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Abstract: Monte Carlo approximation of standard bootstrap confidence intervals

relies on the drawing of a large number, B say, of bootstrap resamples. Conventional

choice of B is often made on the order of 1,000. While this choice may prove to be

more than sufficient for some cases, it may be far from adequate for others. A new

approach is suggested to construct confidence intervals based on extreme bootstrap

percentiles and an adaptive choice of B. It economizes on the computational effort

in a problem-specific fashion, yielding stable confidence intervals of satisfactory

coverage accuracy.
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1. Introduction

The bootstrap method has been studied extensively in the context of con-
structing nonparametric confidence intervals for a real parameter. In practice, the
construction requires Monte Carlo simulations of a large number B of bootstrap
resamples. Most common bootstrap methods of the percentile kind derive the
confidence limits from intermediate order statistics based on these B resamples.
Examples include the backwards and hybrid percentile methods, the bootstrap-t
method, bias-corrected (BC) and accelerated bias-corrected (BCa) methods, and
the iterated bootstrap method. An overview of the above methods can be found
in, for example, Shao and Tu (1995, Ch. 4). Their practical implementation is
invariably subject to a Monte Carlo error due to the availability of only a fi-
nite number of bootstrap resamples. One trivial but computationally intensive
remedy for the above limitation is to draw more bootstrap resamples to better
approximate the tails of the bootstrap distribution. Heuristic arguments suggest
that a choice of B on the order of 1,000 often suffices for common situations, see
Efron (1987). It is therefore important to identify those situations which favour
such a conventional choice and those which do not. It will be shown that a much
larger B might be necessary for cases where the sampling distribution is highly
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skewed, where the sample size is small, or where the confidence level is very close
to one. On the other hand, although an infinite B corresponds to the exact the-
oretical bootstrap interval, increasing B indefinitely may not be always effective
in yielding an accurate interval, to say nothing of computational cost. There
are cases where a finite B can be used to adjust the Monte Carlo variation in a
constructive way to counterbalance the intrinsic coverage error of the theoretical
bootstrap interval.

Motivated by the need for an economical yet sensible choice of B, we propose
a new approach to constructing bootstrap confidence intervals based on an adap-
tive determination of B. It minimizes the Monte Carlo effort in a problem-specific
fashion. The resulting confidence intervals have desirable coverage accuracy, sta-
ble length and end points. While a standard α level bootstrap confidence limit is
typically obtained from the αth or (1−α)th bootstrap percentile, approximated
using a fixed number of B bootstrap resamples, our method always derives the
confidence limit from the extreme percentiles but adjusts B adaptively to give
the correct coverage. As a consequence, our approach minimizes the number of
resamples necessary for achieving the desired confidence level. This number is
not only usually much smaller than the conventional choice in cases where the
latter works perfectly, but also provides a safety measure against less nice cases
where the conventional choice proves to be inadequate. From another perspec-
tive, our method treats B as a calibration parameter to yield the correct nominal
coverage rather than to approximate the theoretical bootstrap associated with
an infinite B. The notion of Monte Carlo simulation error is therefore irrelevant
in our case, where B = ∞ in fact yields 100% coverage almost surely.

Section 2 gives the asymptotic coverage probabilities of the extreme boot-
strap and bootstrap-t percentiles. These probabilities serve as upper bounds for
the coverages of the standard “backwards percentile” method, which we shall
now call the “percentile” method for brevity, and bootstrap-t intervals. Their
sizes indicate the limitations of these intervals when approximated using a fixed
number of bootstrap resamples. Numerical examples are given to illustrate such
limitations for a variety of underlying distributions and nominal coverage levels.
We make use of the theoretical results in Section 2 to develop an “extreme” boot-
strap method of constructing confidence limits. Section 3 details the algorithm
of the method for both one-sided and two-sided intervals. In this paper we focus
for convenience on applications of the method to the percentile and bootstrap-t
constructions. The method can, however, be applied to other kinds of bootstrap
intervals. Section 4 presents a simulation study which compares our method
with some standard bootstrap methods. Section 5 summarizes our findings and
explores possible generalizations of our method. All technical details are given
in the Appendix.
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Hall (1986) hints at the order of magnitude of B necessary for maintaining
the theoretical coverage accuracy enjoyed by the bootstrap-t interval. Booth and
Hall (1994) obtain an optimal relationship between the numbers of inner and
outer level bootstrap resamples in construction of the iterated bootstrap confi-
dence interval based on coverage calibration. Corresponding results for iterated
bootstrap intervals based on end point calibration are given in Booth and Pres-
nell (1998). Lee and Young (1999) examine the joint effect of Monte Carlo and
sampling errors on coverage accuracy and develop an iterated bootstrap method
based on an adaptive choice of the number of inner level resamples.

2. Theory

2.1. Notation

Let X = (X1, . . . ,Xn) be a random sample drawn from an unknown d-variate
distribution F . Consider the problem of constructing nonparametric confidence
intervals for a real parameter θ. We assume Bhattacharya and Ghosh’s (1978)
smooth function model, under which θ = g(µ) for a smooth function g and
µ = E(X1). This model covers parameters which can be expressed as smooth
functions of moments of F , including such common examples as mean, variance,
ratio of means and correlation coefficient. A natural estimator of θ is θ̂ = g(X̄),
where X̄ = n−1 ∑n

i=1Xi.
We first introduce some notations. Define, for r = 1, 2, . . . and ij = 1, . . . , d ,

gi1···ir(x) = ∂r/(∂x(i1) · · · ∂x(ir)) g(x) and κi1,...,ir = cum
(
X(i1), . . . ,X(ir)

