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Abstract: Measuring the causal effect of a treatment from observational data is often

difficult because the treatment status of a subject may be confounded with non-

randomized factors, such as those that affect a subject’s choice of treatment. An

approach to remedying this problem is through the use of instrumental variables.

We extend the instrumental variables framework proposed by Angrist, Imbens and

Rubin (1996) by introducing a latent “threshold to receive treatment” parameter for

each unit in the study. Incorporation of latent thresholds in the model permits the

inclusion of discrete or continuous instruments, covariate information, and flexible

choices of distributions. We apply our methodology to examine the effect of cardiac

catheterization on short-term survival of a cohort of elderly heart attack patients.
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1. Introduction

A major difficulty in measuring treatment effects in non-randomized observa-
tional studies is that a subject’s treatment status may depend on confounding fac-
tors that can also affect the subject’s response. An approach to address this prob-
lem involves the use of instrumental variables techniques. The main difference
between instrumental variable methods and covariate adjustment approaches is
that the former assumes that the treatment assignment is non-ignorable, and
requires the presence of an “instrument” in order to reduce or remove confound-
ing bias. An instrumental variable is designed to balance unobserved covariates
across treatment groups so that the mechanism by which units obtain values of
an instrument may be considered ignorable. In addition to balancing unobserved
covariates, an instrumental variable is assumed to covary with treatment status.
Identifying a variable satisfying these conditions can often be difficult. In some
instances, an instrumental variable can be found that is explicitly randomized to
units, in which case the instrument clearly balances unobserved covariates. For
example, randomized studies confounded with treatment non-compliance may be
analyzed by employing treatment assignment as an instrument (Rubin (1998),



518 MARK E. GLICKMAN AND SHARON-LISE T. NORMAND

Imbens and Rubin (1997a)). However, most applications of instrumental variable
techniques must be argued on a case-by-case basis.

Exploration of the instrumental variables approach within the statistics com-
munity has been attracting more attention. Nagelkerke, Fidler and Buwalda
(1988) use an instrumental variable approach to make inferences about disease
statuses of patients from diagnostic tests. Angrist and Krueger (1992) use in-
strumental variables to measure the effect of age at school entry on educational
attainment. Stefanski and Buzas (1995) examine an instrumental variable ap-
proach to binary response regression. Angrist, Imbens and Rubin (1996) and
Imbens and Rubin (1997a) present a more foundational approach and lay out
assumptions to develop models with binary instrumental variables for inferring
causal effects.

This article develops a general framework for Bayesian inference for a partic-
ular class of instrumental variable models. Our model, which is founded on the
assumptions laid out in Angrist, Imbens and Rubin (1996), specifies the effect of
the instrumental variable through a conditional structure via unobserved latent
variables. As we subsequently describe, these latent variables have the natural
interpretation of being the individuals’ “thresholds” to receive treatment, and
the inclusion of these latent variables extends the work of Angrist, Imbens and
Rubin to permit greater modeling flexibility while still retaining their basic as-
sumptions. For example, our framework allows for multi-valued instrumental
variables, a variety of distributional assumptions for the data, and incorporation
of covariate data. We note, however, that with greater flexibility in modeling,
there is greater room for model misspecification and overfitting. Thus model di-
agnostics and selection are particularly important components in our framework.

We present our modeling framework for inferring causal effects with instru-
mental variables in Section 2. We show how the assumptions of Angrist, Imbens
and Rubin can be combined into a parametric model by the inclusion of a latent
threshold parameter for each unit. Innovations in computational methods for
model fitting through Markov chain Monte Carlo simulation, and in particular
the Gibbs sampler (e.g., Gelfand and Smith (1990)), permit straightforward in-
ferential procedures. We apply our approach in Section 3 to measure the effect of
cardiac catheterization on a cohort of elderly heart-attack patients. We discuss
limitations and extensions of our model in Section 4.

2. A Latent Threshold Parameter Model

Our interest centers on measuring the causal effect of a dichotomous treat-
ment, denoted D, on a response, denoted Y , from an observational study involv-
ing n subjects. For the development of our model, three variables (and possibly



LATENT THRESHOLD INSTRUMENTAL VARIABLES MODEL 519

covariates) are observed for each subject: the binary treatment status Di for
subject i, with Di = 0 when subject i is exposed to control and Di = 1 when
subject i is exposed to treatment; an instrumental variable Zi for subject i; and
one of two potential responses, Yi1 and Yi0, corresponding respectively to the
response when subject i is exposed to treatment or to control. Under our frame-
work, at most one of Yi1 or Yi0 can be observed, so the unobserved response (or,
more precisely, averages of unobserved responses) must be inferred in the model
fitting process. Both sets of outcome variables, Yi1 and Yi0, and the instrumental
variable, Zi, can be discrete, continuous, or mixtures of discrete and continuous.
The difficulty in measuring the causal effect of treatment from observational data
is that a subject’s treatment status, Di, may depend on factors that are related
to the subject’s potential responses Yi1 and Yi0, so that an analysis which ig-
nores these confounding factors will result in incorrect inferences. Intuitively,
the instrumental variable, Zi, can often be thought of as taking on randomly
assigned values (as if the Zi themselves were randomized), but having a strong
relationship to treatment status. Instrumental variable techniques remove or re-
duce confounding by projecting the Yi1, Yi0, Di and the covariates into the space
spanned by the Zi.

We make four assumptions commonly used in instrumental variable models.
The first is the Stable Unit Treatment Value Assumption (SUTVA), as described
by Rubin (1978, 1980, 1990). Under this assumption, observed or potentially
observed values for a subject are unaffected by those of any other subject. The
second assumption, often termed “exclusion restriction”, is that potential re-
sponses Yi0 and Yi1 do not depend on the value of the instrumental variable Zi.
This assumption is discussed in econometric literature on instrumental variables,
and more recently in Angrist, Imbens and Rubin (1996) Viewing treatment sta-
tus, Di(Zi), as a function of Zi, the third assumption is the monotonicity of Di

with respect to Zi. We assume that for any two potentially observed values of
Zi, z∗1 < z∗2 , that Di(z∗1) ≤ Di(z∗2) for all i. This assumption asserts a particu-
lar functional relationship between Zi and Di that ensures the identifiability of
treatment effects. Other assumptions can be used in place of monotonicity (e.g.,
constant treatment effect) as required. Finally, we assume that the mechanism
generating the Zi is ignorable (Rubin (1978)). Thus, the Zi are assumed to be
independent of unobserved information.

