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INFORMATION BOUND FOR BANDWIDTH SELECTION

IN KERNEL ESTIMATION OF DENSITY DERIVATIVES
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Abstract: Based on a random sample of size n from an unknown density f on the real

line, several data-driven methods for selecting the bandwidth in kernel estimation

of f (k), k = 0, 1, . . ., have recently been proposed which have a very fast asymptotic

rate of convergence to the optimal bandwidth, where f (k) denotes the kth derivative

of f . In particular, for all k and sufficiently smooth f , the best possible relative

rate of convergence is Op(n−1/2). For k = 0, Fan and Marron (1992) employed

semiparametric arguments to obtain the best possible constant coefficient, that

is, an analog of the usual Fisher information bound, in this convergence. The

purpose of this paper is to show that their arguments can be extended to establish

information bounds for all k. The extension from the special case k = 0 to the case

of general k requires some nontrival work and gives a significant benchmark as to

how well a bandwidth selector can hope to perform in kernel estimation of f (k).
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nonparametric information bounds, semiparametric methods.

1. Introduction

Let X1, . . . ,Xn be a random sample from an unknown density f . Let g(k)

denote the kth derivative of any function g. The kernel estimate of f (k)(x) takes
the form

f̂
(k)
h (x) = (nhk+1)

−1
n∑

j=1

w(k){(x−Xj)/h}, −∞ < x <∞, (1.1)

where w(·) is a symmetric probability density (called the kernel function) and
h = hn,k is a global bandwidth (i.e., smoothing parameter) satisfying h → 0
and nhk+1 → ∞ as n → ∞. Practical application of (1.1) for any k is crucially
dependent on the choice of h. If h is too small, the resulting (1.1) is subject to
too much sample variation, and a curve which is too rough. In contrast, if h
is too large, the resulting (1.1) will have an unacceptably large bias; important
features of the underlying curve are smoothed away. Although subjective choice
of h is sufficient for many cases, the usefulness of (1.1) would be greatly enhanced
if an efficient and data-based method of selecting h could be agreed upon (see
Silverman (1986) for further discussion).
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The kernel density estimate f̂h (the special case k = 0 here) is very useful
in the exploration and presentation of data; see, e.g., Silverman (1986). The
estimates f̂ (k)

h , k ≥ 1, can be used to evaluate modes and inflection points and
to obtain plug-in bandwidth selectors for kernel estimation of f(x). They can
also be applied to the estimation of scores in certain additive models; see Härdle,
Hart, Marron and Tsybakov (1992) and Härdle and Stoker (1989). Another
application is to the empirical verification of uniqueness of equilibria of market
demand in econometrics, where the estimation of derivatives of densities enters
through so-called income effects; see Hildenbrand and Hildenbrand (1986). Here
we remark that the kernel estimate (1.1) is popular because it is simple and
easy to implement in practice. However, there are situations where more robust
estimates merit consideration. For example, the local polynomial estimate of
f (k) may be used if f has compact support; see Fan, Gijbels, Hu and Huang
(1996) and Cheng, Fan and Marron (1997). The wavelet-based estimate of f (k)

is more suitable if f (k) is smooth in some piecewise manner; see, e.g., Hall and
Patil (1995) and Donoho, Johnstone, Kerkyacharian and Picard (1996).

The performance of (1.1) is commonly measured by the mean integrated
squared error

MISEk(h) (= Mk(h)) = E

∫ ∞

−∞
{f̂ (k)

h (x) − f (k)(x)}2dx. (1.2)

Here we take the optimal bandwidth hk(f) to be the minimizer of Mk. For
simplicity of notation the dependency of Mk, hk(f), etc. on n is suppressed
throughout the paper. The readers are referred to Hall and Marron (1991), Jones
(1991) and Grund, Hall and Marron (1994) for discussion of other measures of
error, including reasons why our present goodness criterion (1.2) is sensible. In
practice, the hk(f) is unavailable and needs to be estimated. However, hk(f) is
of order O(n−1/(2k+5)), which increases in k; see Stone (1980).

Many data-based bandwidth selectors for kernel estimation of f have been
proposed over the past decade. See the survey papers by Jones, Marron and
Sheather (1996), Loader (1995) and Marron (1988). Hall and Marron (1991)
proved that for a data-driven bandwidth selector, the best possible relative con-
vergence rate is Op(n−1/2), in a minimax sense. Bandwidth selectors that achieve
this rate include the selectors of Hall, Marron and Park (1992), Jones, Marron
and Park (1991), Hall, Sheather, Jones and Marron (1991) and Chiu (1991, 1992).
Motivated by the fact that there are several competing selectors, Fan and Mar-
ron (1992) employed semiparametric arguments and calculated the best possible
constant coefficient B2

0(f) (see (1.3) herein) in this convergence. This is an ex-
tension of the classical Fisher information ideas (see Bickel, Klassen, Ritov and
Wellner (1991) and van der Vaart (1988) for details), which gives a benchmark as
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to how well a bandwidth selector can hope to perform in the kernel estimation of
f . As noted by Fan and Marron (1992), among the preceding selectors, only the
selectors by Chiu (1991, 1992) and by Hall, Sheather, Jones and Marron (1991)
achieve the best possible constant coefficient B2

0(f), and the others have larger
constants, and hence are not optimal in this sense.