)
,

where x(i) denotes the ith component of the vector x, X is a generic random
vector distributed under F , and cum (·) denotes the cumulant. We write gi1···ir
for gi1···ir(µ), ĝi1···ir for gi1···ir(X̄), and denote by κ̂i1,...,ir the sample cumulants
based on X . The asymptotic variance of n1/2θ̂ is then σ2 =

∑d
i,j=1 gigjκ

i,j

and a plug-in estimator of σ2 is σ̂2 =
∑d

i,j=1 ĝiĝj κ̂
i,j. We may standardize and

studentize θ̂ to obtain, respectively, S = n1/2(θ̂ − θ)/σ and T = n1/2(θ̂ − θ)/σ̂.
Let X ∗ = (X∗

1 , . . . ,X
∗
n) be a generic bootstrap resample, obtained by random

sampling from X with replacement. A standard Monte Carlo approximation to
bootstrap confidence intervals relies on the drawing of a large number, B say, of
bootstrap resamples X ∗

1 , . . . ,X ∗
B . Define θ̂∗b and σ̂∗b to be the respective values of

θ̂ and σ̂ calculated from the resample X ∗
b instead of from X . Similarly, define

T ∗
b = n1/2(θ̂∗b − θ̂)/σ̂∗b . Denote by θ̂∗(1) ≤ · · · ≤ θ̂∗(B) and T ∗

(1) ≤ · · · ≤ T ∗
(B) the

order statistics of the θ̂∗b and the T ∗
b respectively. Standard bootstrap methods

make use of such order statistics to define upper and lower confidence limits as
well as two-sided intervals.
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2.2. Extreme coverage

We focus on two common bootstrap methods known respectively as the
percentile (Efron (1979)) and the bootstrap-t (Efron (1981)) methods. De-
note by [·] the integer part function. The percentile method specifies the up-
per and lower α level confidence limits to be θ̂∗([(B+1)α]) and θ̂∗([(B+1)(1−α)]) re-
spectively. The two-sided α level percentile method confidence interval is then
[ θ̂∗([(B+1)(1−α)/2]) , θ̂

∗
([(B+1)(1+α)/2]) ]. The corresponding bootstrap-t specifications

are θ̂ − n−1/2σ̂T ∗
([(B+1)(1−α)]) , θ̂ − n−1/2σ̂T ∗

([(B+1)α]) and

[ θ̂ − n−1/2σ̂T ∗
([(B+1)(1+α)/2]) , θ̂ − n−1/2σ̂T ∗

([(B+1)(1−α)/2]) ]

respectively. It is clear that, given a fixed B, the coverage probabilities of these
intervals can never exceed their counterparts obtained by substituting extreme
percentiles of the θ̂∗b and T ∗

b . More specifically, we have

pr ( θ ≤ θ̂∗([(B+1)α]) ) ≤ pr ( θ ≤ θ̂∗(B) )

and
pr ( θ ≤ θ̂ − n−1/2σ̂T ∗

([(B+1)(1−α)]) ) ≤ pr ( θ ≤ θ̂ − n−1/2σ̂T ∗
(1) ),

corresponding to the upper limits. Similar inequalities hold for the lower limits
and two-sided intervals. The above upper bounds, defined as the “extreme” cov-
erages and being free of α, indicate the highest possible coverage levels attainable
by the corresponding bootstrap confidence limits. They reveal in a sense the limi-
tations of standard bootstrap intervals, especially when the desired coverage level
is chosen so close to one that it exceeds these extreme coverages. Even the very
powerful iterated bootstrap method based on coverage calibration suffers from
the same limitations. See Beran (1987) for the iterated bootstrap approach.

Define

A1 =
∑
gigjgkκ

i,j,k, A2 =
∑
gigjgklκ

i,kκj,l,

A3 =
∑
gigjgkglκ

i,j,k,l, A4 =
∑
gigjgkglmκ

i,lκj,k,m,

A5 =
∑
gigjgklgmpκ

i,kκj,mκl,p, A6 =
∑
gigjgkglmpκ

i,lκj,mκk,p,

where the summation is over i, j, k, l,m, p = 1, . . . , d. Let φ be the standard
normal density function. We obtain asymptotic expansions for extreme coverages
associated with the percentile method and bootstrap-t confidence intervals. We
assume validity of Edgeworth expansions for the bootstrap distributions of S
and T . Hall (1992, §5.2 gives a detailed account of sufficient conditions for this
assumption. In short, they require that g be sufficiently smooth, that moments
up to a high order exist, and that Cramér’s condition holds.
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Proposition 1. Under Hall’s (1992, §5.2 smooth function model and assuming
that nδ ≤ B ≤ n∆ for any ∆ > δ > 0, we have

pr (θ ≤ θ̂∗(B)) = 1 − (B + 1)−1 − (1/6)n−1/2B−1b3σ−3A1{ 1 +O(b−2) }, (1)

pr (θ ≥ θ̂∗(1)) = 1 − (B + 1)−1 + (1/6)n−1/2B−1b3σ−3A1{ 1 +O(b−2) } (2)

and

pr (θ̂∗(1) ≤ θ ≤ θ̂∗(B)) = 1−2(B+1)−1−(1/36)n−1B−1b6σ−6A2
1{ 1+O(b−2) }, (3)

where b is the positive solution to Bφ(b− b−1) = b.

Extreme coverages given in Proposition 1 prescribe upper bounds for the
coverages of bootstrap percentile method intervals of any nominal coverage level.
In particular, (1) and (2) correspond respectively to bounds for the upper and
lower confidence limits, whereas (3) bounds the coverages of two-sided intervals.
Similar results are also obtained for the bootstrap-t method, as given in the
following proposition.

