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Abstract: It is well known that multivariate curve estimation under standard

(isotropic) smoothness conditions suffers from the “curse of dimensionality”. This

is reflected by rates of convergence that deteriorate seriously in standard asymp-

totic settings. Better rates of convergence than those corresponding to isotropic

smoothness priors are possible if the curve to be estimated has different smoothness

properties in different directions and the estimation scheme is capable of making

use of a lower complexity in some of the directions. We consider typical cases of

anisotropic smoothness classes and explore how appropriate wavelet estimators can

exploit such restrictions on the curve that require an adaptation to different smooth-

ness properties in different directions. It turns out that nonlinear thresholding with

an anisotropic multivariate wavelet basis leads to optimal rates of convergence un-

der smoothness priors of anisotropic type. We derive asymptotic results in the

model “signal plus Gaussian white noise”, where a decreasing noise level mimics

the standard asymptotics with increasing sample size.
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1. Introduction

Multivariate curve estimation is often considered with some scepticism, be-
cause it is associated with the “curse of dimensionality”. This notion reflects
the fact that nonparametric statistical methods lose much of their power if the
dimension d is large. In the presence of r bounded derivatives, the optimal rate
of convergence in regression or density estimation is n−2r/(2r+d), where n denotes
the number of observations. To get the same rate as in the one-dimensional case,
one has to assume a smoothness of order rd rather than r.

On the other hand, there is sometimes some hope for a successful statistical
analysis in higher dimensions. Often the true complexity of a multivariate curve
is considerably lower than could be expected from a statement that the curve is a
member of a certain (isotropic) Sobolev class W r

p (Rd) with degree of smoothness
r. Scott (1992, Chapter 2) claims: “Multivariate data in R

d are almost never
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d-dimensional. That is, the underlying structure of data in R
d is almost always

of dimension lower than d”.
In view of this, the prior assumption that the function to be estimated lies in

some isotropic smoothness class is sometimes too pessimistic. As a consequence,
corresponding estimators are too rough and cannot really make full use of par-
tial simplicities. We develop an estimator to take advantage of them. It turns
out that the proposed estimation scheme is appropriate for different degrees of
anisotropy of the function. First, we study the case of “weak anisotropy”, that is,
the function to be estimated possesses different degrees of smoothness along the
different coordinate axes. In practice, this may happen if the coordinates have a
different meaning such as, for example, time and frequency in the particular prob-
lem of estimating a time-varying spectral density. Second, some stronger kind
of anisotropy is given when the “effective dimension” of the function is strictly
less than the nominal dimension of the space. Obvious examples are multivariate
functions that are composed of univariate functions or ridge functions. It is well
known that such additive or single-index models allow rates of convergence that
correspond to those in the one-dimensional case; see, for example, Stone (1985)
and Härdle, Hall and Ichimura (1993). However, our considerations have to go
beyond the case of structural models. Except for the rare (and in practice un-
likely) cases that these assumptions are actually exactly fulfilled, such estimators
are not even consistent as the sample size n tends to infinity. Hence, there is some
motivation for a more flexible approach, which provides an effective dimension
reduction if appropriate, but which leads at least to a consistent estimate in the
general case.

Since the seminal papers by Donoho and Johnstone (1998) (a first version of
the paper dates back to the early 90’s) and Donoho, Johnstone, Kerkyacharian
and Picard (1995), nonlinear wavelet estimators have developed to a widely ac-
cepted alternative to such traditional methods as kernel or spline estimators. In
particular, they are known to be able to successfully deal with spatially varying
smoothness properties, which are summarized under the notion of “inhomoge-
neous smoothness”. Assume we measure the loss in L2. Inhomogeneous smooth-
ness is then often modelled by Besov constraints, that is, the unknown curve
is assumed to lie in a Besov class Bm