The four underlying assumptions can be unified into a single framework by
making use of the following key idea. For monotonicity to hold, a subject will
be exposed to “treatment” when the subject’s value of Zi is high, and will be
exposed to “control” when Zi is low, assuming a subject is willing to belong to
either group. At some point between these extremes, a subject must possess
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a “threshold” value that partitions the values of Z into those that result in
the subject’s exposure to the treatment and those that result in the subject’s
exposure to the control. In this formulation of the problem, the exposure status
depends exclusively on whether Zi is greater or less than the subject’s threshold.
A threshold for one subject can clearly be different from another, and potential
responses Yi0 and Yi1 will typically depend on a subject’s threshold. It is the
introduction of a subject’s threshold parameter into the modeling framework
that permits a characterization of a large and flexible class of models for causal
effects using instrumental variables.

More formally, let Γi be the latent threshold parameter for subject i that de-
termines treatment status given the value of Zi. Conditional on Γi, the treatment
status of subject i is given by

Di =




1, if Zi ≥ Γi

0, if Zi < Γi.
, (1)

The model in (1) is equivalent to the definition of monotonicity described earlier
under a mild regularity condition. To prove equivalence, it is straightforward
to see (1) implies that for any z∗1 < z∗2 and conditional on any fixed Γi = γ,
Di(z∗1) ≤ Di(z∗2). The converse can be shown by construction, making the mild
assumption that Di is right-continuous with respect to z. We can then choose
Γi = inf{z : Di = 1}, which satisfies the conditions of our definition. If unit i

would never be exposed to treatment, then we set Γi = ∞; if unit i would always
be exposed to treatment, then we set Γi = −∞. Note that in many cases Γi

need not be uniquely defined, particularly when Z is a discrete variable, but this
poses no difficulties in the development of the model.

The Γi can be viewed not just as parameters in a latent probability model,
but as potentially observable quantities. If, in an experimental setting, one could
observe for subject i many values of the instrumental variable along with the
resulting treatment status, then Γi could be determined by noting the value of
the instrumental variable at which treatment status switches. Thus the Γi are
interpretable as quantities that could be known if appropriate data were collected
on individuals. In typical studies, where only a single value of Zi is observed for
each subject, the Γi would need to be inferred in the model fitting process.
Specifically, once Zi and Di are observed for unit i, (1) constrains the value of
Γi to be less than or equal to Zi (if Di = 1 was observed), or greater than Zi (if
Di = 0 was observed).

Our basic model makes the following three general distributional assump-
tions.

(Yi0, Yi1)|Di,Γi, Zi, xi, π ∼ G(y0, y1|Di,Γi, xi, π) (2)
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Di =




1, if Zi ≥ Γi,

0, if Zi < Γi.
(3)

Γi|Zi, ui, π ∼ p(γ|Zi, ui, π), (4)

where xi is covariate data in the response model for subject i, ui is covariate
data (possibly overlapping with xi) in the threshold model for subject i, π is a
vector of model parameters, and G and p are assumed probability distributions.
We also assume the Zi are generated by an ignorable data mechanism,

Zi|ui, η ∼ q(z|ui, η), (5)

where q is an assumed probability distribution, and the parameters η may or
may not be known in advance. In our modeling framework, we condition on the
Zi so that inferences about η (if η is unknown) are irrelevant.

The (joint) distribution in (2) relates the potential responses to both ob-
served variables (treatment status, covariate data) and latent variables (thresh-
old, other model parameters). The exclusion restriction assumption implies that
this distribution does not depend on any of the Zi. Because at least one of Yi1

or Yi0 will not be observed, its distribution can be integrated out. An important
feature of the response model is that differences among subjects’ treatment effects
not already explained by observed covariate data xi can be incorporated through
the latent threshold parameter Γi. The role of Γi in the response model is there-
fore to mitigate the bias associated with unobserved variables. Our framework
also permits the inclusion of observed covariate information in (4), the model
for the threshold parameters. An important benefit of having the flexibility to
model the threshold parameters is that covariates might provide information that
allows the thresholds to be inferred with greater precision. The stronger the re-
lationship, the more precisely the latent thresholds can be inferred. This in turn
results in less uncertainty about the distribution for the potential responses, so
more precise causal effects can be inferred. We explore threshold models with
covariates in Section 3.2.

The model framework in (2), (3) and (4) explicitly addresses the SUTVA,
the exclusion restriction of Zi given Di, and the monotonicity of Di with respect
to Zi. With ignorability assumed for Zi, our model can therefore be seen as an
extension of the modeling framework of Angrist, Imbens and Rubin that allows
for arbitrary distributional assumptions both at the data and threshold levels
of the model, inclusion of covariates, arbitrary functional relationships between
covariates and response, and so on. Some common examples of instrumental
variable models for causal effects can be seen as special cases of our framework.
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Example 1. Econometric program evaluation models

A class of econometric models that posit a latent variable has been considered
by Heckman and Robb (1985) and Heckman and Hotz (1989), and discussed
by Imbens and Angrist (1994). Such models have been used, for example, to
determine the effect of manpower training on productivity or earnings. Letting
Yi denote the observed response, a linear response model assumes

Yi = β0 + Diβ1 + Xiβ2 + εi. (6)

Here Xi is a matrix of covariates, εi is an error term centered at 0, and

Di =




1, if D∗
i ≥ 0,

0, if D∗
i < 0,

(7)

with
D∗

i = α0 + Xiα1 + Ziα2 + νi, (8)

where νi is an error term centered at 0, Zi is a scalar variable, and the Zi are
independent of νi and εi. In this model, Yi might be the observed productivity
for subject i, Di would be an indicator of whether subject i was selected for a
productivity training program, and Xi might be socio-demographic information
about subject i. Letting

Γi =
−α0 − Xiα1 − νi

α2

and setting

Di =




1, if Zi ≥ Γi,

0, if Zi < Γi,

a special case of our model results. Compared to these linear latent variable
models, our framework has several advantages. First, the latent variable model
described above assumes that, conditional on the covariates, the treatment effect
β1 is constant. In contrast, our model does not assume a constant treatment
effect. Differences among subjects due to unobserved variables as they relate
to the response may be difficult to incorporate into (6) in a meaningful way.
Secondly, the latent parameters in the more conventional models lack a natural
interpretation which is retained by our framework. Finally, our framework does
not restrict the models to particular functional forms and distributional assump-
tions which may be problematic to incorporate in latent variable models similar
to that in (6), (7), and (8).
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Example 2. Models with a binary instrument

Binary instrument models are commonly used to identify causal effects in
many applications. Angrist (1990) examines the effect of Vietnam veteran status
on income using draft lottery numbers (high/low) as an instrument. Imbens and
Rubin (1997b) reanalyze data from a study by Angrist and Krueger (1991) on
the effect of education on earnings, using season of birth (first or fourth quar-
ters) as the instrument. The treatment non-compliance problem, in which the
random assignment to treatment group may be considered an instrument, has
been examined by Efron and Feldman (1991) who, from a randomized clini-
cal trial with non-compliance, measure the effectiveness of a drug for lowering
cholesterol levels. Imbens and Rubin (1997a) present a foundational development
of using instrumental variables in randomized studies involving non-compliance.
For concreteness, we assume that our binary instrument application involves a
randomized study with non-compliance, though our discussion easily extends to
other situations with binary instruments.

