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Abstract: This paper considers a nonparametric varying coefficient regression model

with longitudinal dependent variable and cross-sectional covariates. The relation-

ship between the dependent variable and the covariates is assumed to be linear at a

specific time point, but the coefficients are allowed to change over time. Two kernel

estimators based on componentwise local least squares criteria are proposed to esti-

mate the time varying coefficients. A cross-validation criterion and a bootstrap pro-

cedure are used for selecting data-driven bandwidths and constructing confidence

intervals, respectively. The theoretical properties of our estimators are developed

through their asymptotic mean squared errors and mean integrated squared errors.

The finite sample properties of our procedures are investigated through a simulation

study. Applications of our procedures are illustrated through an epidemiological

example of predicting the effects of cigarette smoking, pre-HIV infection CD4 cell

percentage and age at HIV infection on the depletion of CD4 cell percentage among

HIV infected persons.
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1. Introduction

In a longitudinal study, observations are usually obtained from n indepen-
dently selected subjects each repeatedly measured over a set of distinct time
points. Interest of the study is often focused on evaluating the effects of time t

and a set of covariates X(l)(t), l = 1, . . . , k, which may or may not depend on t,
on a time dependent outcome variable Y (t). Let tij be the time of the jth mea-
surement of the ith subject and X

(l)
ij , l = 1, . . . , k, and Yij be the ith subject’s

observed covariates and outcomes at time tij. The longitudinal observations are
given by {(tij , Yij ,XT

ij); 1 ≤ i ≤ n, 1 ≤ j ≤ ni}, where Xij = (1,X(1)
ij , . . . ,X

(k)
ij )T

and ni is the number of repeated measurements of the ith subject. Although the
measurements are independent between different subjects, they are likely to be
correlated within each subject.

Longitudinal data are common in medical and epidemiological studies. For
example, in long-term follow-up cohort studies and clinical trials, patients’ health
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status, such as CD4 (also known as T-helper lymphocytes) cell levels in Human
Immunodeficiency Virus (HIV) infected persons, and other risk factors are often
repeatedly measured over time (cf. Kaslow, Ostrow, Detels, Phair, Polk and
Rinaldo (1987)).

Under multivariate linear and generalized linear regression models, estima-
tion and inferences with longitudinal observations have been extensively studied
by Pantula and Pollock (1985), Ware (1985), Liang and Zeger (1986), Jones
(1987), Diggle (1988), Jones and Ackerson (1990), Jones and Boadi-Boteng
(1991), Diggle, Liang and Zeger (1994), among others. Theory and methods with
nonlinear models can be found in Davidian and Giltinan (1995) and Vonesh and
Chinchilli (1997). Although parametric models and the corresponding estima-
tion methods, such as weighted least squares, quasi-likelihoods and generalized
estimation equations, have been used in numerous applications, they are less suc-
cessful when there are no meaningful parametric forms available for the scientific
problem being considered or the models are incorrectly specified. Existing non-
parametric methods, such as Hart and Wehrly (1986), Altman (1990) and Rice
and Silverman (1991), relaxed the parametric relationship between Y (t) and t to
a flexible smooth curve, but suffered the drawbacks of not including the effects
of X(l)(t), l = 1, . . . , k, into the model.

To incorporate the effects of both time and covariates, Zeger and Diggle
(1994) considered estimation and inferences of the semiparametric partially linear
model

Y (t) = β0(t) +
k∑

l=1

X(l)(t)βl + ε(t),

where β0(t) is a smooth function of t, βl, l = 1, . . . , k, are unknown parame-
ters on the real line, ε(t) is a mean zero stochastic process and X(l) and ε(·)
are independent. However, for many situations, the effects of X(l)(t) on Y (t)
may not be constant over time, so that describing them through βl appears to
be unrealistic. Generally, one may model the relationship between Y (t) and
(t,X(1)(t), . . . ,X(k)(t)) through an unknown multivariate smooth function. But,
in real applications, particularly when k is large, for example k ≥ 3, multivari-
ate smoothing methods may require unrealistically large sample sizes and often
produce results that are biologically difficult to interpret.

A promising alternative is to consider regression models that are more flexible
than the classical parametric or semiparametric models and also have specific
structures which can be easily interpreted in real applications. For this purpose,
Hoover, Rice, Wu and Yang (1998) considered the varying coefficient model

Y (t) = XT (t)β(t) + ε(t), (1.1)
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where X(t) = (1,X(1)(t), . . . ,X(k)(t))T , β(t) = (β0(t), . . . , βk(t))T , βl(t), l =
0, . . . , k, are smooth functions of t, ε(t) is a mean zero stochastic process and
X(·) and ε(·) are independent. These authors proposed, among other methods,
a kernel estimator β̂(t) of β(t) which minimizes the ordinary local least squares
criterion:

�N (t) =
n∑

i=1

ni∑
j=1

{
1
N

(
Yij −XT

ijb(t)
)2

K

(
t − tij

h

)}
, (1.2)

with respect to b(t) = (b0(t), . . . , bk(t)), where N =
∑n

i=1 ni, K(·) is a Borel
measurable kernel function and h is a positive bandwidth. When the observations
are cross-sectional, i.e. each subject is only measured once, (1.1) is a special case
of the models considered by Hastie and Tibshirani (1993).

For many longitudinal studies, the covariate variables are independent of t,
so that their observations are cross-sectional. Then an important special case of
(1.1) is

Y (t) = XT β(t) + ε(t), (1.3)

where X = (1,X(1), . . . ,X(k))T , X(l), l = 1, . . . , k, are time independent covari-
ates and β(t) and ε(t) are defined in (1.1). The longitudinal observations are now
given by {(tij , Yij ,XT

i ); 1 ≤ i ≤ n, 1 ≤ j ≤ ni}, where Xi = (1,X(1)
i , . . . ,X

(k)
i )T .

The HIV/Growth example studied by Hoover, et al. (1998) actually belongs to
this special case.