Proposition 2. Under the conditions of Proposition 1, we have

pr (θ ≤ θ̂ − n−1/2σ̂T ∗
(1)) = 1 − (B + 1)−1 + n−1B−1b4C{ 1 +O(b−2) }, (4)

pr (θ ≥ θ̂ − n−1/2σ̂T ∗
(B)) = 1 − (B + 1)−1 + n−1B−1b4C{ 1 +O(b−2) } (5)

and

pr (θ̂−n−1/2σ̂T ∗
(B) ≤ θ ≤ θ̂−n−1/2σ̂T ∗

(1))=1−2(B+1)−1+2n−1B−1b4C{1+O(b−2)},
(6)

where C = σ−6(2A1 + 3A2)(A1 + 2A2)/4− σ−4(2A3 + 12A4 + 6A5 + 3A6)/6 and
b is the positive solution to Bφ(b− b−1) = b.

Proofs of Propositions 1 and 2 are outlined in the Appendix. It is clear from
the propositions that a higher nominal level α calls for a bigger B. Note that
the factor A1 accounts for the skewness of the sampling distribution of θ̂. It thus
follows from (1) that a bigger B is typically required by the percentile method to
yield accurate upper confidence limits if the sampling distribution of θ̂ has a high
positive skewness. A similar requirement is also noted, according to (2), for the
lower limits if the distribution has a high negative skewness. For the two-sided
percentile method interval, a big B is generally necessary whenever the sampling
distribution of θ̂ is highly skewed, as can be seen from (3). Similar remarks may
also be made for the bootstrap-t method in the light of Proposition 2, although
the factor C now refers to more subtle properties of the sampling distribution of
θ̂. Moreover, the sample size n may affect the necessary size of B in a way which
depends on the signs of A1 and C.
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The results contained in Propositions 1 and 2 can also be viewed as supple-
ments to the large deviation properties of bootstrap distributions with unspecified
tail areas of interest. Here the Monte Carlo effort B should better be treated
as a calibration parameter of strategic value, rather than a source of undesirable
simulation error. Our emphasis is on its connection with the extreme coverage
and on ways to adjust it in order to yield constructive applications.
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Figure 1. Asymptotic extreme coverage probabilities of percentile method
and bootstrap-t limits for the standard normal and double exponential vari-
ances.

2.3. Numerical example

We illustrate the asymptotic results with an example where θ is taken to
be the standard normal and double exponential variances respectively. Figure 1
plots the extreme coverages against B for n = 20. The coverages are computed
from expressions (1) to (6) with the omission of the O(b−2) terms. The B axis is
given on the b scale, where b satisfies b = Bφ(b− b−1). The left panel shows the
results for the percentile method. In general, it takes more bootstrap resamples
to achieve higher coverages. For both distributions, more resamples are required
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to yield the same extreme coverage for the upper limits than for the lower ones.
The two-sided limits require even more resamples to do so. Recall that the cov-
erages displayed here provide upper bounds on those of the standard bootstrap
percentile method intervals and their iterated versions. That the upper limits
yield coverage bounds uniformly smaller than the lower limits signifies the very
poor one-sided coverage accuracy of the standard bootstrap percentile method
confidence interval. Results for the bootstrap-t method are given on the right
panel of Figure 1. It follows from (4) and (5) that both upper and lower lim-
its have the same extreme coverages to order O(n−1B−1b2). This enables the
bootstrap-t intervals to achieve better one-sided coverage accuracy compared to
the percentile method. Note also that the same B yields a two-sided noncoverage
double that of its one-sided counterparts. From a slightly different perspective,
the plots in Figure 1 indicate the minimal sizes of B required by the percentile
and bootstrap-t methods to produce a given nominal coverage level. For instance,
a two-sided bootstrap-t interval typically requires B in the range of 10 to 100 in
order to give a 90% confidence level for normal samples, whereas a much bigger
B (> 1000) is needed to reach the same level for double exponential samples.
Empirical figures, estimated from 1,600 random samples, are also plotted for
nominal coverages between 0.8 and 1. They match the asymptotic results quite
well in general, except that the simulated two-sided figures for the percentile
method are consistently bigger in the double exponential case. Results for other
choices of n are similar, with the curves being more closely packed together as n
increases.

The above findings exemplify the restrictions of a finiteB and the importance
of a sensible choice of B which is adaptable to a variety of situations. On the other
hand, a size of B substantially smaller than the conventional prescription may
often be sufficient for producing reasonably accurate confidence limits, especially
for light-tailed sampling distributions and moderate confidence levels.

3. A New Approach

3.1. General definition

We propose in this section an approach to constructing bootstrap confidence
limits based on a minimal number of bootstrap resamples. It is closely related
to standard bootstrap intervals, but always derives the confidence limits from
the extreme bootstrap percentiles. The number of bootstrap resamples, B, is
adjusted analytically and adaptively to produce just the right nominal cover-
age level. The following discussion is centred on the percentile method and
bootstrap-t constructions, although our approach finds extensions to other types
of bootstrap intervals.
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More specifically, our approach treats B as a calibration parameter and ap-
proximates its value from coverage expressions such as (1) to (6). If, for exam-
ple, an α level confidence interval is required, we equate these expressions, again
with the omission of the error terms, to α and solve for B. The solution may be
obtained either numerically or graphically using calibration plots like those ex-
hibited in Figure 1. With B determined, the confidence interval is then obtained
from the corresponding extreme bootstrap percentiles. Our procedure thus gen-
erates a number of new bootstrap confidence intervals, the forms of which depend
on the particular coverage expressions used for determining B. These intervals
are, respectively,

IP,L = [ θ̂∗(1), ∞ ), IP,U = ( −∞, θ̂∗(B) ], IP,2 = [ θ̂∗(1), θ̂
∗
(B) ],

IT,L = [ θ̂ − n−1/2σ̂T ∗
(B), ∞ ), IT,U = ( −∞, θ̂ − n−1/2σ̂T ∗

(1) ],
IT,2 = [ θ̂ − n−1/2σ̂T ∗

(B), θ̂ − n−1/2σ̂T ∗
(1) ].