Assume the binary instrument, Zi, is the treatment assignment variable
where Zi = 0 is assignment to the control group and Zi = 1 is assignment to the
treatment group. Following the development of Imbens and Rubin (1997a), the
monotonicity assumption for a model with an instrument Zi that takes on values
0 or 1 implies the existence of three types of subjects:

1. those for whom Di = 0 always,
2. those for whom Di = c when Zi = c for c = 0, 1, and
3. those for whom Di = 1 always.

The first type of subject never takes the treatment regardless of treatment
assignment (a “never-taker”), the second type complies with treatment assign-
ment (a “complier”), and the third type always takes the treatment regardless
of treatment assignment (an “always-taker”). Incorporating the monotonicity
restriction rules out the fourth type of individual who would do the opposite of
the treatment assigned. This setup allows for four types of potential responses;
Yi1 for always-takers, Yi0 for never-takers, Yi1 for compliers, and Yi0 for compli-
ers. Causal inference can only be defined for compliers because only compliers
can potentially be observed to take either treatment or control. It would not be
meaningful to consider a causal effect for a noncomplier who could only ever be
exposed to one treatment. It is for the compliers that an average causal effect is
of interest. Imbens and Angrist (1994) refer to the causal effect for compliers as
the “local average treatment effect” (LATE).

To map the problem into our framework, we assume that Γi can take on one
of three values in the set {−0.5, 0.5, 1.5}. When Γi = −0.5, Γi < Zi for both
possible values of Zi, so subject i would be an always-taker. When Γi = 1.5,
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Γi > Zi for both possible values of Zi, so subject i would be a never-taker.
Lastly, for Γi = 0.5, Di = 1 when Zi = 1, and Di = 0 when Zi = 0. This
corresponds to subject i being a complier.

The four distributions of potential responses in our framework are

Yi1|Γi = −0.5 ∼ G1(y|D = 1,Γi = −0.5, π),

Yi0|Γi = 0.5 ∼ G0(y|D = 0,Γi = 0.5, π),

Yi1|Γi = 0.5 ∼ G1(y|D = 1,Γi = 0.5, π),

Yi0|Γi = 1.5 ∼ G0(y|D = 0,Γi = 1.5, π).

Details for performing likelihood-based inference for such binary instrument mod-
els are described in Angrist, Imbens and Rubin (1996).

Inference for specific cases of our general framework can be performed us-
ing the method of moments, which is often implemented as a two-stage least
squares procedure. Typical applications of the method of moments for instru-
mental variable estimators can be found in standard textbooks in econometrics,
such as Bowden and Turkington (1984). Imbens and Angrist (1994) describe
conditions under which a method of moments instrumental variable estimator
can be equated to a weighted sum of local average treatment effects. Small sam-
ple properties of two-stage least squares estimators can be found, for example,
in Buse (1992) and Phillips (1983).

Likelihood-based approaches, including Bayesian methods, have only been
investigated in the context of simple models such as those described in Angrist,
Imbens and Rubin (1996) with binary instruments, and in constant treatment ef-
fect models as in Heckman and Robb (1985). For our latent threshold framework,
iterative simulation via the Gibbs sampler provides an important tool for model
fitting. We demonstrate this approach in the following section, where we infer
the causal effect of undergoing cardiac catheterization on mortality on elderly
heart attack patients.

3. Effect of Cardiac Catheterization on Short-term Mortality

McClellan, McNeil and Newhouse (1994), hereafter MMN, and McClellan
and Newhouse (1993) study the benefits for elderly patients of a diagnostic car-
diac catheterization during the first or “index” admission for acute myocardial
infarction (AMI). The data from their study included over 200,000 elderly Medi-
care patients discharged from a hospital with a principal diagnosis of AMI (all
ICD-9-CM codes 410 except those with a 2 in the fifth position) in 1987. Their
work used a generalized method of moments (GMM) instrumental variable ap-
proach (Chamberlain (1987)) through a two-stage least squares procedure to
estimate a treatment effect from their data. We reexamine this question in the
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context of our framework using a data set consisting of 3667 elderly Alabama
residents admitted to an Alabama hospital in 1990 with a principal diagnosis of
AMI.

3.1. Data description

For each patient in the data set, we have recorded whether a patient died
within 30 days of admission to the hospital (Y ), and whether a patient had un-
dergone a cardiac catheterization during the index admission for the AMI (D).
We also consider the following patient covariate information for modeling 30-
day mortality: gender, race (black/non-black), age, and urban/rural status of
a patient’s residence (whether a patient’s residence belongs to a Metropolitan
Statistical Area). These data were obtained retrospectively from Medicare uti-
lization claims data. We discuss other covariate information to include in the
threshold model in Section 3.2. Table 1 shows the distribution of patient covari-
ates and their relationship with 30-day mortality and frequency of undergoing
cardiac catheterization.

Table 1. Distribution of patient covariates and their relationship to 30-day
mortality and frequency of undergoing catheterization. Data were obtained
from a cohort of 3667 elderly Medicare beneficiaries residing in Alabama
discharged with a principal diagnosis of AMI in 1990.

Sample Percent Undergoing Percent
Stratum Total Catheterization Dead

Male 1791 37.2 23.6
Female 1876 26.5 26.5

Non-black 3165 33.1 25.1
Black 502 23.1 25.1

Age 65–69 792 52.1 16.4
Age 70–74 863 45.1 17.3
Age 75–79 832 30.0 22.7
Age 80–84 657 14.0 34.1
Age 85+ 523 4.0 43.6
Urban 2535 36.4 23.6
Rural 1132 21.3 28.5
Total 3667 31.8 25.1

Approximately 32% of the sample underwent a cardiac catheterization, with
younger patients having more frequent use of the procedure. Males, non-black
and urban patients tend to undergo cardiac catheterizations more often than
females, black and rural patients. The overall mortality rate for the sample was
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25%, with older patients experiencing 30-day mortality substantially more often
than younger patients.

We also have recorded the distance between a patient’s residence and the
nearest hospital equipped to perform cardiac catheterizations, and the distance
between a patient’s residence and the nearest hospital not equipped to perform
cardiac catheterizations regularly (we treat a hospital as “equipped” to perform
a cardiac catheterization if the hospital performed at least 5 catheterizations
on AMI patients in 1990; this definition is also used by MMN). Distances are
measured as the number of miles between the centroids of zip code areas. These
distance measures will be used to construct the instrumental variable used in our
analysis, which we describe below.