p,q(K) with p < 2. It is well known that
higher-dimensional wavelet bases can be obtained by taking tensor products of
appropriately combined functions from one-dimensional bases. In almost all sta-
tistical papers the authors have used an isotropic multiresolution construction,
where one-dimensional basis functions from the same resolution scale are com-
bined with each other. However, it was shown in Neumann and von Sachs (1997)
for the special case of two-dimensional anisotropic Sobolev classes, that this basis
does not provide an optimal data compression if different degrees of smoothness
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are present in the two directions. Accordingly, the commonly used coordinate-
wise thresholding approach does not provide the optimal rate of convergence.
Neumann and von Sachs (1997) argued in favor of an alternative construction
of a higher-dimensional basis, which involves tensor products of one-dimensional
basis functions from different resolution scales. It was shown in the abovemen-
tioned special case that a thresholded wavelet estimator based on this basis can
really adapt to different degrees of smoothness in different directions and can
attain the optimal rate.

In Section 2 we extend these results to higher dimensions and to Besov con-
straints, which also admit fractional degrees of smoothness. To this end, we have
to transfer the Besov conditions given in the function space to an appropriate con-
dition on the wavelet coefficients. Since such a result is of potential independent
interest we provide a separate lemma in the Appendix. It is shown that nonlinear
thresholding in conjunction with the anisotropic multivariate wavelet basis leads
to optimal rates of convergence in anisotropic Besov classes. In Section 3 we
study another situation, which more implicitly requires directional adaptivity.
We seek the largest possible function classes where our directionally adaptive
estimation method still attains a rate close to that in the one-dimensional case.
These classes have dominating mixed smoothness properties and are consider-
ably larger than classes such as W rd

p (Rd), since at most r partial derivatives are
required in each direction. This could be interpreted as a restriction to func-
tions with a lower-dimensional structure. Additive or multiplicative models are
contained there as special cases but our estimation method is more flexible than
commonly used special-purpose methods for such models. Since it is not explic-
itly based on this structural assumption, it delivers a consistent estimate even
if the true curve cannot be decomposed into additively or multiplicatively con-
nected univariate components.

The multivariate estimation scheme considered in this article seems to be
reasonable on general grounds and it could have been found also without the
motivation of anisotropic smoothness classes. Once the estimator is accepted,
one could also raise the opposite question: what is the class of problems for which
the anisotropic wavelet basis is appropriate? The present paper provides at least
a partial answer to this question by showing that certain anisotropic smoothness
priors (and the case considered in Section 3 can also be interpreted in this sense)
require a multivariate wavelet basis with mixed resolution scales rather than the
frequently used multivariate basis with a one-dimensional scale parameter. In
this sense, the present article contributes also to a better understanding of the
estimation method.

Following a recent trend, the theoretical derivations in Sections 2 and 3
are made for the technically simplest model, signal plus Gaussian white noise.
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All results are of an asymptotic nature, that is, it is assumed that the level of
noise tends to zero, which mimics the asymptotics with increasing sample size
in nonparametric regression and density estimation. Section 4 contains a brief
discussion of how these results can be transferred to such statistically relevant
settings. The proofs are contained in Section 6 while two additional technical
lemmas are contained in the Appendix.

2. Wavelet Thresholding in Anisotropic Besov Classes

To keep the technical part as simple as possible, we assume that we have
function-valued observations Y (x), x = (x1, . . . , xd)′ ∈ (0, 1)d, according to the
Gaussian white noise model

Y (x) =
∫ x1

0
· · ·
∫ xd

0
f(z1, . . . , zd) dz1 · · · dzd + εW (x). (2.1)

Here W is a Brownian sheet (e.g. Walsh (1986)) and ε > 0 is the noise level.
We consider small-noise asymptotics, that is, ε → 0. The link between the
asymptotics in model (2.1) and the usual large-sample asymptotics in regression
and density estimation will be established by setting ε = n−1/2, where n denotes
the sample size.