Note that IP,L and IP,U give, respectively, the “extreme” lower and upper confi-
dence limits based on the percentile method, with B obtained from (2) and (1)
respectively, whereas IP,2 is a two-sided “extreme” percentile method interval
with B given by (3). On the other hand, expressions (4), (5) and (6) give rise to
extreme intervals based on the bootstrap-t method, defined accordingly as IT,U ,
IT,L and IT,2. For a two-sided equi-tailed α level interval, one should solve for B
separately by equating (1) and (2) to (1 +α)/2. Denote the two solutions by B1

and B2 respectively. The interval then becomes

I†P,2 =
[
min {θ̂∗i : i = 1, . . . , B2}, max {θ̂∗i : i = 1, . . . , B1}

]
.

The bootstrap-t method has no such analogue, since the solutions for B obtained
from equating (4) and (5) to (1 + α)/2 are the same as that given by equating
(6) to α. This is due to the higher-order one-sided coverage accuracy of the
bootstrap-t compared to the percentile method.

3.2. Estimation of A1 and C

Note that A1 and C generally depend on unknown population moments and
should therefore be estimated in practice. Under the smooth function model,
we may estimate gi1···ir and κi1,...,ir by their sample versions ĝi1···ir and κ̂i1,...,ir

respectively. Lee and Young (1995) introduce a quick, exact and automatic pro-
cedure for computing partial derivatives of g up to a high order. Their algorithm
requires the user to specify only the function g and no more analytic input is
necessary. There exist jackknife alternatives to estimating A1 and C. Let X̄i1,...,ir

denote the sample mean of the reduced sample X \ {Xi1 , . . . ,Xir}. Define, for
i, j, k = 1, . . . , n and distinct, Ĵi = g(X̄i)− θ̂, Ĵij = g(X̄i,j)− θ̂, Ĵijk = g(X̄i,j,k)− θ̂
and J̃ij = (n−2)Ĵij − (n−1)(Ĵi + Ĵj). Then the sample versions Âi of Ai can be
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expressed entirely in terms of the jackknife pseudo-values Ĵi, Ĵij , Ĵijk, according
to the following relations that hold asymptotically up to Op(n−1):

n
∑

i Ĵ
2
i = σ̂2, − n2 ∑

i Ĵ
3
i = Â1, 2n

∑
i<j ĴiĴj J̃ij = Â2,

n3 ∑
i Ĵ

4
i = Â3 + 3σ̂4, − n2 ∑

i<j ĴiĴj(Ĵi + Ĵj)J̃ij = Â4,

n
∑

i,j

∑
k �=i,j ĴiĴj J̃ikJ̃jk = Â5,

n−1(n− 1)3
∑

i<j<k ĴiĴj Ĵk{ (n− 3)Ĵijk − (n− 1)(Ĵi + Ĵj + Ĵk) }
= Â4 + Â6/6 + nÂ2(

∑
i Ĵi)/2.

(7)

Here the summations are over i, j, k = 1, . . . , n, subject to the specified inequality
constraints. The relations (7) are in fact applicable to situations more general
than the smooth function model where g is replaced by a general statistical
functional. For details of jackknife estimation techniques see Hinkley and Wei
(1984) and Tu (1992).

We remark that A1 is closely related to the acceleration constant â required
by Efron’s (1987) BCa method, according to the expansion â = n−1/2σ−3A1/6+
Op(n−1). See Hall (1992, §3.1 for the latter result and Efron (1987) for ways to
calculate â. It can also be shown that

p̂1(b− b−1) + q̂1(b− b−1) = (1/6)σ−3A1b
2{1 +O(b−2)},

where p̂1 and q̂1 are polynomials in the two-term Edgeworth expansions for the
bootstrap distributions of S and T respectively: see Hall (1992, §3.3. Polansky
and Schucany (1997) and Polansky (1997) suggest various methods to estimate
p̂1 + q̂1.

3.3. Algorithm

We give the algorithm for constructing I†P,2 of nominal coverage level α.
Algorithms for the other intervals follow after obvious modifications. Let Â1 be
a consistent estimator of A1.

Step 1. Solve

(B + 1)−1 + n−1/2B−1b3σ̂−3Â1/6 = (1 − α)/2
(B + 1)−1 − n−1/2B−1b3σ̂−3Â1/6 = (1 − α)/2

,

for B and denote the solutions by B1 and B2 respectively. Let B(1) =min{B1, B2}
and B(2) = max {B1, B2}.
Step 2. Draw B(2) bootstrap resamples, X ∗

1 , . . . ,X ∗
B(2)

, from X .

Step 3. Calculate θ̂∗b for each X ∗
b , b = 1, . . . , B(2).

Step 4. Define the interval to be
[

min {θ̂∗b : b = 1, . . . , B2}, max {θ̂∗b : b = 1, . . . , B1}
]
.
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Step 1 can be conveniently carried out by numerical methods. To make full use
of the B(2) resamples, Step 4 may be modified to
Step 4′. Order the θ̂∗b as θ̂∗(1) ≤ · · · ≤ θ̂∗(B(2))

.
If B1 = B(2), define the interval to be


 B1!−1B2! (B1 −B2)!