We consider the estimation of β(t) based on (1.3) and {(tij , Yij ,XT
i ); 1 ≤

i ≤ n, 1 ≤ j ≤ ni}. Using the special feature that the Xi are cross-sectional, we
propose two new kernel estimators based on componentwise local least squares
criteria. Our estimators have two major advantages over the ordinary local least
squares approach of (1.2). First, since (1.2) relies on only one set of bandwidth
and kernel function to simultaneously estimate all (k+1) curves of β(t), β̂(t) may
not be able to provide adequate smoothing for some components of β(t) when
βl(t), l = 1, . . . , k, belong to different smoothness families. Our estimators allow
for (k + 1) different sets of bandwidths and kernel functions and are capable of
providing separate smoothing for each component of β(t). Second, since (1.2)
assigns equal weight to each measurement point (tij, Yij ,XT

i ), β̂(t) may be incon-
sistent when max1≤i≤n(ni/N) does not converge to zero as n → ∞ (cf. Hoover,
et al. (1998)). Because the subjects are assumed to be independent of each other,
our estimators use two weighting schemes: (i) equal weight for each subject; (ii)
equal weight for each measurement. The first weighting scheme always gives con-
sistent estimators regardless of how the ni are chosen. These weighting schemes
are identical when all subjects have the same number of repeated measurements
and give different asymptotic results when the numbers of repeated measurements
are different per subject. None of the weighting schemes uniformly dominates
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the other theoretically, or in applications. A general weighted local least squares
approach may require the knowledge of correlation structures of the data, which
are usually unknown in practice. Thus, our estimation approach differs from that
of Hoover, et al. (1998), both in smoothing techniques and weighting schemes.
The asymptotic results of this paper show that the convergence rates of our es-
timators are at least as good as, and frequently better than, that of β̂(t). In
addition to the estimation method, we also propose a cross-validation procedure
for selecting data-driven bandwidths and a “resampling-subject” bootstrap pro-
cedure for constructing pointwise confidence intervals. Theoretical properties of
these bandwidth and confidence procedures have not yet been developed. How-
ever, through a Monte Carlo simulation and an epidemiological example of CD4
cell levels in HIV infected persons, we show that our procedures are useful in
nonparametric longitudinal analysis and implementable in practice.

For the rest of the paper, we summarize the estimation, bandwidth selection
and bootstrap confidence procedures in Section 2. The application of model (1.3)
and our procedures to the CD4/HIV example is given in Section 3. Section 4
presents the results of the simulation study. The asymptotic representations of
the mean squared errors and the mean integrated squared errors of our estimators
are derived in Section 5. Finally, proofs of the asymptotic results are sketched in
appendices.

2. Estimation Methods

2.1. Componentwise kernel estimators

For most epidemiological studies, the subjects are randomly selected, so that
the observed covariates Xi are random. We assume throughout this paper that
the covariate vector X of (1.3) is random, X and ε(·) are independent and the
(k + 1) × (k + 1) matrix E(XXT ) is invertible. Let E−1

XXT be the inverse of
E(XXT ). Multiplying both sides of (1.3) by X and then taking expectations,
β(t) can be expressed as

β(t) =
(
E−1

XXT

)
E [XY (t)] . (2.1)

Let erl be the (r, l)th element of E−1
XXT . Then (2.1) implies that, for r =

0, . . . , k,

βr(t) = E
[( k∑

l=0

erlX
(l)
)
Y (t)

]
. (2.2)

Since E(XXT ) is time-independent, it can be simply estimated by the sample
mean ÊXXT = n−1∑n

i=1(XiXT
i ). Suppose that ÊXXT is invertible. A natu-

ral estimator of erl is êrl where êrl denotes the (r, l)th element of (ÊXXT )−1.
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Substituting erl in (2.2) by êrl, we can first approximate (
∑k

l=0 erlX
(l))Y (t) by

(
∑k

l=0 êrlX
(l))Y (t) and then estimate E[(

∑k
l=0 êrlX

(l))Y (t)] by minimizing

Lr(t) =
n∑

i=1

ni∑
j=1

{( 1
nni

)[( k∑
l=0

êrlX
(l)
i

)
Yij − br(t)

]2
Kr

( t − tij
hr

)}
(2.3)

with respect to br(t), where Kr(·) is a Borel measurable kernel function and hr

is a positive bandwidth. The solution of (2.3) leads to the estimator β̃(t) =
(β̃0(t), . . . , β̃k(t))T , where βr(t) is estimated by

β̃r(t) =

∑n
i=1

{
n−1

i

∑ni
j=1

[(∑k
l=0 êrlX

(l)
i

)
YijKr ((t − tij) /hr)

]}
∑n

i=1

{
n−1

i

∑ni
j=1 [Kr ((t − tij) /hr)]

} . (2.4)

Note that (2.3) assigns weight (nni)−1 to each measurement of the ith subject.
These weights are different when the numbers of repeated measurements are
different per subject.

An alternative local least squares approach is to minimize

L∗
r(t) =

n∑
i=1

ni∑
j=1

{ 1
N

[( k∑
l=0

êrlX
(l)
i

)
Yij − br(t)

]2
Kr

(t − tij
hr

)}
(2.5)

with respect to br(t). This leads to a kernel estimator β̃∗(t) = (β̃∗
0(t), . . . , β̃∗

k(t))T ,
where

β̃∗
r (t) =

∑n
i=1

∑ni
j=1

[(∑k
l=0 êrlX

(l)
i

)
YijKr ((t − tij) /hr)

]
∑n

i=1

∑ni
j=1 [Kr ((t − tij) /hr)]

(2.6)

estimates βr(t). Similar to (1.2), (2.5) assigns the uniform weight N−1 to all the
measurement points, so that β̃∗ is more influenced by those subjects with large
numbers of repeated measurements.

Remark 2.1. Contrary to (1.2), which depends on a kernel smoother to estimate
E(XXT ), the smoothing methods of (2.3) and (2.5) rely heavily on the time
independent nature of X and use the sample mean to estimate E(XXT ). Thus,
different smoothing needs of βr(t), r = 0, . . . , k, can be adjusted in (2.3) and
(2.5) by selecting appropriate bandwidths hr and kernels Kr(·). The choices of
weighting schemes may also have profound influences on the adequacy of the
estimators. It may be theoretically beneficial if (nni)−1 in (2.3) or N−1 in (2.5)
could be replaced by non-negative weights wi, i = 1, . . . , n, which depend on the
intra-correlations of the data. However, the structures of the intra-correlations
are often unknown in practice, so that the special choices (nni)−1 and N−1

appear to be natural in these situations. We will see in Section 5 that neither
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β̃r(t) or β̃∗
r (t) asymptotically dominates the other uniformly. However, Monte

Carlo simulation similar to those presented in Section 4 consistently indicates
that β̃r(t) provides better fits than β̃∗

r (t). Thus, for the rest of the paper, we
concentrate on the properties of β̃r(t), and leave the properties of β̃∗

r (t) to brief
remarks.