For k ≥ 1, Härdle, Marron and Wand (1990) proposed a cross-validated
bandwidth selector for (1.1) that has a slow convergence rate. Recently, Wu
(1997) proposed two types of data-based bandwidth selectors for (1.1) that
achieve the best Op(n−1/2) relative convergence rate to the optimal hk(f), and,
moreover, the asymptotic variance of the relative error of the selectors is the
same as n−1B2

k(f), where

B2
k(f) = 4Var {f (2k+4)(X1)}/{(2k + 5)θk+2(f)}2, (1.3)

with
θj(g) =

∫ ∞

−∞
{g(j)(x)}2dx, j ≥ 0, (1.4)

for any function g. It is conjectured in Wu (1997) that B2
k(f) is the best possible

constant coefficient. Thus for all k, the selectors of Wu (1997) are optimal in this
sense.

The purpose of this paper is to prove the validity of the above conjecture.
This extends the information bound n−1B2

0(f) obtained by Fan and Marron
(1992) to a general k. The method of proof involves heavy semiparametric ar-
guments, and is an extension of the arguments in Fan and Marron (1992). Here
we remark that although perhaps only k = 0, 1 and 2 will come close to what
will be considered “practically important” cases, there is no harm in having this
machinery available for all k, and giving a unified approach. Section 2 contains
the main results (Theorems 1 and 2) and a numerical example. This example
shows that Bk(f) usually (but not always) increases with k, although probably
not excessively so. Proofs are deferred to the Appendix.

2. Main Results

The problem of estimating hk(f) is closely related to that of estimating
quadratic functionals θk+2(f), . . . , θk+[(k+6)/2](f). Here and below, [x] denotes
the greatest integer ≤ x. Indeed, from Section 1.5 of Wu (1997) we see that the
optimal bandwidth hk(f) can be approximated by

φk(f) = hk,S(f) +Qk(f), (2.1)

where

hk,S(f)=c1{θk+2(f)}−1/(2k+5)n−1/(2k+5), Qk(f)=c1
[(k+2)/2]∑

l=1

δl(f)n−(2l+1)/(2k+5),
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(2.2)

c1={(2k + 1)θk(w)µ−2
2 }1/(2k+5), µt =

∫ ∞

−∞
|x|tw(x)dx, t ≥ 0, (2.3)

and δ1(f), . . . , δ[(k+2)/2](f) are constants depending on the unknown quadratic
functionals θk+2(f), . . . , θk+[(k+6)/2](f). (For explicit expressions of the δl(f)’s,
see Hall, Sheather, Jones and Marron (1991) for k = 0, and Remark 1 herein for
k ≥ 1.) This reduces the problem of estimating the optimal bandwidth to that
of estimating these quadratic functionals.

Recent work on estimating θk(f) includes Hall and Marron (1987a, 1991),
Bickel and Ritov (1988), Jones and Sheather (1991), Aldershof (1991), Cheng
(1997) and Wu (1995), among others. Results on estimating θk(f) with f being
supported in [0, 1] are given by Fan (1991), who dealt with a white noise model
(see also Donoho and Nussbaum (1990)) and by Goldstein and Messer (1992).

Let us denote a class of densities having j + α ≥ 2k + 4 derivatives by

Fj+α = {g : |g(j)(x) − g(j)(y)| ≤M |x− y|α, |g(2k+4)(x)| ≤ g0(x)},

where 0 ≤ α ≤ 1, M > 0 is a constant, and g0(x) is a bounded, continuous, and
integrable function on (−∞,∞) (this ensures that Var {f (2k+4)(X1)} < ∞ and,
consequently, Bk(f) <∞ if f ∈ Fj+α). Let

Hn(f,C) = {g ∈ Fj+α :‖ g1/2 − f1/2 ‖2≤ C/n1/2}, C > 0, (2.4)

be a Hellinger ball in the neighborhood of f , where || · ||2 denotes the usual L2-
norm. The following theorem shows that, for all k, the asymptotic relative error
of any bandwidth selector for kernel estimation of f (k) cannot be smaller than
n−1/2Bk(f).

Theorem 1. Assume µ2[(k+6)/2] < ∞, θk(w) < ∞, and f ∈ Fj+α with j + α >

2k + 4. Then, for any bandwidth selector ĥk,

lim
C→∞

lim inf
n→∞ inf

ĥk

sup
g∈Hn(f,C)

nEg

{ ĥk − hk(g)
hk(g)

}2 ≥ B2
k(f). (2.5)

Theorem 1 generalizes Theorem 1 of Fan and Marron (1992). Note that
Bk(f) does not depend on the kernel function w, even though the optimal band-
width hk(f) does. This indicates Bk(f) is a measure of the intrinsic difficulty of
bandwidth selection in kernel estimation of f (k).

The following theorem establishes the close relationship between the relative
error of MISE (1.2) and that of a bandwidth selector. Let F∗

j+α denote the
class of densities having j + α ≥ k + 4 derivatives that results from replacing
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the condition |g(2k+4)(x)| ≤ g0(x) by the condition |g(k+4)(x)| ≤ g0(x) in the
definition of Fj+α.