Following Besov, Il’in and Nikol’skii (1979b), we define smoothness classes
in anisotropic Besov spaces. Denote by ei = (δi1, . . . , δid)′ ( δij = I(i = j)) the
ith unit vector. We define the first difference of the function f in the direction
of xi as

∆i,hf(x) = f(x+ hei) − f(x)

and the second difference as

∆2
i,hf(x) = ∆i,h (∆i,hf(x)) = f(x+ 2hei) − 2f(x+ hei) + f(x).

For i = 1, . . . , d, let si = �ri� be the largest integer strictly less than ri. As in
the one-dimensional case, we define the Besov norm in the direction of xi as

‖f‖b
ri
i,pi,q

=

∫ 1

0
|h|(si−ri)q−1

∥∥∥∥∥∆2
i,h

(
∂si

∂xsi
i

f

)∥∥∥∥∥
q

Lpi (gi,h)

dh

1/q

for q <∞, and

‖f‖b
ri
i,pi,∞

= sup
0≤h≤1

|h|si−ri

∥∥∥∥∥∆2
i,h

(
∂si

∂xsi
i

f

)∥∥∥∥∥
Lpi (gi,h)

 ,
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where gi,h = (0, 1)i−1 × (0, 0 ∨ (1 − 2h)) × (0, 1)d−i. Note that ‖.‖b
ri
i,pi,q

measures

only smoothness of f in the direction of xi. Setting r = (r1, . . . , rd)′ and p =
(p0, . . . , pd)′, we define an anisotropic Besov class as

Br
p,q(K) =

{
f

∣∣∣∣‖f‖B
r
p,q

≤ K

}
,

where

‖f‖B
r
p,q

= ‖f‖Lp0 ((0,1)d) +
d∑

i=1

‖f‖b
ri
i,pi,q

.

Assume we have a scaling function φ and a so-called wavelet ψ such that
{2l/2φ(2l ·−k)}k∈Z ∪{2j/2ψ(2j ·−k)}j≥l;k∈Z forms an orthonormal basis of L2(R).
The construction of such functions φ and ψ, which are compactly supported, is
described in Daubechies (1988). It is well known that the boundary-corrected
Meyer wavelets (Meyer (1991)) or those developed by Cohen, Daubechies and
Vial (1993) form orthonormal bases of L2[0, 1]. In both approaches Daubechies’
wavelets are used to construct this basis, essentially by truncation of the above
functions to the interval [0,1] and a subsequent orthonormalization step. Through-
out this paper either of these bases can be used. It is denoted by {φl,k}k∈I0

l
∪

{ψj,k}j≥l;k∈Ij
, where φl,k(x) = 2l/2φ(2lx− k) and ψj,k(x) = 2j/2ψ(2jx− k), and

with certain modifications of those functions that have a support beyond the
interval [0, 1]. It is known that #Ij = 2j , and that #I0

l = 2l for the Cohen,
Daubechies, Vial bases, whereas for the Meyer bases, #I0

l = 2l + N for some
integer N depending on the regularity of the wavelet basis.

Daubechies (1992, Section 10.1) describes two possibilities for constructing
multivariate wavelet bases from a given univariate basis. Let Vj be the subspace
of L2(0, 1) which is generated by {φj,k}k. It is known that

L2((0, 1)d) =
∞⋃
j=l

Vj ⊗ · · · ⊗ Vj .

For j ≥ l, denote by Wj the linear span of {ψj,k}k. Setting Wl−1 := Vl we obtain
the decomposition

V d
j∗ = Vj∗ ⊗ · · · ⊗ Vj∗

= (Vl ⊕Wl ⊕ · · · ⊕Wj∗−1) ⊗ · · · ⊗ (Vl ⊕Wl ⊕ · · · ⊕Wj∗−1)

=
j∗−1⊕

j1,...,jd=l−1

Wj1 ⊗ · · · ⊗Wjd
. (2.2)
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Accordingly, we obtain a basis B of L2((0, 1)d) as

B =
∞⋃

j1,...,jd=l−1

{ψj1,k1(x1) · · ·ψjd,kd
(xd)}k1,...,kd

, (2.3)

where ψl−1,k := φl,k. This construction provides a multidimensional basis, for
which the resolution scales j1, . . . , jd are completely mixed.