Remark 2.2. Of course the idea employed in (2.3) and (2.5) can be extended
to other smoothing methods. For example, a (d − 1)-degree local polynomial
estimator b̃r(t) can be obtained by minimizing (2.3) or (2.5) with βr(t) replaced
by a polynomial of the form

∑d−1
s=0(t− tij)sbsr(t). The local polynomial estimator

b̃(t) = (b̃0(t), . . . , b̃k(t))T then also uses (k + 1) different sets of bandwidths and
kernel functions, while the ordinary least squares local polynomials of Hoover, et
al. (1998) restrict to one bandwidth and kernel. The additional bandwidths and
kernel functions used in b̃r(t) provide more flexibility for adapting the smoothing
needs of βr(t), r = 0, . . . , k. When βr(t), r = 0, . . . , k, are twice continuously
differentiable on the real line, another approach is to estimate β(t) by a smoothing
spline estimator β̃(S)(t) = (β̃(S)

0 (t), . . . , β̃(S)
k (t))T such that β̃

(S)
r (t) minimizes

n∑
i=1

ni∑
j=1

{ 1
nni

[( k∑
l=0

êrlX
(l)
i

)
Yij − br(tij)

]2}
+ λr

∫
(b′′r (s))

2ds

with respect to br(t), where λr is a positive smoothing parameter. Computation-
ally, b̃(t) and β̃(S)(t) require more effort than β̃(t). The theoretical and practical
properties of b̃(t) and β̃(S)(t) have not been developed and deserve a further
study.

2.2. Cross-validation bandwidth choices

It is well known in kernel regression that the selection of bandwidths is
generally more important than the selection of kernel functions. In practice,
under-smoothing or over-smoothing is mainly caused by inappropriate bandwidth
choices, but is rarely influenced by the kernel shapes. Usual choices of kernels,
such as the standard Gaussian kernel, the Epanechnikov kernel and other prob-
ability density functions, normally give satisfactory results. Bandwidths may be
selected subjectively by examining the plots of the fitted curves. But finding
automatic bandwidths suggested by the data is of both theoretical and practical
interest.

Following the heuristic procedure suggested by Rice and Silverman (1991),
we calculate the bandwidths of β̃(t) using the following “leave-one-subject-out”
cross-validation: Let β̃−i(t) be a kernel estimator of β(t) computed using the
data with all the repeated measurements of the ith subject left out, and define

CV(h) =
n∑

i=1

ni∑
j=1

{ 1
nni

(
Yij − XT

i β̃−i (tij)
)2}

(2.7)
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to be the cross-validation score of h = (h0, . . . , hk)T . The cross-validation band-
width vector hcv = (h0,cv , . . . , hk,cv)T is then defined to be the unique minimizer
of CV(h).

When the dimensionality of Xi is high, the search for hcv may be difficult.
However, it is usually easy to find a suitable range of the bandwidths by exam-
ining the plots of the fitted curves. Within a given range of h = (h0, . . . , hk),
one can approximate the value of hcv by computing CV(h) through a series of
h = (h0, . . . , hk) choices. This method for searching hcv, although rather ad
hoc, may actually speed up the computation and give a satisfactory bandwidth
vector in practice. However, a systematic search for hcv, particularly when k

is large, may require sophisticated optimization algorithms beyond the scope of
this paper.

Remark 2.3. To see why CV(h) is a reasonable criterion in practice, we consider
the following decomposition

CV(h)=
n∑

i=1

ni∑
j=1

{
1

nni
(Yij−XT

i β(tij))2
}

+
n∑

i=1

ni∑
j=1

{
1

nni

[
XT

i

(
β(tij)−β̃−i(tij)

)]2}

+2
n∑

i=1

ni∑
j=1

{
1

nni

(
Yij − XT

i β(tij)
) [

XT
i

(
β(tij) − β̃−i(tij)

)]}
. (2.8)

The first term of the right hand side of (2.8) does not depend on the bandwidths,
while, because of the definition of β̃−i(t), the expectation of the third term is
zero. Let ASE(β̃) be the average squared error of XT

i β̃(tij), i.e.,

ASE(β̃) =
n∑

i=1

ni∑
j=1

{
1

nni

[
XT

i

(
β(tij) − β̃(tij)

)]2}
.

It is easy to see that the expectation of the second term of the right hand side of
(2.8) is actually the expectation of ASE(β̃−i), which approximates the expecta-
tion of ASE(β̃) when n is large. Thus, hcv approximately minimizes the average
squared error ASE(β̃). Consistency of a similar “leave-one-subject-out” cross-
validation procedure in a different but simpler nonparametric regression setting
has been shown by Hart and Wehrly (1993). But, under the current setting, the
asymptotic and finite sample properties of hcv have not been fully investigated.

2.3. Bootstrap confidence intervals

Statistical inferences, such as confidence regions, hypotheses testing and
model diagnoses, are usually developed based on either asymptotic distributions
of the estimators or bootstrap methods (cf. Efron and Tibshirani (1993)). In the
context of cross-sectional data, asymptotic distributions are derived by letting
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the number of subjects n go to infinity. Thus the resulting inferences are reliable,
at least when the sample size is large. However, the longitudinal data structure
considered in this paper is more complicated because of two reasons. First, since
the numbers of repeated measurements ni, i = 1, . . . , n, are allowed to be dif-
ferent, the corresponding asymptotic distributions of the estimators may also be
different depending on how fast ni, i = 1, . . . , n, converge to infinity relative to
n. It will be seen from the asymptotic properties of Section 5 that, in order to
get a meaningful asymptotic result, n must converge to infinity, but ni may be
either bounded or converging to infinity as n → ∞. Second, because of the possi-
ble intra-correlation structures of the data, which are assumed to be completely
unknown, the asymptotic distributions may involve bias and correlation terms
which are difficult to estimate. Thus, inferences which are purely based on the
asymptotic distributions of β̃(t) may be difficult to implement in practice.

Since subjects are independently selected, a natural bootstrap sampling
scheme is to resample the entire repeated measurements of each subject with re-
placement from the original data set. Based on β̃(t) and this resampling subject
bootstrapping, the following naive bootstrap procedure can be used to construct
approximate pointwise percentile confidence intervals for βr(t):
1. Randomly sample n subjects with replacement from the original data set, and

let {(t∗ij ,X∗
i , Y

∗
ij); 1 ≤ i ≤ n, 1 ≤ j ≤ ni} be the longitudinal bootstrap sample.

Here the entire repeated measurements of some subjects in the original sample
may appear two or more times in the new bootstrap sample.

2. Compute the kernel estimator β̃boot
r (t) of βr(t) based on (2.4) (or (2.6)) and

the bootstrap sample.
3. Repeat the above two steps B times, so that B bootstrap estimators β̃boot

r (t)
of βr(t) are obtained.