Theorem 2. Assume µ4 < ∞, θk(w) < ∞, and f ∈ F∗
j+α. Then, for any

0 ≤ δ ≤ 1,

nδ
{Mk(ĥk) −Mk(hk(f))

Mk(hk(f))

}
= 2(2k + 1)nδ

{ ĥk − hk(f)
hk(f)

}2
+ op(1) (2.6)

provided that the bandwidth selector ĥk is relatively consistent at rate op(n−ρ),
i.e., ĥk/hk(f) = 1 + op(n−ρ), where ρ = max{δ/3, δ/2 − 1/(2k + 5), δ/2 − (k +
0.5)/(2k + 5)}.

The result (2.6) is well known when k = 0 (see e.g., Hall and Marron
(1987b) or Jones (1991), among others). In typical situations, if f is suffi-
ciently smooth, there exist 0 < δ ≤ 1 and σ2

k(f) (both depend on ĥk) such that
nδ/2{ĥk/hk(f) − 1} has a limiting N(0, σ2

k(f)) distribution and, consequently,
nδ{Mk(ĥk)/Mk(hk(f))−1} has a limiting {2(2k+1)σ2

k(f)}·χ2
1 distribution, as im-

plied by (2.6). Therefore, the asymptotic relative error (or the asymptotic relative
bias) of MISE is measured by the constant coefficient 2(2k+1)n−δσ2

k(f), which,
under the conditions of Theorem 1, can not be smaller than 2(2k + 1)n−1B2

k(f),
as implied by (2.5) (see Remark 3 herein for further discussion).

Theorems 1 and 2 indicate that, for any k, the quantity Bk(f) measures the
difficulty of the bandwidth selection problem in kernel estimation of f (k). The
larger the Bk(f), the harder the problem. On the other hand, for any f one
wonders whether the quantity Bk(f) increases rapidly with k or not. This is
probably quite hard to work out in any generality, but is easy when restricting
attention to numerical examples. Table 1 provides such an example. It shows the
values of B0(f), B1(f), B2(f), B2

1(f)/B2
0(f), B2

2(f)/B2
1(f), 3B2

1(f)/B2
0(f) and

5B2
2(f)/3B2

1(f) for the 15 normal mixture densities in Marron and Wand (1992).
These densities typify many different types of challenges to curve estimators
(see their paper for details of these densities). The B0(f), obtained by Fan and
Marron (1992), is included for ease of comparison. The Bi(f), i = 1, 2, for
densities (#1)−(#2) and (#4)−(#7), obtained by Wu (1997), are also included
for the sake of completeness.

We point out that both Dk+j,k = B2
k+j(f)/B2

k(f) (according to Theorem 1)
and D∗

k+j,k = {(2k + 2j + 1)/(2k + 1)}Dk+j,k (according to Theorems 2 and 1)
can be used to measure the asymptotic relative difficulty of optimal bandwidth
selection in kernel estimation of f (k+j) to f (k), k ≥ 0, j ≥ 0. Evidently, D∗

k+j,k

is more sensitive to the value of j than Dk+j,k is, because of the factor {(2k +
2j + 1)/(2k + 1)} contained in D∗

k+j,k.
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Table 1 not only gives us an idea as to how difficult it is to select a band-
width for a variety of densities and derivatives, but also implies that this prob-
lem usually (but not always) gets worse with k, although probably not exceed-
ingly so. For example, if f = N(0, 1) (density (#1)), then asymptotically f ′ is
D1,0 = 2.16 (or D∗

1,0 = 6.48) times as difficult as f , and f ′′ is D2,1 = 2.45 (or
D∗

2,1 = 4.08) times as difficult as f ′ in terms of bandwidth selection. The best
selector for f ′′ with sample size n = 1059 would have approximately the same
accuracy of estimating optimal bandwidth as for f ′ with n = 432, and f with
n = 200. On the other hand, as n→ ∞, the density itself, the first derivative and
the second derivative of density (#4) (a kurtotic unimodal density) are respec-
tively (2.638/1.300)2 ≈ 4.12, (3.782/1.911)2 ≈ 3.92 and (5.885/2.993)2 ≈ 3.87
times as difficult as those of the N(0, 1) density in bandwidth selection terms.
In contrast, the corresponding values for density (#13) (an asymmetric dou-
ble claw density), upon comparing with the N(0, 1) density, are respectively
(25.59/1.300)2 ≈ 387.48, (36.48/1.911)2 ≈ 364.41 and (56.61/2.993)2 ≈ 357.74.

Table 1. Constant factors in the lower bounds.