The goal of our analysis is to infer the expected difference in 30-day mortal-
ity when patients undergo catheterization versus when patients do not undergo
catheterization. Clearly, causal inference is hindered by unobservable biases be-
cause the data were not the result of a randomized design. For example, patient
severity on admission is an unobserved factor that may relate to both the deci-
sion to “treat” (catheterization presents greater risk to patients in more serious
condition) and survival probability. To account for these confounding biases,
we use an instrument similar to that described by MMN, and McClellan and
Newhouse (1993). We define “differential distance” to be the distance from a
patient’s residence to the nearest hospital equipped to perform a catheterization
subtracted from the distance from a patient’s residence to the nearest hospital
not equipped to perform a catheterization. Intuitively, the larger the differential
distance, the more accessible the hospital with a catheterization facility compared
to one without a catheterization facility, so the greater the chance a randomly
selected patient would undergo a cardiac catheterization if the patient’s differ-
ential distance is large than if it is small (or negative). Figure 1 displays the
distribution of differential distances in our data set. The differential distances
are between −68 and 22.4 miles, with a median differential distance at 0 miles.

MMN argue differential distance as an instrument both intuitively and empir-
ically. They show that the distribution of virtually all available patient covariates
stratified by differential distance groupings are similar. This adds credibility to
the belief that using differential distance may substantially reduce the impact of
hidden biases. As suggested above, monotonicity can be argued on the grounds
that a patient not having undergone a catheterization would not have elected to
undergo a catheterization if he or she lived even farther from a hospital equipped
to perform a catheterization. The exclusion restriction assumption in the con-
text of our example states that whether a patient would die, given both covariate
information and whether a patient underwent a catheterization, is not affected
by a patient’s differential distance. The SUTVA most likely holds for our data
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because the decision for one patient to undergo a catheterization is probably not
directly affected by another patient’s decision.
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Figure 1. Empirical distribution of differential distances. Differential distance
is defined as the difference between the distance a patient would need to travel
to the nearest hospital equipped to perform a cardiac catheterization and the
distance a patient would need to travel to the nearest hospital not equipped to
perform a cardiac catheterization. Positive differential distances correspond
to patients living closer to hospitals equipped to perform catheterizations.
The lowest differential distance is −68 miles, and the largest is 22.4 miles.
The median differential distance is 0 miles.

3.2. Modeling catheterization effect

In this section, we construct four instrumental variable models for measuring
the effect of cardiac catheterization. Our models are four different variations of
the framework established in (2), (3), and (4). For i = 1, . . . , 3667, let

Yi =

{
1 if patient i dies within 30 days of hospital admission,

0 otherwise,

Di =

{
1 if patient i underwent a catheterization,

0 otherwise,
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Zi = Differential distance stratum for patient i,

xi = Vector of mortality covariates for patient i,

Γi = Threshold distance for patient i.

Also, denote Γ to be the entire vector of Γi, D to be the vector of Di, Y to be
the vector of Yi, Z to be the vector of Zi, and X to be the matrix of xi.

Model 1:

For the first model, we assume that the latent threshold variable, Γi, for
patient i has a discrete distribution, taking on one of only seven values. The
potential values of Γi are displayed in Table 2. These values were chosen so
that the distribution of differential distance were relatively equally balanced be-
tween neighboring pairs of thresholds distances. The two outermost thresholds,
corresponding to −80 miles and 30+ miles, represent always-takers and never-
takers, respectively. For example, suppose a patient lives 20 miles closer to a
catheterization facility than a non-catheterization facility and does not undergo
a catheterization. Then this patient’s threshold to receive treatment must be
greater than 20. Among the possible threshold values, γi = 30.1 is the only
possibility (this conclusion applies to the model where the γi are discrete vari-
ables). Because this is the highest threshold value, we would conclude that this
patient would not undergo a catheterization at any differential distance. Such
patients are likely to be so unhealthy that the risk operative mortality would be
dangerously high.

Table 2. Threshold distances for Model 1. The latent variable Γi is assumed
to take on one of only seven values listed above.

Threshold Threshold Distance
γ1 –80 miles
γ2 –29.9 miles
γ3 –14.9 miles
γ4 –0.9 miles
γ5 1.1 miles
γ6 10.1 miles
γ7 30.1 miles

The model we assume for mortality is

pr(Yi = 1|D,Γ, Z,X, λ, δ, α, p) = logit−1(W ′
i (λ + Diδ) + x′

iα), (9)

where Wi is a vector of 7 components with jth component Wij = 1 if Γi = γj and
Wij = 0 otherwise, λ is the vector of effects associated with the threshold groups,
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δ is the vector of interaction effects of threshold group and treatment status, and
α are the covariate effects on 30-day mortality. The parameters p are discussed
below. The term W ′

i (λ + Diδ) assigns a different treatment effect (on the logit
scale) to each threshold group. This recognizes that the treatment effect may
differ depending on the latent threshold group, Γi, to which a patient is inferred
to belong. Note that the first and last components of δ are not identifiable
because patients for whom Γi = γ1 are always treated and patients for whom
Γi = γ7 are never treated, so these two parameters are set to 0.

The model for treatment status can be written as

Di =

{
1, if Zi ≥ Γi,

0, if Zi < Γi.
(10)

As before, this condition ensures both monotonicity of treatment status with
the instrument, and in conjunction with the model for mortality, ensures the
exclusion restriction of the instrument given treatment status.

We assume a general discrete model for threshold groups,

Wi|Z,X, λ, δ, α, p ∼ Multinomial(1, p), (11)

where p = (p1, . . . , p7) is a vector of 7 probabilities summing to 1. This model
can also be written as pr(Γi = γj) = pj for all j = 1, . . . , 7, noting the correspon-
dence in representation between Γi and Wi. We do not incorporate covariate
information at this level of the model as we assume that the distribution of Wi

is completely specified given the pj.
We choose a noninformative proper prior distribution on the the parameters

to reflect our initial uncertainty,

λ, δ, α ∼ N(0, 100 · I),

p = (p1, . . . , p7) ∼ Dirichlet(0.5, . . . , 0.5), (12)

where I is the identity matrix. These prior parameter values were chosen to allow
the data to dominate inferences.

Model 2:

The second model is identical to the Model 1 with one exception. Rather
than positing seven values for Γi, Model 2 posits only three. Thus, there are
fewer parameters in the model for mortality (because Wi is a vector of only 3
values), and the vector p of multinomial probabilities has three elements. The
model with seven threshold levels may be over-parametrized, and a model that
assumes only three threshold levels may sufficiently describe the variability in
thresholds across units. Table 3 shows the three threshold distances assumed for
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Model 2. For Model 2, a patient with Γi = γ1 is a never-taker, and a patient
with Γi = γ3 is an always-taker. Only when patient i is inferred to have Γi = γ2

is a treatment effect defined.