4. Let L(α/2)(t) and U(α/2)(t) be the (α/2)th and (1 − α/2)th, i.e. lower and
upper (α/2)th percentiles, respectively, calculated based on the B bootstrap
estimators. An approximate (1−α) bootstrap confidence interval for βr(t) is
given by (L(α/2)(t), U(α/2)(t)).
The main advantage of this naive bootstrap procedure is that it does not

rely on the asymptotic distributions of β̃(t). An alternative bootstrap procedure
suggested by Hoover, et al. (1998), which relies on normal approximations of the
critical values, is to construct pointwise intervals of the form

β̃r(t) ± z(1−α/2)s̃e
∗
B(t), (2.9)

where s̃e∗B(t) is the estimated standard error of β̃r(t) from the B bootstrap es-
timators and z(1−α/2) is the (1 − α/2)th percentile of the standard Gaussian
distribution. Technically, both (2.9) and our naive bootstrap percentile proce-
dure may lead to good approximations of the actual (1− α) confidence intervals
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when the biases of β̃r(t) are negligible; but the biases of the estimators have to be
adjusted when they are not negligible. Theoretical properties of these bootstrap
procedures have not been developed.

Remark 2.4. The “resampling-subject” bootstrap can also be applied to other
smoothing estimators, such as local polynomials or smoothing splines. When the
simultaneous confidence regions for β(·) are of interest, these bootstrap proce-
dures can be used to construct Bonferroni-type confidence bands. However, it
is well known that the Bonferroni method usually gives excessively conservative
bands in practice. Further study on simultaneous inferences for β(·) may be
worthwhile.

3. Application to CD4/HIV Study

Since CD4 cells are vital for immune function, CD4 cell count and percentage,
i.e., CD4 cell count divided by the total number of lymphocytes, are currently
the most commonly used markers for the health status of HIV infected persons.
The dataset considered here is from the Multicenter AIDS Cohort Study, which
includes the repeated measurements of physical examinations, laboratory results
and CD4 percentages of 283 homosexual men who became HIV positive between
1984 and 1991. All individuals were scheduled to have their measurements made
at semi-annual visits. However, since many individuals missed some of their
scheduled visits and all the HIV infections happened randomly during the study,
we have unequal numbers of repeated measurements and different design times
tij per individual. Further details about the design, methods and medical impli-
cations of the study can be found in Kaslow, et al. (1987).

The objective here is to evaluate the effects of cigarette smoking, pre-HIV
infection CD4 percentage and age at HIV infection on the mean CD4 percentage
after the infection. Since the covariates are time independent, (1.3) and the
kernel method of (2.4) can be applied. Let tij be the time (in years) of the jth
measurement of the ith individual after HIV infection, Yij the ith individual’s
CD4 percentage at time tij and X

(1)
i the ith individual’s smoking status (equal

to 1 if he always smokes cigarettes and 0 if he never smokes cigarettes). To
ensure a clear biological interpretation of our results, we define X

(2)
i to be the

ith individual’s centered pre-infection CD4 percentage, i.e., X
(2)
i is obtained by

subtracting the average pre-infection CD4 percentage of the sample from the
ith individual’s actual pre-infection CD4 percentage. Similarly, X

(3)
i , obtained

by subtracting the sample average age at infection from the ith individual’s
age at infection, is the ith individual’s centered age at HIV infection. The main
advantage of using the centered covariates X

(2)
i and X

(3)
i is that βl(t), l = 0, . . . , 3,

have clear biological interpretations. Here, β0(t) represents the baseline CD4
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percentage and can be interpreted as the mean CD4 percentage at time t for a
nonsmoker with average pre-infection CD4 percentage and average age at HIV
infection. Then, β1(t), β2(t) and β3(t) can be interpreted as the effects of cigarette
smoking, pre-infection CD4 percentage and age at HIV infection on the post-HIV
infection CD4 percentage at time t.

The estimators β̃r(t), r = 0, . . . , 3, were computed based on (2.4) and the
standard Gaussian kernel. For the choice of bandwidths, a set of subjective
bandwidths, hr = 1.5 for all r = 0, . . . , 3, was chosen by examining the plots
of the estimated curves. The cross-validated bandwidths were then selected by
minimizing the values of CV(h) over a series of (h0, . . . , h3) values. With 200
bootstrap replications, the bootstrap percentile procedure of Section 2.3 was
used to construct pointwise confidence intervals for β0(t), . . ., β3(t) at 60 equally
spaced time points between 0 and 5.9 years.
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Figure 1. The solid curves in (a), (b), (c) and (d) show the kernel estimators
β̃r(t), r = 0, 1, 2, 3, respectively, based on (2.4), the standard Gaussian kernel
and hS = (1.5, 1.5, 1.5, 1.5)T . The dotted curves represent the corresponding
95% bootstrap percentile pointwise intervals.

The solid curves of Figures (1a) through (1d) show the estimators β̃0(t), . . .,
β̃3(t) based on the subjective bandwidths hr = 1.5, r = 0, . . . , 3, while the dot-
ted curves give the corresponding 95% bootstrap percentile confidence intervals.
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Similarly, the solid curves of Figures (2a) through (2d) show the estimators β̃0(t),
. . ., β̃3(t) based on the cross-validated bandwidths, and the dotted curves give
the 95% bootstrap percentile confidence intervals for βr(t), r = 0, . . . , 3.
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Figure 2. The solid curves in (a), (b), (c) and (d) show the kernel estimators
β̃r(t), r = 0, 1, 2, 3, respectively, based on (2.4), the standard Gaussian ker-
nel and the cross-validated bandwidths hcv = (3.0, 3.0, 1.5, 3.0)T . The dotted
curves represent the corresponding 95% bootstrap percentile pointwise inter-
vals.

From these figures, we see that the mean baseline CD4 percentage of the
population depletes rather quickly at the beginning of HIV infection, but the
rate of depletion appears to be slowing down at four years after the infection.
Cigarette smoking and age of HIV infection do not show any significant effect on
the post-infection CD4 percentage. But pre-infection CD4 percentage appears
to be positively associated with higher post-infection CD4 percentage.

4. Simulation Results

We consider a design that is similar to the nature of the CD4/HIV study of
Section 3. Based on (1.3), the cross-sectional covariate vector X=(1,X(1),X(2))T

is specified so that the covariates X(1) and X(2) are independent random variables
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with a joint density

f(x1, x2) =
1

8(2π)1/2
exp

(
−x2

2

32

)
1{0,1}(x1)1(−∞,∞)(x2).

The coefficient curves are given by β0(t) = 3.5 + 6.5 sin(tπ/60),

β1(t) = −0.2 − 1.6 cos
(

(t − 30)π
60

)
and β2(t) = 0.25 − 0.0074

(
30 − t

10

)3

.