Density B0(f) B1(f) B2(f) B2
1(f)

B2
0(f)

B2
2(f)

B2
1(f)

3B2
1(f)

B2
0(f)

5B2
2(f)

3B2
1(f)

#1 1.300 1.911 2.993 2.16 2.45 6.48 4.08
#2 1.771 2.842 4.728 2.58 2.77 7.74 4.62
#3 4.973 8.097 12.84 2.65 2.51 7.95 4.18
#4 2.638 3.782 5.885 2.06 2.42 6.18 4.03
#5 1.388 2.033 3.181 2.15 2.45 6.45 4.08
#6 1.868 1.841 2.105 0.97 1.31 2.91 2.18
#7 1.286 1.942 2.982 2.28 2.36 6.84 3.93
#8 3.390 4.751 7.337 1.96 2.38 5.88 3.97
#9 4.742 7.762 12.67 2.68 2.66 8.04 4.43
#10 2.125 3.591 5.800 2.86 2.61 8.58 4.35
#11 19.39 27.57 42.79 2.02 2.41 6.06 4.02
#12 9.635 15.10 24.01 2.46 2.53 7.38 4.22
#13 25.59 36.48 56.61 2.03 2.41 6.09 4.02
#14 9.408 14.91 23.65 2.51 2.52 7.53 4.20
#15 3.515 5.214 7.903 2.20 2.30 6.60 3.83

Remark 1. From Section 1.5 of Wu (1997), we have

δl(f) = {θk+2(f)}−1/(2k+5)Al.

with

A1 = c21{θk+2(f)}−2/(2k+5)J1, A2 = {k + 5 − (J2/J
2
1 )}A2

1,
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and, in general,

Al =
l∑

j=0

(−1)j+1(Jj/J
j
1 )Aj

1

∑
Rj

(2k + 5 + 2j)!{r1! · · · rl−1!(2k + 5 + 2j

−
l−1∑
m=1

rm)!}−1Ar1
1 · · ·Arl−1

l−1

where Rj = {(r1, . . . , rl−1) : 0 ≤ r1, . . . , rl−1 ≤ l,
∑l−1

m=1mrm = l − j},

Jj (= Jj(f)) = 2(2 + j)b2+jθk+2+j(f)/{(2k + 5)µ2
2θk+2(f)},

bm =
m−1∑
i=1

µ2iµ2m−2i/{(2i)!(2m − 2i)!}, m = 2, 3, . . . . (2.7)

Furthermore, under the conditions of Theorem 1, it is evident that

{hk,S(f) − φk(f)}/φk(f) = O(n−2/(2k+5)). (2.8)

Remark 2. We note that in Theorem 1, the smoothness condition that f ∈ Fj+α

with j+α > 2k+4 may be replaced by the condition p > 2k+5, where p denotes
the decay rate of the characteristic function ψf (λ) of f , that is, |λ|p|ψf (λ)| = O(1)
as |λ| → ∞. These two conditions are analogous and compatible with each other,
but neither one is weaker or stronger than the other.

Remark 3. For both the case ĥk = ĥk,ST and the case ĥk = ĥk,EP , where ĥk,ST

and ĥk,EP are respectively the stabilized- and the extended plug-in bandwidth
selectors of Wu (1997), the limiting distribution of n{Mk(ĥk)/Mk(hk(f))− 1} is
{2(2k+1)B2

k(f)}·χ2
1, as can be seen from Theorems 1 to 4 of Wu (1997) and (2.6)

above. Consequently, the asymptotic relative error (or the asymptotic relative
bias) of Mk(ĥk) is the same as 2(2k + 1)n−1B2

k(f), which is the best possible
constant coefficient implied by Theorems 2 and 1. Similarly, for estimating f

(when k = 0), the MISE evaluated at the selectors of Chiu (1991, 1992) and
of Hall, Sheather, Jones and Marron (1991) can be shown to achieve the best
possible constant 2n−1B2

0(f). Furthermore, based on the optimality of ĥk,ST

and the fact that the second moment of a χ2
1 distribution is 3, we conjecture that

under the assumption of Theorem 1, for any k ≥ 0 and bandwidth selector h̃k,
the inequality

lim
C→∞

lim inf
n→∞ inf

h̃k

sup
g∈Hn(f,C)

n2Eg

{Mk(h̃k) −Mk(hk(g))
Mk(hk(g))

}2 ≥ 12(2k + 1)2B4
k(f)

(2.9)
holds and the lower bound 12(2k + 1)2B4

k(f) is the sharpest possible.
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Remark 4. Since the special cases k = 1 and k = 2 have pratical applications,
we write the implications of Theorems 1 and 2 explicitly. For kernel estimation of
f ′, the asymptotic relative error of any bandwidth selector and that of its MISE

can not be smaller than n−1/2B1(f) and 6n−1B2
1(f), respectively, where

B2
1(f) =

4
49

{∫ ∞
−∞(f (6)(x))2f(x)dx
(
∫ ∞
−∞(f (3)(x))2dx)2

− 1

}
.

Likewise, for kernel estimation of f ′′, the asymptotic relative error of any band-
width selector and that of its MISE can not be smaller than n−1/2B2(f) and
10n−1B2

2(f), respectively, where

B2
2(f) =

4
81

{∫ ∞
−∞(f (8)(x))2f(x)dx
(
∫ ∞
−∞(f (4)(x))2dx)2

− 1

}
.

3. Concluding Remarks

In this article we have established the information bound for bandwidth se-
lection in kernel estimation of f (k). Our results are formulated only in terms of
nonnegative kernel functions because they are used almost exclusively in prac-
tice. Other reasons for using nonnegative kernels can be found in Fan and Marron
(1992) and Marron and Wand (1992), among others. Furthermore, Theorem 1
suggests that the constant nB−2

k (f) plays a role similar to the classical Fisher in-
formation number contained in a sample of size n, so one can define the efficiency
of any bandwidth selector ĥk by

eff(ĥk) = n−1B2
k(f)/Ef{ĥk/hk(f) − 1}2.