Table 3. Threshold distances for Model 2. The latent variable Γi is assumed
to take on one of only three values listed above.

Threshold Threshold Distance
γ1 –80 miles
γ2 0 miles
γ3 30 miles

Model 3:

In the third model, the thresholds are assumed to be continuously dis-
tributed. The model we assume for mortality is given by

pr(Yi = 1|D,Γ, Z,X, δ, α) = logit−1(DiδD + ΓiδΓ + DiΓiδDΓ + x′
iα). (13)

The parameters δD, δΓ and δDΓ are the effects of treatment, latent threshold, and
their interaction, respectively. We let δ denote the collection of these three pa-
rameters. This component of Model 3 is analogous to Models 1 and 2 where each
treatment/threshold combination corresponded to different effects on mortality.
The current model is more restrictive in that the log-linearity of the threshold
effect on mortality is assumed.

The model for treatment status is assumed to be

Di =

{
1, if Zi ≥ Γi,

0, if Zi < Γi.
(14)

The model in (14) is identical to the model for treatment status in Models 1
and 2.

Finally, the model for thresholds is assumed to be normally distributed, that
is

Γi|Z,X, δ, α, µ, σ2 ∼ N(µ, σ2). (15)

This model assumes that the Γi come from a single normal distribution.
A noninformative prior distribution is assumed for all parameters, that is,

δ, α ∼ N(0, 100 · I),

µ ∼ N(0, 10000),

p(σ2) ∝ 1/σ2. (16)

These distributions reflect the initial uncertainty in the parameter values.
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Model 4:

Model 4 is similar to Model 3 in that the threshold is assumed to be con-
tinuous. The difference is that the distribution of the thresholds are assumed to
depend on covariates. Thus, the model for Γi is a linear regression with

Γi|Z,X, δ, α, ui , β, σ2 ∼ N(u′
iβ, σ2), (17)

where ui is a vector of covariates for patient i that relate to the value of the
threshold parameter, and β is a vector of the effects of these covariates. The co-
variates used in this stage of the model, all categorical, are displayed in Table 4.
Apart from age information, all of the covariates at this stage of the model are
indicators of comorbid conditions (i.e., conditions of poor health not directly re-
lated to the severity of the patient’s AMI). At the physicians’ discretion, patients
who are unhealthy by virtue of having several comorbid conditions do not typi-
cally undergo catheterizations because they lead to revascularization procedures
such as coronary angioplasty or bypass surgery. Although there is no significant
surgical risk associated with catheterization, the same can not be said of the
risk associated with revascularization procedures. In such a situation, a patient
would likely have a large value of Γi, and including the comorbid information
would aid in inferring the Γi more precisely. This would in turn result in greater
precision in inferences about the local average treatment effect.

Table 4. Covariates for thresholds in Model 4. The covariates include age
information and comorbid conditions. Less than 8–9% of the 3667 patients in
the sample experience the comorbid conditions, with the exception of chronic
pulmonary disease which affects 14.4% of the sample.

Covariate for modeling threshold parameters Frequency in sample
Age 65–69 0.216
Age 70–74 0.235
Age 75–79 0.227
Age 80–84 0.179
Age 85+ 0.143
Cancer 0.021

Connective tissue disorder 0.003
Dementia 0.006

Uncomplicated diabetes 0.093
Diabetes with end organ damage 0.082

Chronically debilitating neurological disorders 0.014
Paralysis 0.003

Chronic pulmonary disease 0.144
Chronic renal failure without dialysis 0.020
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The prior distribution is the same as in Model 3, replacing the distribution
for µ with

β ∼ N(0, 10000). (18)

Summary of four models:

The key features of the four models can be summarized as follows:
• Model 1: Seven threshold levels modeled multinomially, no covariates in

threshold model,
• Model 2: Three threshold levels modeled multinomially, no covariates in

threshold model,
• Model 3: Continuous threshold levels assumed to follow a normal distribution,

no covariates in threshold model, and
• Model 4: Continuous threshold levels assumed to follow a normal distribution

conditional on covariates (i.e., linear regression).

3.3. Analysis via iterative simulation

The four models in the preceding section were fit using Markov chain Monte
Carlo simulation via the Gibbs sampler. This involved iteratively simulating
values from three sequences of conditional posterior distributions. The details of
the Markov chain simulation can be found in Appendix A.

For each model, a single “pilot” Gibbs sampler with starting values at the
prior means was run to determine regions of the parameter space with high
posterior mass. Four parallel Gibbs samplers for each model were then run with
overdispersed starting values relative to the draws of the parameter values from
the pilot sampler. Each sampler was run for 20000 iterations and convergence
was diagnosed by examining the potential scale reduction (Gelman and Rubin
(1992)) of the parameters in the mortality model, and the parameters in the
model for the thresholds. The potential scale reduction is an estimate of the
factor by which the variance of the current distribution of draws in the Gibbs
sampler will decrease with continued iterations. Values near 1 are indicative
of convergence. After appropriately transforming variables, all the estimated
potential scale reductions for all parameters based on samples beyond iteration
10000 were no more than 1.02, which appears close enough to 1 for practical
purposes to assume the Gibbs sampler has reached its stationary distribution.
We used the final 10000 posterior draws from each of the four sampler series
in each model as the final sample upon which to base inferences. In addition
to producing model parameter draws for each Gibbs sampler iteration beyond
iteration 10000, we also produced draws of the overall local average treatment
effect (LATE), and the LATE stratified by covariates.
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3.4. Results

The posterior distribution of the LATE for each of the four models is shown
in Figure 2. In each model, the LATE is calculated at every iteration of the
Gibbs sampler for patients having a defined treatment effect. Patients inferred
to have threshold values of γ1 and γ7 in Model 1, and γ1 and γ3 in Model 2, are
excluded from the LATE calculation because a causal effect is not defined for
these threshold values. In Models 3 and 4, threshold values inferred to be lower
than the minimum differential distance or higher than the maximum differential
distance are excluded from the LATE calculation. The posterior mean LATE for
the four models range from −0.146 for Model 4 to −0.247 for Model 2. Models 1
and 2 show greater variability of the LATE. This is due to the larger proportion
of observations that are excluded when constructing the average treatment effect.