A simple random sample {Xi; i = 1, . . . , 400} of X is generated. Each subject
is designed to appear in the 31 scheduled equally spaced time points between
0 and 30, i.e., 0, . . . , 30, but has a probability of 60% to be randomly missing.
This leads to unequal design and the remaining unequally spaced time points are
denoted by tij, 1 ≤ i ≤ 400, 1 ≤ j ≤ ni. The random errors εij are generated
from the Gaussian process with zero mean and covariance function

cov (εi1j1, εi2j2) =

{
0.0625 exp (− |ti1j1 − ti2j2 |) , if i1 = i2,

0, if i1 �= i2.

The time dependent responses Yij are obtained by substituting tij, Xi, εij and
the above coefficient curves into (1.3).

Two hundred simulated longitudinal samples {(tij ,Xi, Yij); 1 ≤ i ≤ 400, 1 ≤
j ≤ ni} were independently generated. For each simulated dataset, kernel estima-
tors β̃(t) and β̃∗(t) were computed for t ∈ [0, 30] using the standard Gaussian ker-
nel and the cross-validated bandwidth vectors hcv . Through a close examination
of the CV scores for different bandwidths, the CV scores of hS = (2.0, 2.0, 2.0)T

for both β̃(t) and β̃∗(t) are very close to their corresponding global minima.
Thus, kernel estimators β̃(t) and β̃∗(t) based on the standard Gaussian kernel
and the subjective bandwidth vector hS = (2.0, 2.0, 2.0)T were also computed.
Estimators based on other commonly used kernels, such as the Epanechnikov
kernel and the uniform kernel, gave similar results that are omitted. Using β̃r(t),
β̃∗

r (t) and the bootstrap percentile procedure of Section 2.3, we constructed the
95% pointwise confidence intervals for βr(t), r = 0, 1, 2, at a sequence of time
points based on each simulated dataset and computed the estimated coverage
probabilities of the intervals based on all the replicated datasets.

We only present the simulation results, including the graphs of the estimated
curves and the estimated coverage probabilities of the bootstrap confidence in-
tervals, of β̃(t). Although β̃(t) and β̃∗(t) appear to be intuitive for the current
setting, the graphs of βr(t), β̃r(t) and β̃∗

r (t) for r = 0, 1, 2 show that, at least
for the simulated example considered, β̃(t) is superior to β̃∗(t). The bootstrap
confidence intervals of β̃r(t) also have much better coverage probabilities than
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those of β̃∗
r (t). One possible reason for the superiority of β̃(t) over β̃∗(t) is the

unequal numbers of repeated measurements. When ni, i = 1, . . . , n, are equal or
at least close to each other, the performance of β̃∗(t) is improved and similar to
that of β̃(t).

To see the average performance of β̃r(t), Figures (3a), (3b) and (3c) show the
graphs of βr(t) and the mean curves over all 200 simulated samples of β̃r(t) based
on hcv and hS . Although both bandwidth choices give reasonable estimators, at
least for the interior t points, the estimators based on hS appear to be slightly
better than those based on hcv. For both bandwidth choices, the estimators are
subject to larger biases near the boundary than at the interior points.
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Figure 3. The solid curves in (a), (b) and (c) show the true values of β0(t),
β1(t) and β2(t), respectively. The corresponding dashed curves show the
means of β̃0(t), β̃1(t) and β̃2(t) over all the simulated samples based on the
cross-validated bandwidths and the standard Gaussian kernel. The corre-
sponding dotted curves show the means of β̃0(t), β̃1(t) and β̃2(t) over all the
simulated samples based on h0 = h1 = h2 = 2.0 and the standard Gaussian
kernel.

Table 1 summarizes the estimated coverage probabilities of the bootstrap
percentile confidence intervals for βr(t), r = 0, 1, 2, at nine equally spaced time
points between 3.0 and 27.0. Except for β2(3.0), both bandwidth choices give
similar coverage probabilities which are, for most part, close to satisfactory. The
few lower than expected coverage values suggest that the naive bootstrap proce-
dure may be subject to further improvement. One possibility is to adjust for the
biases of the estimators. Practical bias adjustment methods are still subject to
study.

Table 1. Estimated coverage probabilities of 95% bootstrap percentile con-
fidence intervals for β̃r(t), r = 0, 1, 2, at 9 time points based on hcv, hS =
(2.0, 2.0, 2.0)T and the standard Gaussian kernel.

Time Point 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0

β̃0 0.90 0.97 0.93 0.94 0.89 0.94 0.91 0.92 0.96
hcv β̃1 0.91 0.95 0.94 0.92 0.92 0.93 0.94 0.95 0.97

β̃2 0.64 0.96 0.90 0.82 0.87 0.94 0.95 0.96 0.96

β̃0 0.91 0.95 0.94 0.94 0.88 0.94 0.90 0.92 0.94
hS β̃1 0.95 0.94 0.96 0.95 0.92 0.92 0.90 0.94 0.96

β̃2 0.94 0.94 0.92 0.90 0.90 0.93 0.94 0.93 0.94
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5. Asymptotic Risk Representations

We now derive the asymptotic representations of the mean squared errors
and the mean integrated squared errors of β̃(t). The asymptotic risks of β̃∗(t) can
be derived similarly, hence are only briefly discussed. These asymptotic results
demonstrate that, when the covariates are cross-sectional, the componentwise
kernel estimators β̃(t) and β̃∗(t) are generally superior to the ordinary least
squares kernel estimator β̂(t) obtained by minimizing (1.2).

5.1. Mean squared risks

For mathematical convenience, we specify that the time design points tij
are randomly selected from a distribution function F with density f . But the
ni, i = 1, . . . , n, are assumed to be nonrandom. This corresponds to random
designs in regression analysis. However, by modifying the notation and several
key steps in the derivations, the main results of this section can be extended to
fixed designs, or to the case that the ni are also random.

Because β̃(t) and β̃∗(t) are Rk+1 valued estimators, their closeness to β(t)
can be measured in different ways. Suppose that we are only interested in the
adequacy of one component of β̃(t), say β̃r(t). A natural risk of β̃r(t) at point t

is the mean squared error E{[β̃r(t) − βr(t)]2}. For the risk of β̃(t) at t, one can
then use E{(β̃(t) − β(t))T W (β̃(t) − β(t))} =

∑k
r=0 WrE{[β̃r(t) − βr(t)]2} where

W is a (k + 1) × (k + 1) diagonal matrix with nonnegative diagonal elements
W0, . . . ,Wk.