B1∑
j=B2

(j − 1)!{(B2 − 1)! (j −B2)!}−1θ̂∗(B1−j+1), θ̂∗(B1)


 ;

if B2 = B(2), define the interval to be

 θ̂∗(1), B2!−1B1! (B2 −B1)!

B2∑
j=B1

(j − 1)!{(B1 − 1)! (j −B1)!}−1θ̂∗(j)


 .

Step 4′ constructs the end points by averaging over all possible subsets of size
Bi, i = 1, 2, among the B(2) resamples, thereby reducing the variability of the
end points.

In practice, we restrict the size of B to be within a certain range such as
2 ≤ B ≤ 105. If a solution for B falls outside this range, we choose that value of
B in the range which satisfies the equation most closely.

3.4. Remarks

Our procedure employs extreme bootstrap percentiles instead of intermediate
percentiles in defining confidence limits. The size of B thus determined is optimal
in the sense that it requires the minimal computational effort to achieve a certain
confidence level for standard bootstrap intervals. Note that B ∼ (1 + α)(1 −
α)−1 asymptotically, and is usually considerably smaller than what has been
recommended for standard bootstrap methods. On the other hand, it also guards
against cases where a conventional choice of B fails to adequately capture the
tail behaviour of the bootstrap sampling distribution. Table 1 lists the optimal
sizes of B for n = 20 and for the standard normal, folded normal and double
exponential distributions. Theoretical values of A1 and C are used for deriving B
here. The confidence level α refers to the coverage of a two-sided interval, so that
the figures for IP,L and IP,U correspond to sizes of B required to achieve a one-
sided level of (1+α)/2 each, or equivalently, a two-sided level of α for I†P,2. This
allows direct comparison among the two-sided intervals considered here. A point
should be made about the substantial discrepancy between the sizes of B required
for the upper and lower limits of I†P,2: see the figures corresponding to IP,U

and IP,L. For the distributions under study, previous asymptotic and empirical
findings show that the standard bootstrap percentile method interval suffers from
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serious one-sided coverage error, and therefore fails to give an accurate equi-
tailed interval. Our procedure for computing I†P,2 derives its upper limit from
considerably more bootstrap resamples than the lower limit. This helps shift
the interval towards the upper tail and gives a better balance between the two
tails. This property is shared in general by other parameters in the smooth
function model setting. For, under this model, one-sided coverage accuracy is
controlled essentially by the factor A1, at least asymptotically, and our procedure
for computing B takes it into account adaptively to restore the balance. In this
sense I†P2

enjoys the additional advantage over the standard percentile method
interval by having more accurate one-sided coverages.

Table 1. Optimal size of B for n = 20. Figures for IP,U and IP,L are subject
to one-sided coverage levels (1+α)/2, and the remaining figures to two-sided
coverage levels α.

Normal data, N(0, 1)
Confidence level α 0.800 0.850 0.900 0.925 0.950 0.975 0.990

IP,U 19 29 51 76 130 321 1021
Percentile method IP,L 5 6 8 9 11 13 16

IP,2 12 19 39 68 155 592 2891
Bootstrap-t, IT,2 9 12 19 26 39 79 199

Folded normal data, |N(0, 1)|
Confidence level α 0.800 0.850 0.900 0.925 0.950 0.975 0.990

IP,U 33 52 93 140 243 607 1943
Percentile method IP,L 4 4 5 5 6 6 7

IP,2 52 123 330 605 1311 4328 18111
Bootstrap-t, IT,2 18 29 57 90 167 464 1667

Double exponential data, exp (−|x|)/2
Confidence level α 0.800 0.850 0.900 0.925 0.950 0.975 0.990

IP,U 44 69 124 186 323 805 2568
Percentile method IP,L 3 4 4 4 5 5 5

IP,2 192 380 877 1503 3056 9400 37187
Bootstrap-t, IT,2 269 425 788 1201 2137 5511 18308

The need for estimating A1 and C analytically may at first sight be a draw-
back, especially when this involves computation of high-order sample moments
which could turn out to be highly unstable. However, unlike other analytically
corrected confidence intervals which would suffer from the same problem, our
method confines all analytic calculations exclusively to derivation of B. It has an
edge over the standard bootstrap with its strategic use of Monte Carlo variation
to correct for the theoretical coverage error. There is empirical evidence that
an extremely stable control over the choice of B is not as vital as that over the
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analytic adjustments required to fix the end points of other analytically corrected
intervals. Moreover, the extreme intervals based on the percentile method enjoy
the same advantages as many standard bootstrap methods such as the percentile
method, BC, BCa and their iterated counterparts. These advantages include
properties like range-preserving, transformation-respecting and monotonicity in
α. A stable variance estimate is, unlike the bootstrap-t method, not required for
each bootstrap resample.

3.5. Coverage error

The following proposition states the order of the coverage error of our in-
tervals in cases where the nominal coverage level is asymptotically close to one.
The proof is outlined in the Appendix, where we assume B has the theoretical
optimal value obtained from our procedure based on the true values of A1 and C.
The coverage results remain intact if A1 and C are replaced by their consistent
estimates, since the substitution only entails an error of a smaller order.

Proposition 3. Assume the conditions of Proposition 1 and that the nominal
coverage level α satisfies n−∆1 ≤ 1 − α ≤ n−δ1 , for any δ1,∆1 ∈ (δ,∆) with
δ1 < ∆1. Then, with B optimally chosen according to our procedure,
(i) IP,L, IP,U and I†P,2 have coverage errors of order O{n−1/2B−1(log n)1/2}, and

IP,2 of order O{n−1B−1(log n)2}; and
(ii) IT,L, IT,U and IT,2 have coverage errors of order O(n−1B−1 log n).