−0.6−0.6

−0.6−0.6

−0.2−0.2

−0.2−0.2

0.00.0

0.00.0

0.20.2

0.20.2

LATE for Model 1 LATE for Model 2

LATE for Model 3 LATE for Model 4

Mean = −0.166 Pr(effect> 0) = 0.021 Mean = −0.247 Pr(effect> 0) = 0.005

Mean = −0.215 Pr(effect> 0) = 0 Mean = −0.146 Pr(effect> 0) = 0

Figure 2. Posterior distribution of the local average treatment effects
of catheterization on mortality from our four instrumental variable
models. The local average treatment effect is defined as the average
mortality when all patients undergo catheterization less the average
mortality when all patients do not undergo catheterization for patients
who are inferred to potentially receive both treatments. The solid
vertical line corresponds to the posterior means.
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Table 5. Posterior summaries of the local average treatment effect for each
of the four fitted models. Negative values indicate that undergoing cardiac
catheterization increases probability of 30-day survival. The treatment effect
for individual strata and the overall treatment effect were computed from the
model fit. For each stratum, the posterior means are displayed with the 95%
central posterior intervals in parentheses below.

Stratum Model 1 Model 2 Model 3 Model 4
Overall –0.166 –0.247 –0.215 –0.146

(–0.334, –0.005) (–0.416, –0.063) (–0.315, –0.120) (–0.233, –0.064)

Male –0.161 –0.247 –0.215 –0.149
(–0.331, –0.007) (–0.417, –0.063) (–0.320, –0.120) (–0.239, –0.066)

Female –0.170 –0.246 –0.214 –0.143
(–0.340, –0.001) (–0.417, –0.062) (–0.312, –0.120) (–0.230, –0.060)

Non-black –0.165 –0.249 –0.217 –0.148
(–0.335, –0.006) (–0.419, –0.063) (–0.319, –0.121) (–0.236, –0.065)

Black –0.171 –0.237 –0.199 –0.132
(–0.340, 0.016) (–0.405, –0.058) (–0.297, –0.109) (–0.219, –0.052)

Age 65–69 –0.144 –0.233 –0.195 –0.141
(–0.307, –0.004) (–0.403, –0.057) (–0.304, –0.102) (–0.229, –0.064)

Age 70–74 –0.147 –0.229 –0.188 –0.135
(–0.302, –0.003) (–0.398, –0.055) (–0.292, –0.100) (–0.218, –0.060)

Age 75–79 –0.166 –0.242 –0.207 –0.145
(–0.332, –0.003) (–0.414, –0.060) (–0.309, –0.114) (–0.235, –0.061)

Age 80–84 –0.193 –0.266 –0.257 –0.176
(–0.394, –0.003) (–0.440, –0.070) (–0.367, –0.144) (–0.291, –0.064)

Age 85+ –0.205 –0.274 –0.291 –0.189
(–0.435, –0.005) (–0.449, –0.074) (–0.411, –0.154) (–0.329, –0.056)

Rural –0.166 –0.248 –0.225 –0.153
(–0.343, 0.007) (–0.412, –0.065) (–0.322, –0.130) (–0.242, –0.067)

Urban –0.165 –0.246 –0.210 –0.143
(–0.337, –0.006) (–0.420, –0.061) (–0.314, –0.115) (–0.231, –0.062)

Table 5 summarizes the posterior distribution of the overall LATE for all four
models, and the distributions stratified by gender, race, age, and urbanicity. The
table shows posterior mean estimates along with central 95% posterior intervals.
All four posterior intervals for the overall local average treatment effects are below
0. This suggests evidence under the modeling assumptions that catheterization
does indeed have a positive effect. The catheterization effect appears to be larger
(a more negative difference) for older patients, though the posterior intervals
reveal a fair amount of variability. The treatment effect stratified by gender,
race or urbanicity does not differ substantially from the overall average treatment
effect.
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Table 6. Posterior summaries of covariate effect on mortality for each of the
four fitted models. The larger the covariate effect, the greater the impact on
the probability of 30-day mortality. For each covariate, the posterior means
are displayed with the 95% central posterior intervals in parentheses below.
Higher parameter values indicate a greater probability of 30-day mortality.

Effect Model 1 Model 2 Model 3 Model 4
Female –0.235 –0.098 –0.097 –0.089

(–0.704, 0.100) (–0.336, 0.135) (–0.326, 0.130) (–0.318, 0.142)
Non-white –0.585 –0.181 –0.169 –0.182

(–1.407, –0.013) (–0.512, 0.148) (–0.493, 0.147) (–0.507, 0.138)
Age 65–69 –1.933 –1.092, –0.993 –1.133

(–2.932, –1.049) (–1.485, –0.715) (–1.457, –0.545) (–1.537, –0.739)
Age 70–74 –1.928 –1.140 –1.042 –1.204

(–2.855, –1.100) (–1.513, –0.782) (–1.492, –0.600) (–1.605, –0.813)
Age 75–79 –1.641 –0.966 –0.886 –1.110

(–2.473, –0.905) (–1.314, –0.627) (–1.326, –0.453) (–1.546, –0.684)
Age 80–84 –1.150 –0.557 –0.485 –0.802

(–1.951, –0.456) (–0.895, –0.229) (–0.920, –0.050) (–1.308, –0.302)
Age 85+ –0.722 –0.268 –0.198 –0.670

(–1.557, –0.059) (–0.622, 0.085) (–0.650, 0.254) (–1.341, –0.009)
Rural –0.034 –0.040 0.070 0.107

(–1.433, 1.316) (–0.364, 0.244) (–0.181, 0.318) (–0.135, 0.353)

Table 6 shows posterior summaries of the covariate effects, α, on mortality
after controlling for the effect of catheterization and threshold to receive treat-
ment. All four models seem relatively similar in their parameter summaries,
which may be interpreted identically across models. According to the 95% pos-
terior intervals, gender, race and urbanicity have little effect on mortality beyond
the effect explained by catheterization and the threshold parameter. Younger pa-
tients, not surprisingly, tend to survive longer than older patients, as indicated
by the positive relationship between the posterior parameter estimates and age.
The posterior intervals for the components of α are fairly wide, particularly for
Models 1 and 2. The reason for the posterior variability in Models 1 and 2 is
related to the degeneracy that could occur during the iterative simulation. If
during an iteration no patient is inferred to have a particular threshold value,
then the conditional posterior distribution of the covariate effects, α, will be
degenerate. Such a degeneracy is much less likely to occur in Models 3 and 4.

A deeper examination of the results of fitting Models 3 and 4 reveals that the
inclusion of covariates in the threshold model does not seem to add substantially
in explaining the variability of the thresholds. While age has a strong positive
association with effect on a patient’s threshold (older patients are inferred to
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have larger values of Γi), and all the comorbid conditions except uncomplicated
diabetes are associated with larger thresholds, the reduction in variance due to
these additional covariates is small. In particular, from Model 3, a 95% central
posterior interval for σ, the standard deviation of the Γi unconditional on covari-
ates is (39.29, 50.28) with an estimated posterior mean of 44.38. From Model 4,
where σ is fit conditional on the covariates, the 95% central posterior interval is
(37.46, 49.67) with an estimated posterior mean of 42.96. This drop in σ could
potentially be greater if more predictive covariates were available.