Unfortunately, a minor technical difficulty for kernel regression estimators
is that their moments, hence E{[β̃r(t) − βr(t)]2}, may not exist (cf. Rosenblatt
(1969)), so that modifications of the mean squared errors have to be used. By
(2.4), it is easy to see that

β̃r(t) =
(
f̃r(t)

)−1
m̃r(t), (5.1)

where

m̃r(t) =
n∑

i=1

ni∑
j=1

[( 1
nnihr

)( k∑
l=0

êrlX
(l)
i

)
YijKr

( t − tij
hr

)]
(5.2)

and

f̃r(t) =
n∑

i=1

ni∑
j=1

[( 1
nnihr

)
Kr

( t − tij
hr

)]
. (5.3)

Straightforward algebra, using (5.1), (5.2) and (5.3), shows that

(1 − ∆r(t))
(
β̃r(t) − βr(t)

)
= (f(t))−1

(
m̃r(t) − βr(t)f̃r(t)

)
,

where ∆r(t) = 1 − (f̃r(t)/f(t)).
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For any interior point t of the support of f(·), it can be shown by the method
used in kernel density estimation with independent cross-sectional data (cf. Sil-
verman (1986)) that ∆r(t) → 0 in probability as n → ∞ and hr → 0. Then, by
(5.1), (5.2) and (5.3), we have the following approximation:

(1 + op(1))
(
β̃r(t) − βr(t)

)
= (f(t))−1 R̃r(t), (5.4)

where R̃r(t) = m̃r(t) − βr(t)f̃r(t).
We define the local and global risks of β̃r(·) by its modified mean squared

error,
MSE

(
β̃r(t)

)
= E

{
[(f(t))−1R̃r(t)]2

}
, (5.5)

and modified mean integrated squared error,

MISE
(
β̃r

)
=
∫

MSE
(
β̃r(s)

)
π(s)ds, (5.6)

respectively, where π(s) is any non-negative weight function whose support is a
compact subset in the interior of the support of f(·). Similar to nonparametric
regression with independent cross-sectional data, the compact support of π(s) is
used to remove the boundary effects of the kernel estimators (cf. Marron and
Härdle (1986)). The local and global risks of β̃(·) can be defined by

MSE
(
β̃(t)

)
=

k∑
r=0

WrMSE
(
β̃r(t)

)
(5.7)

and

MISE
(
β̃
)

=
k∑

r=0

WrMISE
(
β̃r

)
, (5.8)

respectively, where W0, . . . ,Wk are known non-negative constants.

5.2. Asymptotic representations

The following assumptions are made throughout this section.
(a) For all t ∈ R, f(t) is continuously differentiable and there are non-negative

constants pr, r = 0, . . . , k, so that βr(t) are (pr + 2) times continuously
differentiable with respect to t.

(b) For all r, l = 0, . . . , k, E[|X(r)|4] and the (2 + δ)th moments of |êrl| are finite
for some δ > 0.

(c) The variance and covariance of the error process ε(t) satisfy

σ2(t) = E
[
ε2(t)

]
< ∞ and ρε(t) = lim

t′→t
E
[
ε(t)ε(t′)

]
< ∞.

Furthermore, σ2(t) and ρε(t) are continuous for all t ∈ R.
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(d) The kernel function Kr(·) is a compactly supported (pr + 2)th order kernel,
which satisfies

∫
ujKr(u)du = 0 for all 1 ≤ j < pr + 2,

µ(pr+2) =
∫

upr+2Kr(u)du < ∞, R(Kr) =
∫

K2
r (u)du < ∞

and ∫
Kr(u)du = 1.

(e) The bandwidth hr > 0 satisfies hr → 0 and nhr → ∞ as n → ∞.
Notice that, in general, σ2(t) �= ρε(t). The strict inequality between σ2(t)

and ρε(t) happens, for example, when εij = s(tij)+ Wi where s(t) is a mean zero
Gaussian stationary process and Wi is an independent white noise (cf. Zeger and
Diggle (1994)). Some of the above assumptions, such as the compactness of the
support of Kr and the smoothness conditions of f(t), βr(t), σ2(t) and ρε(t), are
merely made for the simplicity of the derivations. Analogous asymptotic results
may be derived when these conditions are modified or even weakened. In practice
some non-compactly supported kernels, such as the standard Gaussian kernels,
can provide equally good estimators as well.

Let B(β̃r(t)) and V (β̃r(t)) be the bias and variance of (f(t))−1R̃r(t), respec-
tively. Then by (5.5), we have the decomposition

MSE
(
β̃r(t)

)
= B2

(
β̃r(t)

)
+ V

(
β̃r(t)

)
. (5.9)

An important fact, which is useful to establish the asymptotic representations
of B(β̃r(t)) and V (β̃r(t)), is êrl = erl + Op(n−1/2). For mathematical simplicity
and to avoid excessive notation, we only consider the rate Op(n−1/2), but not
the exact asymptotic expression, of (êrl − erl) in the derivation of B(β̃r(t)) and
V (β̃r(t)). Define

M (0)
r (t) =

k∑
r1=0

k∑
r2=0

{
βr1(t)βr2(t)E

[
Xr1Xr2

( k∑
l=0

erlXl

)2]}− β2
r (t),

M (1)
r (t) = M (0)

r (t) + σ2(t)E
[( k∑

l=0

erlXl

)2]
,

M (2)
r (t) = M (0)

r (t) + ρε(t)E
[( k∑

l=0

erlXl

)2]
,

Q1r(t) = µ(pr+2)

[β(pr+2)
r (t)
(pr + 2)!

+
β

(pr+1)
r (t)f ′(t)
(pr + 1)!f(t)

]
and

Q2r(t) = (f(t))−1R(Kr)M (1)
r (t).
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Theorem 5.1. Suppose that t is in the interior of the support of f(·) and
Assumptions (a) through (e) are satisfied. When n is sufficiently large,

B(β̃r(t)) = hpr+2
r Q1r(t) + o(hpr+2

r ) + O(n−1/2) (5.10)

and

V
(
β̃r(t)

)
= h−1

r

[ n∑
i=1

(n−1
i n−2)

]
Q2r(t)(1 + o(1))

+
[
n−1 −

n∑
i=1

(n−1
i n−2)

]
M (2)

r (t) (1 + o(1))

+B(β̃r(t))O(n−1/2)(1 + o(1)). (5.11)

The asymptotic representations of MSE(β̃r(t)), MISE(β̃r), MSE(β̃(t)) and
MISE(β̃) can be obtained by substituting (5.10) and (5.11) into (5.9), (5.6), (5.7)
and (5.8).

Proof. See Appendix A.

Say β̃r(t) is a consistent estimator of βr(t) if MSE(β̃r(t)) → 0 as n → ∞.
It immediately follows from Theorem 5.1 that β̃r(t) is consistent if and only if
hr → 0 and h−1

r

∑n
i=1(n

−1
i n−2) → 0 as n → ∞. The intra-correlations of the

data have no effect on B(β̃r(t)), but may strongly influence V (β̃r(t)).
The next result shows that, when the numbers of repeated measurements are

bounded, β̃r(t) behaves like a Nadaraya-Watson type kernel regression estimator
with independent cross-sectional data.