The above coverage error, which is given in an absolute sense, can be inter-
preted as a relative error if the factor B−1 is dropped from the order term. It
is therefore of a smaller order than the difference between the nominal coverage
level and one. We note also that effectiveness of the extreme percentile method
hinges on the requirement that α, and hence B, increase as n increases.

3.6. Numerical example

We conclude with a simple example drawn from DiCiccio and Efron (1996).
The dataset consists of cd4 counts of 20 HIV-positive subjects measured at base-
line and after 1 year of antiviral treatment. (See Table 1 in DiCiccio and Efron
(1996) for the complete dataset.) We apply our method to generate nonpara-
metric two-sided confidence intervals for the correlation coefficient θ. The sample
estimator θ̂ is calculated to be 0.723. Figure 2 shows the end points and the sizes
of B for seven choices of the confidence level α. The B axis is given on the
logarithmic scale. The standard bootstrap percentile method and bootstrap-t
intervals are also computed for comparison, each being approximated from 1,000
bootstrap resamples. A relatively small number of bootstrap resamples, ranging
from 8 to 337, are required by our procedure. For computation of I†P,2, more
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resamples are needed to yield the upper than the lower limit, suggesting that the
standard percentile method interval has a bigger asymptotic noncoverage at the
upper tail than at the lower, especially when α approaches one. Our interval I†P,2

is more inclined to include the θ̂∗b above θ̂ than those below, thus correcting for
the unbalanced lower and upper noncoverage probabilities. The interval IT,2 ex-
hibits a similar tendency. On the contrary, both standard bootstrap approaches
place the intervals more to the left of θ̂. The latter has been claimed by DiCiccio
and Efron (1996) to be a desirable feature on the basis of an “exact” interval
obtained under the bivariate normality assumption. We find their claim ques-
tionable in view of our simulation results. In fact, that the standard bootstrap-t
interval, which has nice equi-tailed properties, lies further to the right than the
standard percentile method interval provides a clue about the correct “shape” of
the interval. Our results lend further evidence to this.
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Figure 2. Example: correlation coefficient of cd4 data (DiCiccio and Efron
(1996)). Left panel: confidence limits of I†P,2, IP,2, IT,2 and the standard per-
centile method and bootstrap-t intervals. Right panel: number of bootstrap
resamples (B) drawn for constructing I†P,2, IP,2 and IT,2.
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4. Simulation Study

A simulation study was carried out to examine the performance of the ex-
treme confidence intervals empirically. Two-sided intervals were constructed for
θ, the variance of one of three underlying distributions: the standard normal
N(0, 1), the folded standard normal |N(0, 1)| and the double exponential with
density function exp (−|x|)/2. Results were obtained for different combinations
of sample sizes (n = 20 and 100) and nominal coverage levels (α = 0.80, 0.85,
0.90, 0.925, 0.95, 0.975 and 0.99). Optimal sizes of B for the extreme confidence
intervals were estimated according to the procedure described in Section 3, where
A1 and C were estimated by their straightforward sample estimates. The stan-
dard two-sided percentile method and bootstrap-t intervals were also computed
based on 1,000 bootstrap resamples for comparison.

Figures 3, 4 and 5 summarize our findings obtained from 1,600 random sam-
ples drawn from each of the above underlying distributions. The top panel shows
the relative errors in noncoverage probabilities at the lower and upper tails, de-
fined respectively to be

2(1 − α)−1 {(# intervals above θ)/1600 − (1 − α)/2}
and

2(1 − α)−1 {(# intervals below θ)/1600 − (1 − α)/2} ,
as well as the overall relative error in noncoverage probability, defined to be

(1 − α)−1 {(# intervals missing θ)/1600 − (1 − α)} .
The middle panel gives details about the average positions of the upper and lower
limits, where the arrows indicate the positions plus and minus their standard
errors. The bottom panel gives the average sizes of B used in construction of the
extreme intervals. The sizes are plotted on the logarithmic scale, with arrows
indicating the sizes plus and minus standard errors.

The simulation results broadly agree with the asymptotic theory developed
earlier for the various intervals. We observe that in general the standard
bootstrap-t interval is the most accurate in terms of both one-sided and two-sided
noncoverage probabilities. The standard percentile method interval is inaccurate
at either tail, with exceptionally severe undercoverage at the upper tail. The in-
terval I†P,2 corrects for such one-sided coverage errors very effectively, especially
at the upper tail. In most cases, it even outperforms the standard bootstrap-t
method in terms of having a very small lower tail coverage error. Its overall
two-sided coverage error is smaller than the standard percentile method by a
considerable margin but is bigger than the standard bootstrap-t. The interval
IP,2 is generally less accurate than I†P,2 in terms of one-sided coverage. Its two-
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Figure 3. Example: variance of N(0, 1) for n = 20 and 100. Top panel:
relative error in lower, upper and overall (two-sided) noncoverage probabil-
ities of, in descending order of shading density, I†P,2 (solid shading), IP,2,
IT,2, the standard percentile method interval and the standard bootstrap-
t interval. Middle panel: mean positions of lower/upper confidence limits
of I†P,2 (A/a), IP,2 (B/b), IT,2 (C/c), the percentile method interval (D/d)
and the bootstrap-t interval (E/e), with arrows indicating their standard er-
rors. Bottom panel: mean number of bootstrap resamples drawn for I†P,2 (A:
lower limit, a: upper limit), IP,2 (B) and IT,2 (C), with arrows indicating
their standard errors.