The root n bandwidth selectors proposed by Wu (1997) are optimal since the
asymptotic variance of the relative error of his selectors is the same as n−1B2

k(f).
This provides a strong sense in which the lower bound established in Theorem 1
is informative.
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Appendix. Proofs

We first state five lemmas that will be used in the proof of Theorem 1. These
lemmas show that the minimax lower bound for estimating hk(f) is equivalent
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to and completely determined by that for estimating hk,S(f) (see (2.2)), and the
latter bound involves B2

k(f). Lemmas 1 to 5 are proved under the conditions of
Theorem 1. We will not state the conditions explicitly in the following lemmas.
Here we point out that Lemmas 1 to 5 herein generalize Lemmas 1 to 5, respec-
tively, of Fan and Marron (1992) (i.e., our lemmas reduce to their lemmas when
k = 0).

The following lemma indicates that the problem of estimating hk(f) is equiv-
alent to that of estimating φk(f).

Lemma 1. The optimal bandwidth hk(f) satisfies

sup
g∈Hn(f,C)

{hk(g) − φk(g)}/φk(g) = o(n−1/2), (A.1)

where φk(g) was defined by (2.1).

The next lemma gives a lower bound for estimating {θk+2(f)}−1/(2k+5).

Lemma 2. Let Rn,C,1(f) be the following minimax risk for estimating
{θk+2(f)}−1/(2k+5) :

Rn,C,1(f) = inf
ĥk

sup
g∈Hn(f,C)

Eg

{
ĥk − {θk+2(g)}−1/(2k+5)

}2
.

Then
lim

C→∞
lim inf
n→∞ nRn,C,1(f) ≥ {θk+2(f)}−2/(2k+5)B2

k(f),

where Bk(f) was defined by (1.3).

In order to show that the second term Qk(f) of φk(f) (see (2.1) and (2.2))
is negligible, the next lemma gives an estimate of δl(f).

Lemma 3. For any l = 1, . . . , [(k + 2)/2], there exists an estimator δ̂l such that

sup
g∈Hn(f,C)

Eg{δ̂l − δl(g)}2 = O(n−16(k+2)(k+2−l)/{(8k+17)(2k+5)}).

Note that l = 1 when k = 0, and the convergence rate reduces to O(n−32/85),
which is the rate obtained in Lemma 3 of Fan and Marron (1992).

The next lemma indicates that the minimax lower bound for φk(f) is equiv-
alent to that of hk,S(f) (see (2.2)), i.e., the second term Qk(f) of φk(f) is indeed
negligible.

Lemma 4. Let Rn,C,2(f) be the minimax risk for estimating φk(f):

Rn,C,2(f) = inf
ĥk

sup
g∈Hn(f,C)

Eg{ĥk − φk(g)}2.
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Then, as n→ ∞ and C → ∞ we have

Rn,C,2(f) ≥ n−2/(2k+5)c21Rn,C,1(f)(1 + o(1)),

where c1 was defined in (2.3).

The next lemma indicates that the Hellinger neighborhood is so small that
hk(g) is asymptotically equivalent to hk(f). Consequently, important character-
istics of g are very close to those of f for large n (see the proof of Lemma 5 for
details).

Lemma 5. On the Hellinger ball Hn(f,C), we have

lim
n→∞ sup

g∈Hn(f,C)
|{hk(g)/hk(f)} − 1| = 0.

In the sequel, we write θj for θj(f) and suppress the subscript k in Mk, φk(g),
hk(f), hk(g), ĥk, hk,S(f), etc., whenever it causes no confusion. Throughout the
rest of the paper, all the suprema are taken over g ∈ Hn(f,C) (see (2.4)), and
this range will not be specified explicitly.

The proofs of all the lemmas and theorems, except Lemma 3 and Theorem
2, are straightforward extensions to general k of counterparts in Fan and Mar-
ron (1992). For ease of comparison and understanding, throughout we follow
closely the organization and arguments (with suitable adaptations and necessary
generalizations) in their proofs.

Proof of Lemma 1. For k = 0, Fan and Marron (1992) proved (A.1) using
calculations as in Section 2 of Hall, Sheather, Jones and Marron (1991). For
a general k, we can use results from Section 1.5 of Wu (1997) (see, also, Scott
(1992)) to establish (A.1).

Proof of Lemma 2. From the proof of Theorem 2(i) of Bickel and Ritov (1988),
we know that θk+2 is (Frèchet) pathwise differentiable along paths

{fv :‖ fv
1/2 − f1/2 ‖2→ 0, and ‖ (f (2k+4)

v − f (2k+4))f1/2 ‖2→ 0}
with derivative 4{(−1)k+2f (2k+4)(x) − θk+2}f1/2(x). Hence θ

−1/(2k+5)
k+2 is also

(Frèchet) pathwise differentiable along such paths with derivative

{−(2k + 5)−1θ
−(2k+6)/(2k+5)
k+2 }4{(−1)k+2f (2k+4)(x) − θk+2}f1/2(x).