Theorem 5.2. Suppose that the assumptions of Theorem 5.1 are satisfied and
the ni are bounded, i.e., ni ≤ c for some c ≥ 1 and all i = 1, . . . , n. The opti-
mal bandwidths hr,opt(t) and hr,opt, which minimize MSE(β̃r(t)) and MISE(β̃r),
respectively, for all hr > 0, are given by

hr,opt(t) =
[ n∑

i=1

(n−1
i n−2)

]1/(2pr+5)[ Q2r(t)
2(pr + 2)Q2

1r(t)

]1/(2pr+5)
(5.12)

and

hr,opt =
[ n∑

i=1

(n−1
i n−2)

]1/(2pr+5)[ ∫
Q2r(s)π(s) ds

2(pr + 2)
(∫

Q2
1r(s)π(s) ds

)]1/(2pr+5)
. (5.13)

The optimal MSE(β̃r(t)) and MISE(β̃r) corresponding to hr,opt(t) and hr,opt are
given by

MSE(β̃r,hr,opt(t)) =
[ n∑

i=1

(n−1
i n−2)

] 2pr+4
2pr+5 [Q2r(t)]

2pr+4
2pr+5 [Q1r(t)]2/(2pr+5)
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×
[
(2pr + 4)

−2pr−4
2pr+5 + (2pr + 4)1/(2pr+5)

]
(1 + o(1)) (5.14)

and

MISE(β̃r,hr,opt) =
[ n∑

i=1

(n−1
i n−2)

] 2pr+4
2pr+5

[ ∫
Q2r(s)π(s)ds

] 2pr+4
2pr+5

×
[ ∫

Q2
1r(s)π(s)ds

]1/(2pr+5)

×
[
(2pr + 4)

−2pr−4
2pr+5 + (2pr + 4)1/(2pr+5)

]
(1 + o(1)). (5.15)

Proof. See Appendix B.

Remark 5.1. It can be shown as in (5.1) through (5.4) that

(1 + op(1))
(
β̃∗

r (t) − βr(t)
)

= (f(t))−1R̃∗
r(t),

where R̃∗
r(t) is defined as R̃r(t) in (5.4), with 1/(nni) in m̃r(t) and f̃r(t) sub-

stituted by 1/N . The modified bias and variance of β̃∗
r (t) are then defined by,

respectively,

B
(
β̃∗

r (t)
)

= E
[
(f(t))−1R̃∗

r(t)
]

and V
(
β̃∗

r (t)
)

= Var
[
(f(t))−1R̃∗

r(t)
]
.

The same calculations as in the proof of Theorem 5.1 show that, under the
conditions of Theorem 5.1, when n is sufficiently large, B(β̃∗

r (t)) is the same as
the right hand side of (5.10), but V (β̃∗

r (t)) is given by

V
(
β̃∗

r (t)
)

= N−1h−1
r Q2r(t)(1 + o(1)) + N−2

[ n∑
i=1

n2
i − N

]
M (2)

r (t)(1 + o(1))

+B
(
β̃∗

r (t)
)

O
(
n−1/2

)
(1 + o(1)). (5.16)

Optimal bandwidths and mean squared errors, analogous to those given in The-
orem 5.2, for β̃∗

r (t), can be derived from (5.10) and (5.16). Since convergence
rates of V (β̃r(t)) and V (β̃∗

r (t)) depend on ni differently, it is easy to see from
(5.11) and (5.16) that neither β̃r(t) nor β̃∗

r (t) asymptotically dominates the other
for all situations.

Remark 5.2. Theorem 5.1 implies that, in general, the convergence rates of
MSE(β̃r(t)) depend on whether and how ni, i = 0, . . . , n, converge to infinity
relative to n. In practice, whether the ni are sufficiently large or not is usu-
ally unknown, so that any bandwidth choices that purely rely on minimizing
the asymptotic expressions of MSE(β̃r(t)) or MISE(β̃r) may not work. Similar
conclusions hold for β̃∗

r (t). The bandwidth and inference procedures suggested
in Sections 2.2 and 2.3 only rely on available data, and are free of the asymptotic
results that may depend on unrealistic assumptions.
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Appendix A
Proof of Theorem 5.1.

By (1.3), we have

( k∑
l=0

êrlX
(l)
i

)
Yij =

k∑
l1=0

[
X

(l1)
i

( k∑
l2=0

êrl2X
(l2)
i

)
βl1(tij)

]
+
( k∑

l=0

êrlX
(l)
i

)
εij

and the obvious identity

βr(t) = E
{ k∑

l1=0

[
X(l1)

( k∑
l2=0

erl2X
(l2)
)
βl1(t)

]}
, r = 0, . . . , k. (A.1)

Assumption (b) and the definition of êrl imply that

E
[( k∑

l=0

êrlX
(l)
i

)
Yij

∣∣∣tij = s
]
=

k∑
l1=0

E
[
X

(l1)
i

( k∑
l2=0

êrl2X
(l2)
i

)]
βl1(s)

= βr(s) + O(n−1/2).

Thus it follows from (5.2), (5.3), (5.4), assumption (c) and the change of variables
that, when n is sufficiently large,

B(β̃r(t))

=
1

nhrf(t)

n∑
i=1

ni∑
j=1

∫ 1
ni

{
E
[( k∑

l=0

êrlX
(l)
i

)
Yij

∣∣∣tij = s
]
− βr(t)

}
Kr(

t − s

hr
)f(s) ds

= (f(t))−1
∫

[βr(t − hru) − βr(t)]f(t − hru)Kr(u) du + O(n−1/2).

Then (5.10) follows from the Taylor expansions of βr(t − hru) and f(t− hru) at
βr(t) and f(t), respectively.

For the expression of V (β̃r(t)), we consider[
(f(t))−1R̃r(t)

]2
= A(1)

r (t) + A(2)
r (t) + A(3)

r (t),
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where

A(1)
r (t) = (f(t))−2(nhr)−2

n∑
i=1

ni∑
j=1

{
Z2

ijr(t)K
2
r (

t − tij
hr

)
}
,

A(2)
r (t) = (f(t))−2(nhr)−2

n∑
i=1

∑
j1 �=j2

{
Zij1r(t)Zij2r(t)Kr

(t − tij1
hr

)
Kr

( t − tij2
hr

)}
,

A(3)
r (t) = (f(t))−2(nhr)−2

∑
i1 �=i2

∑
j1,j2

{
Zi1j1r(t)Zi2j2r(t)Kr

(t−ti1j1

hr

)
Kr

( t−ti2j2

hr

)}
,

Zijr(t) = n−1
i

[( k∑
l=0

êrlX
(l)
i

)
Yij − βr(t)

]
.