The large variability in the posterior distribution for the local average treat-
ment effect, particularly in Models 1 and 2, can be explained by examining the
posterior distribution of threshold probabilities. This is summarized in Figures 3
and 4. For Model 1, the medians of the posterior distributions for pr(Γi = γ1)
and pr(Γi = γ7) are 0.111 and 0.400, respectively. This indicates that an average
treatment effect is computed based on an average of only 1−0.111−0.400 = 48.9%
of the data. Similarly, for Model 2, the posterior medians of pr(Γi = γ1) and
pr(Γi = γ3) are 0.279 and 0.556, respectively. Here, an average of only 16.6% of
the data is used to calculate a local average treatment effect. This loss in effi-
ciency is, in essence, the cost for accounting for the effects of confounding biases.
It is also worth noting that the posterior distribution of threshold parameters,
Γi, do not change smoothly, so the multinomial assumption on the Γi captures
features of the underlying continuous distribution of Γi that might not otherwise
be apparent. By contrast, Models 3 and 4 make a strong assumption about the
functional relationship (i.e., log-linear) of Γi and survival probability.
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Figure 3. Posterior distribution for the probabilities of belonging to each
latent threshold group in Model 1. The high probability of belonging to
the group with the largest thresholds suggest that a substantial fraction of
the patients in the sample would never undergo a catheterization given their
covariates.
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Figure 4. Posterior distribution for the probabilities of belonging to each
latent threshold group in Model 2. The local average treatment effect is
defined only for patients inferred to have a threshold distance of 0, so that
effectively less than 20% of the sample is used to estimate the treatment
effect.

3.5. Model comparison

To compare the models, we examine how well they each predict responses on
a subset of the sample. We refit each of our models leaving out a random “val-
idation” sample of 200 observations, the same 200 observations for each model.
Each Gibbs sampler was run for a burn-in period of 3000 iterations, with starting
values at the posterior means from the previous fits. For the next 1000 iterations,
we calculated a measure of predictive fit; given the model parameters at an iter-
ation, we calculated for out-of-sample patient i, i = 1, . . . , 200, the probability of
30-day mortality, πi. We then computed the average log-(predictive)-likelihood
(ALPL) for these 200 cases,

ALPL =
1

200

200∑
i=1

(yi log πi + (1 − yi) log(1 − πi)) ,

where yi is 1 if the patient died within 30 days, and 0 otherwise. Larger values
of ALPL indicate better prediction to the validation sample. A model that
predicted with only 50% accuracy (random guessing) would produce an ALPL
of log 0.5 = −0.693.
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Figure 5. Posterior distributions for the average log-(predictive)-likelihood
(ALPL) computed over the 200 observations left out of the model fit. Larger
values of ALPL indicate better predictions. The plot demonstrates that, on
average, Model 1 outpredicts the other three models.

Figure 5 shows the comparison of the posterior distributions of ALPL for
each of the four models via boxplots. The figure indicates that all four models
predict better than random, and, on average, Model 1 predicts the validation
sample responses substantially better than the other three models. The large
posterior variability of the ALPL for Model 1 may be related to the degeneracies
induced by the model fit in which no patients are inferred to belong to a threshold
group. A comparison of the ALPL for Models 1 and 2 reveals that using seven
threshold levels per patient captures greater variability than using only three.
The distribution of the ALPL for Models 3 and 4 demonstrate that using a
continuous threshold parameter is too restrictive an assumption compared to
a multinomial threshold with seven levels. It appears from the comparison of
distributions for Models 3 and 4 that using covariate information at the threshold
level improves predictability, though not substantially.

We also fit the model using a GMM approach via the two-stage least squares
analysis used in MMN. From this analysis, the estimated overall treatment effect
from our data is −0.1520, with an approximate standard error of 0.115. This
result is comparable with those of our models, though the GMM standard error
is slightly larger. We expect the results to be somewhat similar because the large
sample size guarantees that the GMM estimator is well-behaved. Because our
framework uses likelihood-based inference rather than moment method inference,
the properties of our procedure are more easily understood, especially in small
to moderate sized samples.
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Figure 6. Posterior distribution of the average treatment effect of undergoing
catheterization from a logistic regression model. The average treatment effect
is defined as the average mortality when all patients undergo catheterization
less the average mortality when all patients do not undergo catheterization.
The solid vertical line corresponds to the posterior mean of −0.2412.

3.6. Unconfounded treatment assignment

For comparative purposes, we fit a model for mortality that ignores dif-
ferential distance as an instrumental variable. This can be accomplished by
fitting a logistic regression model using a uniform prior distribution on the re-
gression coefficients to obtain (potentially biased) inferences about the effect of
catheterization on mortality. We simulated average treatment effects from a nor-
mal approximation to the posterior distribution of regression coefficients. This
was carried out by drawing individual samples from the normal distribution of
coefficients, calculating the posterior probabilities of mortality for each patient
conditional on undergoing and not undergoing catheterization, simulating two
Bernoulli random variables (catheterization, no catheterization) for each patient,
and then calculating the average difference across all patients. This process was
performed 200 times to produce an approximate posterior distribution for the
(biased) treatment effect. The distribution is summarized in Figure 6. The pos-
terior mean from this model is −0.2412. The distribution is tightly centered
at the mean, with a 95% central posterior interval of (−0.2697,−0.2121). This
wrongly suggests that undergoing a catheterization improves chances of 30-day
survival with complete certainty. Naturally, this naive analysis does not account
for the possible confounding biases.
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4. Conclusions

The importance of using instrumental variables in non-randomized study
designs can be seen from the catheterization example. Using only covariate ad-
justment results in model inferences that are incorrectly precise. Incorporating
an instrumental variable into our model produces inferences with appropriately
large variability that accounts for the selection biases in the study design. The
increase in uncertainty in our particular model is a result of patients being clas-
sified into compliers and non-compliers, treatment effects not being defined for
the latter group.