As at the end of the proof of Theorem 2(i) of Bickel and Ritov (1988), the
information bound for θ−1/(2k+5)

k+2 is

‖ −2(2k + 5)−1θ
−(2k+6)/(2k+5)
k+2 {(−1)k+2f (2k+4)(x) − θk+2}f1/2(x) ‖2

2

= 4(2k + 5)−2θ
−2(2k+6)/(2k+5)
k+2

∫ ∞

−∞
{f (2k+4)(x) − (−1)k+2θk+2}2f(x)dx

= 4(2k + 5)−2θ
−2−{2/(2k+5)}
k+2 Var {f (2k+4)(X1)} = θ

−2/(2k+5)
k+2 B2

k(f)
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by using the fact that θk+2 = (−1)k+2
∫ ∞
−∞ f (2k+4)(x)f(x)dx. The result fol-

lows from arguments at the end of the proof of Lemma 2 of Fan and Marron
(1992), where standard semiparametric theory (cf., Theorem 2.10 of van der
Vaart (1988)) was used.

Proof of Lemma 3. We note that for g ∈ Fj+α, g(2k+4) is bounded by g0 ∈
L1∩L∞. Since k+2+j < 2k+4 < 2(k+2+j)+1/4 for all j = 0, . . . , [(k+2)/2],
it follows by the construction of Bickel and Ritov (1988) (using their notations, if
k+2+j < m+α ≤ 2(k+2+j)+1/4 then the bound n4γE{θ̂k+2+j−θk+2+j(Fn)}4 =
O(1), where γ = 4{m + α − (k + 2 + j)}/(1 + 4m + 4α), can be established by
arguments analogous to those in the proof of Theorem 1 (ii) of their paper;
and then setting m + α = 2k + 4) that there exist estimators θ̂k+2 ≥ 0 and
θ̂k+3, . . . , θ̂k+2+[(k+2)/2] such that

supEg{θ̂k+2+j−θk+2+j(g)}4 =O(n−16(k+2−j)/(8k+17)), j=0, . . . , [(k+2)/2],(A.2)

supEgθ̂
(4k+4)
k+2 =O(1), supEg|θ̂k+2+j|(4k+4)/j =O(1), j=1, . . . , [(k + 2)/2] (A.3)

(cf., Hall and Marron (1987a) and Jones and Sheather (1991) for a different
estimator which can also be used here). Next, by (1.6) of Wu (1995) and by
Remark 2, we have for all j = 0, . . . , [(k + 2)/2],

supπθk+2+j(g) =
∫ ∞

0
λ2k+4+2j |ψg(λ)|2dλ = O

(
1+

∫ ∞

1
λ2k+4+2j/λ4k+8dλ

)
<∞.

(A.4)
Furthermore, from Remark 1 it is not difficult to see that for l = 1, . . . , [(k+2)/2],

θ
(2l+1)/(2k+5)
k+2 (g)δl(g) =

∑
r∈Bl

crJ
r1
1 (g) · · · Jrl

l (g) =
∑
r∈Bl

c∗rθ(g)/θ
r1+r2+···+rl
k+2 (g),

(A.5)
where θ(g) (= θl,r(g)) = θr1

k+3(g) · · · θrl
k+2+l(g), Bl = {r = (r1, . . . , rl) : 0 ≤

r1, . . . , rl ≤ l,
∑l

m=1mrm = l} and cr and c∗r are constants not depending on
n and the θj(g)’s. Put δl,r(g) = θ(g)/θβ

k+2(g), where β = {(2l + 1)/(2k + 5)} +∑l
i=1 ri (note that

∑l
i=1 ri ≤ l). In view of (A.5), we have δl(g) =

∑
r∈Bl

c∗rδl,r(g),
and the lemma will be proved if we show that for each l = 1, . . . , [(k + 2)/2] and
r ∈ Bl, there exists an estimator δ̂l,r such that

supEg{δ̂l,r − δl,r(g)}2 = O(n−16(k+2)(k+2−l)/{(2k+5)(8k+17)}). (A.6)

To guard against a zero denominator, take δ̂l,r = θ̂/{θ̂β
k+2 + n−τ}, where θ̂ =

θ̂r1
k+3 · · · θ̂rl

k+2+l and τ = 4(k+2−l)/(8k+17). For simplicity of notation we denote
θ̃ = θ̂−θ(g) and θ̃k+2+j = θ̂k+2+j −θk+2+j(g). Also, for ease of writing we define
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the non-negative r.v. ξk+2+j = |θ̂k+2+j| ∨ θk+2+j(g). Put p = (2k+5)/(k+3+ l)
(note that 1 < p < 2). Using (A.2) to (A.4), we have

supEg|θ̃|2p =supEg

∣∣∣∑
j

(
θ̂

rj

k+2+j − θ
rj

k+2+j(g)
) j−1∏

m=1

θrm
k+2+m(g)

l∏
m=j+1

θ̂rm
k+2+m

∣∣∣2p

= supEg

∣∣∣∑
j

θ̃k+2+j

∑
i

θ̂
rj−i−1
k+2+j θ

i
k+2+j(g)

j−1∏
m=1

θrm
k+2+m(g)

l∏
m=j+1

θ̂rm
k+2+m

∣∣∣2p

= O
(∑

j

∑
i

supEg

{
|θ̃k+2+j|2p|θ̂k+2+j|2p(rj−i−1)θ2pi

k+2+j(g)
∏
m�=j

ξ2prm

k+2+m

})