To introduce another construction of a higher-dimensional basis, we set
V

(0)
j := Vj, V

(1)
j := Wj, and φ

(0)
j,k := φj,k, φ

(1)
j,k := ψj,k. Now we can write

V d
j∗ as

V d
j∗ =

(
V

(0)
l ⊗ · · · ⊗ V

(0)
l

)
⊕

⊕
⊕

l≤j≤j∗−1

⊕
(i1,...,id)∈{0,1}d\{(0,...,0)}

(
V

(i1)
j ⊗ · · · ⊗ V

(id)
j

)
. (2.4)

This corresponds to the following basis B of L2((0, 1)d):

B =
{
φ

(0)
l,k1

(x1) · · · φ(0)
l,kd

(xd)
}

k1,...,kd

∪

∪
⋃
j≥l

⋃
(i1,...,id)∈{0,1}d\{(0,...,0)}

{
φ

(i1)
j,k1

(x1) · · · φ(id)
j,kd

(xd)
}

k1,...,kd

. (2.5)

The latter basis B provides a d-dimensional multiresolution analysis. On
first sight it seems to be more appealing than B and it is almost exclusively used
in theoretical work in statistics; see, e.g. Tribouley (1995), Delyon and Juditsky
(1996), and von Sachs and Schneider (1996). Appropriate wavelet estimators
based on B can attain minimax rates of convergence in isotropic smoothness
classes, which justifies its use in statistics.

However, it was shown in Neumann and von Sachs (1997) in the two-dimen-
sional case that B is not really able to adapt to different degrees of smoothness
in different directions. Expressed in terms of the kernel–estimator language, a
projection estimator using basis functions from B cannot mimic a multivariate
kernel estimator based on a product kernel with different (directional) band-
widths h1, . . . , hd. In contrast, we will show that estimators based on B can
attain minimax rates of convergence in anisotropic smoothness classes. Further-
more, the superiority of B extends beyond the rigorous, but sometimes quite
pessimistic minimax approach. The use of such a multiscale method seems to
be important in many estimation problems, whenever – globally or locally – dif-
ferent degrees of smoothness are present. An alternative method of adapting to
different degrees of smoothness in different directions was developed by Donoho
(1997) in the framework of anisotropic Hölder classes. This author proposed a
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CART-like recursive scheme to obtain adequate degrees of smoothing in each
direction.

2.1. A lower bound to the rate of convergence

To set a benchmark for the estimation scheme to be developed, we establish
a lower bound to the rate at which the risk can decrease in anisotropic Besov
classes. Since we are only interested in the optimal rate, we can use an easily
implemented approach developed in Bretagnolle and Huber (1979). An analogous
lower bound was obtained by Nussbaum (1982) for smoothness classes with an
Lp-restriction on some Hölder modulus of continuity.

To study the complexity of the functional class Br
p,q(K), we take any function

µ ∈ Br1
p1,q ∩ · · · ∩ Brd

pd,q which is supported on [0, 1) and satisfies ‖µ‖L2 = 1.
Furthermore, µ and all its derivatives up to the order max{s1, . . . , sd}, where si

is the largest integer strictly less than ri, are assumed to be bounded. Let, for
some positive C0 whose choice is made precise in the proof of Lemma 2.1, ji be
chosen such that

2ji ≤ C0ε
−(2/ri)/(1/r1+···+1/rd+2) < 2ji+1. (2.6)

Define
µk1,...,kd

(x) = 2(j1+···+jd)/2µ(2j1x1 − k1) · · · µ(2jdxd − kd).