sided coverage accuracy is, however, occasionally better since overcoverage at one
tail may happen to compensate for undercoverage at the other. The performance
of IT,2 depends a lot on the sample size, suggesting its sensitivity to the choice
of B. For a small sample size, it has a very inaccurate lower noncoverage prob-
ability and a reasonably accurate upper one, resulting in a two-sided coverage
error quite similar to the standard percentile method. An increase in sample size,
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which gives rise to a more stable choice of B, greatly improves its performance
in terms of both one-sided and two-sided coverage accuracies. In fact, simula-
tions of IT,2 have been rerun using the theoretical value of B obtained from (6),
resulting in the most accurate coverage probabilities obtained thus far, for both
sample sizes. This suggests an appealing potential of IT,2 to give high coverage
accuracy, although accurate estimation of B remains a practical difficulty. Such
difficulty, however, poses a less serious problem for IP,2 and I†P,2 due to their
relative insensitivity to the choice of B.
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Figure 4. Example: variance of |N(0, 1)| for n = 20 and 100. Top panel:
relative error in lower, upper and overall (two-sided) noncoverage probabil-
ities of, in descending order of shading density, I†P,2 (solid shading), IP,2,
IT,2, the standard percentile method interval and the standard bootstrap-
t interval. Middle panel: mean positions of lower/upper confidence limits
of I†P,2 (A/a), IP,2 (B/b), IT,2 (C/c), the percentile method interval (D/d)
and the bootstrap-t interval (E/e), with arrows indicating their standard er-
rors. Bottom panel: mean number of bootstrap resamples drawn for I†P,2 (A:
lower limit, a: upper limit), IP,2 (B) and IT,2 (C), with arrows indicating
their standard errors.
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Figure 5. Example: variance of double exponential for n = 20 and 100.
Top panel: relative error in lower, upper and overall (two-sided) noncover-
age probabilities of, in descending order of shading density, I†P,2 (solid shad-
ing), IP,2, IT,2, the standard percentile method interval and the standard
bootstrap-t interval. Middle panel: mean positions of lower/upper confi-
dence limits of I†P,2 (A/a), IP,2 (B/b), IT,2 (C/c), the percentile method
interval (D/d) and the bootstrap-t interval (E/e), with arrows indicating
their standard errors. Bottom panel: mean number of bootstrap resamples
drawn for I†P,2 (A: lower limit, a: upper limit), IP,2 (B) and IT,2 (C), with
arrows indicating their standard errors.

We see from the middle panels of Figures 3 to 5 that the standard bootstrap-
t interval, despite its well-established accuracy, has very unstable end points and
an overstretched length. This is mainly due to its need for a, usually unstable,
variance estimate for θ̂. Properties such as transformation-respecting and range-
preserving are also lost as a result. On the other hand, such drawbacks apply to
neither the standard nor the extreme percentile method intervals. Thus the latter
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stands as an especially strong competitor among existing standard bootstrap
approaches.

The optimal B estimated for the extreme intervals is typically small com-
pared to the conventional choice of, say, B = 1000, for the range of confidence
levels studied in the examples. In particular, the optimal B seldom goes be-
yond 100 if the confidence level remains below 0.95. The interval I†P,2 takes more
bootstrap resamples to define the upper than the lower limit, which helps shift
the interval further to the right of θ̂ to compensate for the severe undercoverage
suffered by the standard percentile method at the upper tail. Estimates of the
optimal B are subject to various degrees of variation for the extreme intervals.
Broadly speaking, IP,2 is associated with the most fluctuating estimate of B,
followed next by IT,2, while I†P,2 gives the most stable estimate.

It should be noted that the extreme intervals IP,2 and I†P,2 possess rather
stable lengths and end points comparable to the standard percentile method
interval, despite the use of a much smaller B for confidence levels below 0.95.
The danger of an overly long interval due to a small B, as has been discussed in
Hall (1986), does not seem to exist here.

5. Discussion

To summarize, extreme bootstrap confidence intervals obtained from an
adaptively chosen number of bootstrap resamples improve upon the standard
percentile method which has notoriously inaccurate coverage. Although their
coverage accuracy may not be better than the standard bootstrap-t method, the
extreme intervals instead enjoy advantages such as having stable lengths and end
points. Moreover, the use of extreme percentiles restricts B to a reasonable size
which just suffices for yielding the desired coverage level. This optimal size is
often much smaller than the conventional choice, provided α is not too close to
one, in which case the extreme interval is computationally very desirable. There
are also cases where the optimal size exceeds the conventional choice and thus
corrects for inadequacy of the latter. Among the extreme intervals, I†P,2 is partic-
ularly appealing. For, in addition to the above advantages, it has good one-sided
coverage accuracies, enjoys a stable estimate of B, and is both transformation-
respecting and range-preserving. The extreme bootstrap-t interval IT,2, however,
requires a stable estimate of B to yield satisfactory results. Note further that the
extreme interval end points are all subject to a Monte Carlo variance of the same
order, Op{n−1(logB)−1}, as the standard approaches under the assumptions of
Proposition 3, despite their reliance on an empirical determination of B. Our
empirical findings confirm this observation.

By its very nature, the extreme percentile method may be considerably af-
fected by outlier bootstrap resamples. It can be made more robust though, at the
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expense of a little extra computational effort. Instead of drawing the required
B bootstrap resamples, we draw B̃ = (1 + ψ)B resamples for some small ψ > 0.
The extreme bootstrap percentile is calculated for each subset of size B among
the B̃ resamples. The confidence interval is then derived from either the average
or the median of these extreme percentiles, hence diminishing the effect of outlier
resamples.