= O
(∑

j

∑
i

supEg

{
|θ̃k+2+j|2pξ

2p(rj−1)
k+2+j

∏
m�=j

ξ2prm

k+2+m

})

= O
(∑

j

{supEgθ̃
4
k+2+j}p/2

l∏
m=1

{supEgξ
4p(l−j)/((2−p)m)
k+2+m }1/pm

)

= O
(∑

j

n−8p(k+2−j)/(8k+17)
l∏

m=1

{supEg(ξk+2+m ∨ 1)(4k+4)/m)}1/pm

)

= O(n−2pτ ), (A.7)

where the summation is taken over {j : 1 ≤ j ≤ l, rj ≥ 1} and {i : 0 ≤ i ≤
rj−1}. The third equality is obtained by applying the Generalized Cr−inequality
(i.e., |∑t

i=1 ai|p ≤ Cp,t
∑t

i=1 |ai|p, Cp,t is a constant); the fourth equality is ob-
tained by noting that |θ̂k+2+j|2p(rj−i−1)θ2pi

k+2+j(g) ≤ ξ
2p(rj−1)
k+2+j ; the fifth equality is

obtained by applying the Generalized Hölder’s inequality with p−1
0 = p/2, p−1

j =
j(rj − 1)(2 − p)/{2(l − j)} and p−1

m = mrm(2 − p)/{2(l − j)}, m 
= j; and
the sixth equality follows from the fact 4p(l − j)/((2 − p)m) ≤ (4k + 4)/m and
the inequality |x|s ≤ (|x| ∨ 1)t if s ≤ t. Put I1 = Eg{(δ̂l,r − δl,r(g))2IS} and
I2 = Eg{(δ̂l,r − δl,r(g))2IS′}, where I(·) is the indicator function, S = {|θ̃k+2| ≥
θk+2(g)/2}, and S′ is the complement of S. Then

Eg(δ̂l,r − δl,r(g))2 = I1 + I2

= Eg

{
{θβ

k+2(g)θ̃ − (θ̂β∗
k+2 + n−τ )θ(g)}/{(θ̂β

k+2 + n−τ )θβ
k+2(g)}

}2
,

where θ̂β∗
k+2 = θ̂β

k+2 − θβ
k+2(g). Evidently, S′ ⊂ {θ̂k+2 > θk+2(g)/2}. This implies

that the denominator in I2 is bounded away from 0. Hence, using (A.2) to (A.4)
and (A.7), we get

sup I2 = O
(
supEgθ̃

2 + supEg{θ̂β∗
k+2}2 + n−2τ

)
= O(n−2τ ).
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Next, let us consider I1. The fact that θ̂k+2 ≥ 0 ensures that

I1 = O
(
n2τEg

{
{θβ

k+2(g)θ̃ − (θ̂β∗
k+2 + n−τ )θ(g)}2IS

})
.

Applying Hölder’s inequality with the foregoing p and q = (2k + 5)/(k + 2 − l),
and using (A.2) to (A.4) and arguments analogous to those in deriving (A.7), we
get

sup I1 = O
(
n2τ

{
supEg|θ̃|2p + supEg{θ̂β∗

k+2}2p + n−2pτ
}1/p{

supEgIS
}1/q)

= O(n2τn−2τ{supEgIS}1/q) = O(n−2τ(2k+4)/(2k+5)),

where the last equality follows from

supEgIS ≤ 16{inf θk+2(g)}−4 supEg|θ̃k+2|4 = O(n−16(k+2)/(8k+17))

where the infimum is taken over g ∈ Hn(f,C). This can be derived by applying
Markov’s inequality and using the fact that inf θk+2(g) > 0 eventually in n, as
implied by (A.8) herein. This leads immediately to (A.6).

Proof of Lemma 4. Let δ̂ =
∑[(k+2)/2]

l=1 δ̂ln
−2l/(2k+5) be the estimator of δ(f) =

c−1
1 n1/(2k+5)Qk(f) (recalling (2.1)-(2.3)), where δ̂l is the estimator of δl(f) defined

in Lemma 3. Then by making the change of variable ĥ → n−1/(2k+5)c1(ĥ + δ̂),
we have

Rn,C,2(f) = n−2/(2k+5)c21 infĥ supEg{ĥ− θ
−1/(2k+5)
k+2 (g) + δ̂ − δ(g)}2

≥n−2/(2k+5)c21 infĥ sup
(
Eg{ĥ−θ−1/(2k+5)

k+2 (g)}2−an{Eg{ĥ−θ−1/(2k+5)
k+2 (g)}2}1/2

)
,

where an = 2{Eg{δ̂−δ(g)}2}1/2 = o(n−1/2), as can be seen from Lemma 3. Thus,

Rn,C,2(f) ≥ n−2/(2k+5)c21 infĥ {q2(ĥ) − anq(ĥ)},
where

q(ĥ) = {sup Eg{ĥ − θ
−1/(2k+5)
k+2 (g)}2}1/2.