By (1.3), straightforward computation shows that

n2
i Z

2
ijr(t) =

(
ξijr(t)

)2
+ 2ξijr(t)

( k∑
l=0

êrlX
(l)
i

)
εij +

( k∑
l=0

êrlX
(l)
i

)2
ε2
ij,

where ξijr(t) =
∑k

l1=0{X(l1)
i (

∑k
l2=0 êrl2X

(l2)
i )βl1(tij)} − βr(t). Since Xi and εij

are independent, we have that, by (A.1) and the definition of M
(0)
r (t),

E
[
ξijr(t)

( k∑
l=0

êrlX
(l)
i

)
εi

(
tij
)∣∣∣tij = s

]
= 0,

E
[(

ξijr(t)
)2∣∣∣tij = s

]
= E

{[ k∑
l1=0

[
X

(l1)
i

( k∑
l2=0

êrl2X
(l2)
i

)
βl1

(
tij
)]

−βr(t)
]2∣∣∣tij = s

}

= E
{[ k∑

l1=0

[
X

(l1)
i

( k∑
l2=0

erl2X
(l2)
i

)
βl1(tij)

]]2∣∣∣tij = s
}

−2βr(t)E
{ k∑

l1=0

[
X

(l1)
i

( k∑
l2=0

erl2X
(l2)
i

)
βl1(tij)

]∣∣∣tij = s
}

+β2
r (t) + o(1)

= M (0)
r (s) + β2

r (s) − 2βr(t)βr(s) + β2
r (t) + o(1),

and

E
[( k∑

l=0

êrlX
(l)
i

)2
ε2
ij

∣∣∣tij = s
]

= σ2(s)E
[( k∑

l=0

erlX
(l)
)2]

(1 + o(1)).

It then follows that

E
[
A(1)

r (t)
]

=
( 1
nhrf(t)

)2
n∑

i=1

ni∑
j=1

{∫
E
(
Z2

ijr(t)
∣∣∣tij = s

)
K2

r

(t − s

hr

)
f(s) ds

}
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=
( 1
nhrf(t)

)2
n∑

i=1

ni∑
j=1

{∫ 1
n2

i

[
M (0)

r (s) + β2
r (s) − 2βr(t)βr(s) + β2

r (t)

+σ2(s)E
[( k∑

l=0

erlX
(l)
)2]]

K2
r

( t − s

hr

)
f(s) ds

(
1 + o(1)

)}

= (f(t))−2
n∑

i=1

{( 1
n2

i n
2hr

) ni∑
j=1

[
M (1)

r (t)R(Kr)f(t)
]
(1 + o(1))

}

=
1
hr

[ n∑
i=1

( 1
nin2

)]
(f(t))−1R(Kr)M (1)

r (t)(1 + o(1)). (A.2)

Using similar computations as those for A
(1)
r (t), we can show that

E
[
A(2)

r (t)
]

=
[ 1
n
−

n∑
i=1

( 1
nin2

)]
M (2)

r (t)(1 + o(1)) (A.3)

and
E
[
A(3)

r (t)
]

=
{
B
(
β̃r(t)

)
+ O(n−1/2)

}2
. (A.4)

Then, when n is sufficiently large, (5.11) follows from (A.2), (A.3), (A.4) and

V (β̃r(t)) =
3∑

l=1

E[A(l)
r (t)] − B2(β̃r(t))

= E[A(1)
r (t)] + E[A(2)

r (t)] + B(β̃r(t))O(n−1/2) + O(n−1).

This completes the proof of Theorem 5.1.

Appendix B
Proof of Theorem 5.2. Because n1, . . . , nn are bounded by c ≥ 1, we have

1
cn

≤
n∑

i=1

( 1
nin2

)
≤ 1

n
(B.1)

and

0 ≤ 1
n
−

n∑
i=1

( 1
nin2

)
≤ 1

n
(1 − c−1). (B.2)

When n1/(2pr+5)hr → 0 as n → ∞, it follows from (B.1) and (B.2) that, as
n → ∞,

n
2pr+4
2pr+5 h2pr+4

r Q2
1r(t) → 0,

n
2pr+4
2pr+5 h−1

r

[ n∑
i=1

( 1
nin2

)]
Q2r(t) ≥ h−1

r n−1/(2pr+5)c−1Q2r(t) → ∞,
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and

n
2pr+4
2pr+5

∣∣∣[ 1
n
−

n∑
i=1

( 1
nin2

)]
M (2)

r (t)
∣∣∣ ≤ n

2pr+4
2pr+5 n−1(1 − c−1)

∣∣∣M (2)
r (t)

∣∣∣→ 0.

Thus
n

2pr+4
2pr+5 MSE

(
β̃r(t)

)
→ ∞, as n → ∞. (B.3)

When n1/(2pr+5)hr → ∞ as n → ∞, similar calculations show that

n
2pr+4
2pr+5 h2pr+4

r Q2
1r(t) → ∞, n

2pr+4
2pr+5 h−1

r

[ n∑
i=1

( 1
nin2

)]
Q2r(t) → 0

and

n
2pr+4
2pr+5

∣∣∣[ 1
n
−

n∑
i=1

( 1
nin2

)]
M (2)

r (t)
∣∣∣→ 0,

so that (B.3) still holds.
It suffices to consider the case that hr = n−1/(2pr+5)cn for some cn which

does not converge to either 0 or ∞ when n → ∞. Since, by (B.2),

n
2pr+4
2pr+5

[ 1
n
−

n∑
i=1

( 1
nin2

)]
≤ n−1/(2pr+5)

(
1 − c−1

)
= o(1),

(5.9), (5.10), (5.11) and (B.1) imply that

n
2pr+4
2pr+5 MSE

(
β̃r(t)

)
= c2pr+4

n Q2
1r(t) + c−1

n n
[ n∑

i=1

( 1
nin2

)]
Q2r(t) + o(1). (B.4)

The right hand side of (B.4) is uniquely minimized by

cn = n1/(2pr+5)
[ n∑

i=1

( 1
nin2

)]1/(2pr+5)[ Q2r(t)
(2pr + 4)Q2

1r(t)

]1/(2pr+5)
,

which then implies (5.12).
Substituting hr of (5.10) and (5.11) with (5.12), (5.14) is a direct consequence

of (5.9), (5.10) and (5.11). Similar calculations then show that (5.13) and (5.15)
also hold.
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