As with any modeling framework, an important issue in the use of our
methodology is that the model assumptions apply to the data. This is espe-
cially important for assumptions such as the monotonicity of treatment choice
with the instrument, which cannot be verified empirically, though has testable
implications. The reason differential distance in our example can be argued to
satisfy monotonicity relies on the nature of the index AMI hospital admission.
Because of the emergent nature of an AMI, individuals who suffer an infarct are
typically admitted to a nearby hospital. Whether a patient is taken to a hospital
equipped to perform a catheterization versus one that does not is, to a large de-
gree, a function of the distances to different candidate hospitals. By contrast, if
a study were performed to assess the effect of the treatment on patient outcome
of early-stage breast cancer via breast-conserving surgery versus mastectomy
(breast removal), then differential distance to facilities equipped with radiation
therapy facilities would not be an appropriate instrument. In this case, it is not
likely that a patient would choose breast-conserving surgery if the differential
distance to a hospital with radiation therapy facilities were smaller. Because the
successful treatment of breast cancer does not depend so crucially on the prompt
delivery of the patient to a hospital, the choice of the type of hospital is not as
much a function of distances to various hospitals as it is of other factors. Factors
such as choice of physician or recommendations to undergo treatment at a par-
ticular facility, make monotonicity an untenable relationship between differential
distance and treatment choice.

The difficulty in using our framework is that greater flexibility in choice of
models requires more care in selecting appropriate models. The approach we have
taken with our mortality model involved examining several instrumental variable
models and comparing predictive characteristics. Alternative approaches would
involve learning the shapes of the functional relationships through flexible re-
gression methods (e.g., non-parametric regression procedures) and then modeling
the instrument and threshold parameters as continuous variables after properly
choosing a functional form. This is an area for future work.
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The use of latent threshold parameters in our instrumental variable approach
not only permits the specification of commonly used assumptions in a conve-
niently parametrized model, but permits a flexible choice of assumptions about
the probability models and the data structure. With the recent addition of com-
putational techniques such as iterative simulation to perform inference, fitting
the models we propose, or their extensions, is straightforward.
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Appendix

Conditional Distributions for MCMC Sampling

Gibbs sampling for Models 1 and 2
Conditional posterior distribution of λ, δ, α

The conditional posterior distribution of the mortality effect parameters is
proportional to a product of a binomial likelihood involving terms that only ap-
pear in (9) and a normal prior distribution. Generating parameter values from
this distribution may be carried out through rejection sampling, as described by
Zeger and Karim (1991). Following their approach, the product of the binomial
likelihood and normal prior distribution is approximated by a normal distribu-
tion with the same mode and twice the variance. A single draw is obtained
by simulation from the approximating normal distribution, and this is accepted
with a probability proportional to the ratio of the actual posterior density to
the approximating normal density; otherwise the draw is rejected. This process
is repeated until a draw is accepted. The resulting draw is a sample from the
desired conditional posterior distribution.

Conditional posterior distribution of p
The conditional posterior distribution of multinomial probabilities for thresh-

old groupings is proportional to a product of a multinomial likelihood and a (con-
jugate) Dirichlet prior distribution. The resulting product is therefore a Dirichlet
density. A sample from a Dirichlet distribution may be obtained, for example, by
generating Gamma random variables with shape parameters equal to the Dirich-
let parameters, and then computing the ratio of each Gamma draw to the sum
of all the Gamma draws.
Conditional posterior distribution of Γi

Conditional on the data and the remaining parameters, the posterior distri-
bution of the Γi are independent and may be drawn individually. The distribution
of a single Γi is proportional to the product of three terms,
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f(Γi|λ, δ, α, Y,D,X,Z, p)

∝
(
QYi

i (1 − Qi)(1−Yi)
)
·
(
(∆[Zi ≥ Γi])Di(∆[Zi < Γi])(1−Di)

)
·
(
pWi1
1 · · · pWiK

K

)
,

where
Qi = logit−1(W ′

i (λ + Diδ) + x′
iα).

and where ∆[·] is 1 if the argument is true, and 0 otherwise. This product can be
evaluated for each of the K values of Γi and then standardized to sum to 1, where
K = 7 for Model 1 and K = 3 for Model 2. Note that the product evaluates
to 0 when Zi < Γi and Di = 1, or when Zi ≥ Γi and Di = 0, so that sampling
may be performed more efficiently by excluding threshold groupings resulting in
0 probability.

Gibbs sampling for Models 3 and 4

Conditional posterior distribution of δ, α

Analogous to Models 1 and 2, the conditional posterior distribution of δ, α is
proportional to a product of a binomial likelihood and a normal prior distribution.
Values of δ and α are simulated via rejection sampling, as described above.

Conditional posterior distribution of µ or β

The conditional posterior density of µ in Model 3 is proportional to the
product of a normal prior, centered at 0, and a normal likelihood where the Γi

are the data, and σ2 is the variance (treated as known). The resulting density
is therefore normal, and values from this distribution may be simulated without
difficulty.

For Model 4, the conditional posterior density of β is proportional to the
product of a multivariate normal prior, centered at 0, and a normal likelihood
which is the regression of the Γi on the covariates, ui, given the variance is σ2.
The resulting density is multivariate normal, so that values of β may be simulated
using standard methods.

Conditional posterior distribution of σ2

The conditional posterior density of σ2 is the product of the prior of 1/σ2

and a scaled reciprocal-χ2 likelihood (product of normal densities). The resulting
density is therefore also a scaled reciprocal-χ2 density with the appropriate de-
grees of freedom (n−2 for Model 3, and n−16 for Model 4, where n = 3667, the
sample size). Drawing from the reciprocal-χ2 distribution can be accomplished
by drawing from the χ2 distribution with the same degrees of freedom, and then
taking the reciprocal of the result.

Conditional posterior distribution of Γi

As in Models 1 and 2, the conditional posterior distribution of the Γi are
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independent, so they may be drawn separately. The conditional posterior distri-
bution of Γi in Models 3 and 4 is proportional to the product of three terms,

p(Γi) ∝
(
Qi(Γi)Yi(1 − Qi(Γi))(1−Yi)

)
·
(
(∆[Zi ≥ Γi])Di(∆[Zi < Γi])(1−Di)

)
·ϕ(Γi|µi, σ

2), (A.1)

where
Qi(Γi) = logit−1(DiδD + ΓiδΓ + DiΓiδDΓ + x′

iα)

and ϕ(·|µi, σ
2) is a normal density with mean µi (µi = µ in Model 3, and µi = u′

iβ

in Model 4) and variance σ2.
Obtaining a direct draw from this density can be difficult. Instead, we apply

the weighted bootstrap (Smith and Gelfand (1992)), which is closely related to
the SIR algorithm (Rubin (1988)). This can be applied as follows. The product
of the second and third factors in (A.1) correspond to an unnormalized trun-
cated normal density. We simulate eight values at random from this truncated
normal density. Denote these eight values γ1, . . . , γ8. Now compute the eight
unnormalized importance weights

Qi(γj)Yi(1 − Qi(γj))(1−Yi)

for j = 1, . . . , 8, and normalize them to sum to 1. Now resample a single value
from the eight with the computed importance weights. This procedure results
in a value that is approximately drawn from the desired conditional posterior
distribution.
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