The main idea of our method, namely, the adaptive adjustment of Monte
Carlo effort to correct for theoretical coverage error, can be implemented by
alternative approaches. For instance, the optimal B can be derived from the
asymptotic expansions for the coverages of the standard Monte Carlo approxi-
mated bootstrap intervals. Hall (1986) gives such an expansion, in the sense of
letting both B and n tend to infinity, for the coverage probability of the standard
lower bootstrap-t confidence limit. An appropriate B may be obtained by equat-
ing the expansion to the desired nominal coverage level. Its value depends on
the particular intermediate bootstrap-t percentile considered in the expansion.
It seems that the size of B may be reduced by forcing this percentile to be the
extreme one. However, Hall’s (1986) expansion does not conveniently cater to
the latter case. Our Proposition 2 resolves the problem and gives the smallest
possible B.

As has been pointed out in Section 2.3, our procedure yields values of B
which may also be indicative of the minimal Monte Carlo effort required of the
standard bootstrap approaches. Apart from their methodological implications,
we find in such values of B applications of a diagnostic kind. Huge sizes of B
send an alarming signal about the possible failure of the bootstrap being applied
to the question in hand. We see from Table 1 that the theoretical value of B
increases rapidly as α approaches one. For example, in the case of the double
exponential variance, the standard percentile and bootstrap-t methods would
typically require B be at least 37,187 and 18,308, respectively, in order to give
an accurate 99% two-sided confidence interval. Here the conventional choice of
B, which is much smaller, would not work satisfactorily.

Our discussion has thus far been restricted to the smooth function model for
a scalar parameter. It is clear from the proofs in the Appendix that our procedure
generalizes to any situations where Edgeworth expansions can be found for the
bootstrap distributions. These include the case where θ is a von-Mises functional
in particular. DiCiccio and Efron (1996) discuss a variety of situations amenable
to Edgeworth expansions. An important and natural extension of our procedure
is to the multivariate setting where a confidence region would be derived from
the convex hull of all the bootstrap data. This bypasses the practical difficulty
pertaining to the ordering of multivariate data which is generally deemed essential
to any standard bootstrap approach. This is a topic of future research.
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Appendix

Proof of Proposition 1. Let Ĵ be the conditional distribution function of
n1/2(θ̂∗1 − θ̂)/σ̂ given X . Denote by φ and Φ the standard normal density and
distribution functions respectively. Define zβ = Φ−1(β). Note that pr (Ĵ(−T ) ≤
u) is the true coverage of the standard percentile method interval of nominal
coverage u. It follows from Hall (1992, §3.5 that

pr (Ĵ(−T ) ≤ u) = u+ n−1/2Rn(u), (A.1)

where Rn(u) = φ(zu)pn(zu) + O(n−(M+1)/2), for some polynomial pn and some
sufficiently large M to be determined. Note that Rn(0) = Rn(1) = 0. Hence we
have

pr (θ ≤ θ̂∗(B)) = E( 1 − Ĵ(−T )B )

= 1 − (B + 1)−1 − n−1/2
∫ 1

0
uB dRn(u). (A.2)

Let G be the standard Gumbel distribution function, G(x) = exp (−e−x), and
GB be the distribution of the maximum of B independent uniform [0, 1] random
variables. Using standard asymptotic results for extreme order statistics as given,
for example, in Reiss (1989, §5.2, we obtain
∫ 1

0
uB dRn(u) = −

∫ 1

0
Rn(u) dGB(u)

= −
∫ ∞

−∞
φ(b−1v + b− b−1)pn(b−1v + b− b−1) dG(v){1 +O(b−2)}

+ O(n−(M+1)/2)

= −φ(b− b−1)pn(b− b−1){1 +O(b−2)} +O(n−(M+1)/2), (A.3)

where b satisfies Bφ(b − b−1) = b. The last equality follows by expanding φpn

about b− b−1 and the fact that
∫ ∞
−∞ e−vdG(v) = 1. Applying Hall’s (1992, §3.5

Edgeworth expansions for coverages of standard bootstrap intervals and noting
nδ ≤ B ≤ n∆, we have

pn(b− b−1) = − (1/6)σ−3A1b
2{1 +O(b−2)} + o(n−1/2+ε), (A.4)

for any ε > 0. The expression (1) then follows by setting M ≥ 2∆ − 1 and
substituting (A.3) and (A.4) in (A.2). The proof of (2) is entirely analogous with
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A1 replaced by −A1. For the two-sided case, note first that

pr (θ̂∗(1) ≤ θ ≤ θ̂∗(B))

= 1−2(B + 1)−1+n−1/2
[
φ(b− b−1)

{
pn(b− b−1)−pn(b−1 − b)

}
{1+O(b−2)}

+O(n−(M+1)/2)
]
, (A.5)

which follows from (A.2) and its lower tail version. Again, Hall’s Edgeworth
expansions show that, for any ε > 0,

pn(b− b−1) − pn(b−1 − b) = − (1/36)n−1/2σ−6A2
1b

5{1 +O(b−2)} + o(n−3/2+ε).
(A.6)

Substituting (A.6) in (A.5) and choosing M ≥ 2∆, we prove (3).

Proof of Proposition 2. The proof is similar to that of Proposition 1. Define
Sn by

pr { pr (T ∗
1 ≤ T |X ) ≤ u } = u+ n−1/2Sn(u).

We then have

pr (θ < θ̂ − n−1/2σ̂T ∗
(B)) = (B + 1)−1 + n−1/2

∫ 1

0
uB dSn(u),

and hence (5) follows from arguments similar to those used for proving (1). We
can prove (4) in the same fashion and (6) follows by combining (4) and (5) in a
trivial way.

Proof of Proposition 3. The results follow immediately by noting that b =
O{(log n)1/2} and that B satisfies nδ ≤ B ≤ n∆ provided n−∆1 ≤ 1 − α ≤ n−δ1

for n sufficiently large.
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