By Lemma 2, for any estimator ĥ and all sufficiently large n and C, we have

q(ĥ) ≥ infĥ q(ĥ) = R
1/2
n,C,1(f) ≥ 2−1{θk+2(f)}−1/(2k+5)Bk(f)n−1/2.

This entails that q(ĥ) > an for all sufficiently large n and C. The rest of the
proof follows directly from arguments near the end of the proof of Lemma 4 of
Fan and Marron (1992).

Proof of Lemma 5. The proof is a straightforward extension of the proof of
Fan and Marron (1992). Indeed, by the arguments at the beginning of the proof
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of Lemma 5 of Fan and Marron (1992) and by our present Lemma 1, we see that
it suffices to show that sup |θk+2(g)− θk+2(f)| → 0 as n→ ∞. Now, using (3.9)
of Fan and Marron (1992) and the fact that g(j)(x) (j = 0, . . . , 2k + 4) can be
estimated consistently, we get sup |g(j)(x) − f (j)(x)|2 → 0 for j = 0, . . . , 2k + 4.
The desired result follows from

sup |θk+2(g) − θk+2(f)| = sup
∣∣∣∫ ∞

−∞
g(2k+4)g −

∫ ∞

−∞
f (2k+4)f

∣∣∣
≤

∫ ∞

−∞
f sup |g(2k+4) − f (2k+4)| +

∫ ∞

−∞
g0 sup |g − f | → 0, (A.8)

as can be seen by using Dominated Convergence Theorem and the fact that
|g(2k+4)| ≤ g0.

Proof of Theorem 1. Write h(g) = φ(g) + η(g). We get by Lemma 1, (2.1)
and (2.2), that sup η(g) = o(n−1/2−1/(2k+5)). In view of Lemmas 5 and 1, (2.2)
and (2.8), we have

infĥ sup Eg{(ĥ− h(g))/h(g)}2 ≥ infĥ {sup Eg(ĥ− h(g))2/ sup h2(g)}
= infĥ sup Eg{ĥ− φ(g) − η(g)}2h−2

S (f)(1 + o(1)).

Putting this together with the argument used at the end of the proof of Lemma
4, we can show that η(g) is indeed negligible and conclude that

infĥ sup Eg{(ĥ− h(g))/h(g)}2 ≥ h−2
S (f)Rn,C,2(f)(1 + o(1)).

The proof follows directly from (2.2), Lemmas 4 and 2.

Proof of Theorem 2. Throughout the proof we denote h(f) by hf . By Taylor
expansion and using the fact that M ′(hf ) = 0, we get

M(ĥ) −M(hf ) = 2−1M ′′(hf )(ĥ− hf )2 + 6−1M ′′′(h̃)(ĥ− hf )3, (A.9)

where h̃ lies between ĥ and hf . Let us denote d1 = (2k + 1)2/(2k+5)(2k + 5),
d2 = d1/{4(2k+1)(2k+3)/(2k+5)}, r = θ

1/(2k+5)
k (w) and ν = µ

1/(2k+5)
2 . Then, from

results in Section 1.5 of Wu (1997) (which extends results in Hall et al. 1991 to
general k), we have

M(h) + n−1θk(f) = N(h) +O(n−1h2 + h6),
N(h) = (nh2k+1)−1θk(w) + 4−1µ2

2h
4θk+2(f),

hf/hS = 1 +O(n−2/(2k+5)), (A.10)

where hS = hS(f), as defined by (2.2), is the minimizer of N(h), and, conse-
quently,

M ′′(hf ) =N ′′(hf ) +O(n−1 + h4
f ) = N ′′(hS)(1 +O(h2

f ))

= d1r
2ν4k+6θ

(2k+3)/(2k+5)
k+2 n−2/(2k+5)(1 +O(h2

f )) (A.11)
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and

M(hf ) = N(hf ) +O(h6
f + n−1) = N(hS){1 +O(h2

f + h2k+1
f )}

= d2r
4ν4k+2θ

(2k+1)/(2k+5)
k+2 n−4/(2k+5){1 +O(h2

f + h2k+1
f )}. (A.12)

Combining (A.10)-(A.12) yields

M ′′(hf )h2
f/{2M(hf )} = (4k + 2){1 +O(h2

f + h2k+1
f )}, (A.13)

where N ′′(hS)h2
S/{2N(hS)} = (2k + 1)2/(2k+5)d1/(2d2) = 4k + 2 was used. By

arguments analogous to those in deriving (A.13) we get

M ′′′(h̃)h3
f/{6M(hf )} = Op(h̃/hf ){1 +Op(h̃2) +O(h2

f + h2k+1
f )}.

This, together with (A.9) and (A.13), leads to

nδ{M(ĥ)/M(hf ) − 1}
= (4k + 2)nδ(ĥ/hf − 1)2{1 +O(n−2/(2k+5) + n−(2k+1)/(2k+5))}

+Op(1){nδ(ĥ/hf − 1)3}.
This completes the proof.
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Härdle, W., Marron, J. S. and Wand, M. P. (1990). Bandwidth choice for density derivatives.

J. Roy. Statist. Soc. Ser. B 52, 223-232.
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