrala and Sawyer (1998)). Here,
both x and y are functions of time and they were measured over 128 weeks from
August 1977 to January 1980.

In practice, Television Rating Points (TRP) is an estimate of the frequency
of exposure to an advertisement and awareness index is the percentage of people
who have seen that advertisement based on a small sample survey of consumers.
As Winer (1993, p.4) notes, “. . . the advertising measurement system, while the
best available, is fallible. . .”. Hence, we denoise both x and y variables before
studying their relationship. This rationale is also supported by the low estimated
signal-to-noise ratios, ˆsnrx = 1.78 and ˆsnry = 2.60.

In marketing, because TRP follows the on-off pattern, known as “advertising
pulsing” (see Mahajan and Muller (1986)), it resembles Haar filter. Hence, we use
Haar wavelet to denoise the TRP data. Also, awareness grows as TRP increases
and declines exponentially when TRP is zero. This pattern of growth and decline
in awareness data matches the shape of the Daubechies filter. Therefore, we use
Daubechies wavelet to denoise the awareness data. Figure 1(a) displays TRP
and the corresponding denoised data (x∗, denoted by the symbol ∗). By the
same token, Figure 1(b) gives awareness index for the advertisement and the
corresponding denoised data (y∗, indicated by the symbol ∗).

After fitting the observed data {(xi, yi)} and the denoised data {(x∗
i , y∗i )}

by the simple regression model, the resulting slope parameter estimates are
β̂OLS = 0.927 and β̂∗

DLS = 1.383, respectively. Hence, the estimated adver-
tising effectiveness (the slope parameter) shows that the OLS estimate is 33%
smaller than the DLS estimate. This large downward bias of OLS is consistent
with our simulation findings. Such attenuation of the advertising effectiveness
leads advertisers to believe that their advertising campaign is not quite effective,
which leads to wrong marketing decisions (e.g., spend less on advertising, change
the advertisement copy, or fire the advertising agency). Denoising data and then
fitting them by a regression model can improve the estimation of advertising
effectiveness and lead to proper marketing decisions.
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4. Conclusion

We have proposed a denoised least squares approach to estimate unknown
regression parameters in linear regression models. Both simulation results and
empirical example show that DLS estimates outperform OLS estimates. In these
Monte Carlo studies, we only focus on the equispaced fixed design and then
apply WaveShrink method to filter out the noise from Donoho and Johnstone’s
four well-known mean functions. To further investigate the performance of DLS
and OLS, we conducted simulation studies by applying the local polynomial
approach with the Epanechnikov kernel function to smooth out noise contained
in the mean function of the quantile of the standard normal. The results show
that DLS outperforms OLS, as found in Section 3.
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Appendix. The Proof of Theorem 1

Let ξ = (ξ1, . . . , ξn)′, η = (η1, . . . , ηn)′, ξ =
∑n

i=1 ξi/n, and η =
∑n

i=1 ηi/n.
It is easily seen that

n S2
x∗ =

n∑
i=1

(x∗
i − ξi)2 − n(ξ − x∗)2 + 2

n∑
i=1

(x∗
i − ξi)(ξi − ξ) +

n∑
i=1

(ξi − ξ)2, (A.1)

n Sx∗y∗ =
n∑

i=1

(x∗
i − ξi)(y∗i − ηi) +

n∑
i=1

(x∗
i − ξi)(ηi − η) +

n∑
i=1

(ξi − ξ)(y∗i − ηi)

+n(x∗ − ξ)(η − y∗) +
n∑

i=1

(ξi − ξ)(ηi − η). (A.2)

By applying the Cauchy-Schwartz inequality to (A.1) and (A.2), we have∣∣∣S2
x∗ − S2

ξ

∣∣∣ ≤ 2||x∗ − ξ||22,n/n + 2||x∗ − ξ||2,n Sξ/
√

n, (A.3)

∣∣∣Sx∗y∗−Sξη

∣∣∣ ≤ 2 ||x∗−ξ||2,n||y∗−η||2,n/n+||x∗−ξ||2,nSη/
√

n+||y∗−η||2,nSξ/
√

n.

(A.4)
Under Assumption 1, (A.3) and (A.4) become

|S2
x∗ −S2

ξ | = O(
||x∗ − ξ||2,n

n1/2
) and |Sx∗y∗ −Sξη|=O

( ||x∗ − ξ||2,n

n1/2
+

||y∗ − η||2,n

n1/2

)
.
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Furthermore, Assumption 2 implies that |S2
x∗ − S2

ξ | = op(1) and |Sx∗y∗ − Sξη| =
op(1). Therefore |S2

x∗ − σ2
ξ | = op(1) and |Sx∗y∗ − β σ2

ξ | = op(1). Hence, by
Slutsky’s theorem, we have β̂∗ → β in probability and α̂∗ → α in probability.
This completes the proof.
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