It is easy to see that
‖µk1,...,kd

‖L2 = 1 (2.7)

and

supp(µk1,...,kd
) ∩ supp(µk′

1,...,k′
d
) = ∅ if (k1, . . . , kd) �= (k′1, . . . , k

′
d). (2.8)

Let D = D(ε) = 2j1+···+jd � (ε2)−(1/r1+···+1/rd)/(1/r1+···+1/rd+2). Now we de-
fine a class of functions, parametrized by the D-dimensional parameter θ =
(θk1,...,kd

)0≤ki≤2ji−1, by

µθ(x) =
2j1−1∑
k1=0

· · ·
2jd−1∑
kd=0

θk1,...,kd
µk1,...,kd

(x). (2.9)

The following lemma characterizes the complexity of the class Br
p,q(K).

Lemma 2.1. If C0 is chosen small enough, then

max
θ∈{0,ε}D

{
‖µθ‖B

r
p,q

}
≤ K.
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Using (2.7), (2.8), and Lemma 2.1 we obtain, by the method introduced
in Bretagnolle and Huber (1979), a lower bound to the rate of convergence in
B

r
p,q(K).

Theorem 2.1. It holds that

inf
f̂ε

sup
f∈B

r
p,q(K)

{
E‖f̂ε − f‖2

L2

}
≥ Cε2ϑ(r1,...,rd),

where

ϑ(r1, . . . , rd) = 2r̃/(2r̃ + d), r̃ =
[
1
d

(
1
r1

+ · · · + 1
rd

)]−1

.

2.2. Optimal wavelet thresholding in anisotropic Besov classes

In this subsection we develop thresholding schemes based on the anisotropic
basis B, which provide the optimal or a near–optimal rate of convergence in
anisotropic Besov classes. First, we show that the rate given in Theorem 2.1 is
actually attainable by certain wavelet estimators. It turns out that this method
depends on the unknown smoothness parameters r1, . . . , rd. Hence, an additional
adaptation step would be necessary to obtain a fully adaptive method. Alter-
natively, one can use a universal estimation method, as proposed in a series of
papers by Donoho and Johnstone, also contained in Donoho, Johnstone, Kerky-
acharian and Picard (1995).

As a starting point we take a one–dimensional boundary–adjusted wavelet
basis of L2((0, 1)), e.g. that of Meyer (1991) or Cohen, Daubechies and Vial
(1993). We assume that

(A1) (i)
∫
φ(t) dt = 1,

(ii)
∫
ψ(t)tk dt = 0, for 0 ≤ k ≤ max{�r1�, . . . , �rd�}.

(As mentioned in Delyon and Juditsky (1996, Section 5.2), we do not need the
frequently assumed smoothness of the wavelet itself for the particular purpose of
obtaining certain rates of convergence.)

For the sake of notational convenience, we write ψl−1,k = φl,k. As explained
above, we obtain a d–dimensional orthonormal basis by setting

ψj1,...,jd;k1,...,kd
(x) = ψj1,k1(x1) · · ·ψjd,kd

(xd). (2.10)

To simplify notation, we use the multiindex I for (j1, . . . , jd; k1, . . . , kd)′, when-
ever possible. The true wavelet coefficients are defined as

θI =
∫
(0,1)d

ψI(x)f(x) dx. (2.11)
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Having observations according to model (2.1), we obtain empirical versions of
them as

θ̃I =
∫
(0,1)d

ψI(x) dY (x) = θI + εξI , (2.12)

where ξI ∼ N(0, 1) are i.i.d.
An appropriate smoothing is obtained by nonlinear thresholding of the em-

pirical coefficients, which includes a truncation of the infinite wavelet series as a
special case. Finally, we obtain an estimate of f by applying the inverse wavelet
transform to the thresholded empirical coefficients.

Two commonly used rules to treat the coefficients are:
(1) hard thresholding

δ(h)(θ̃I , λ) = θ̃II
(
|θ̃I | ≥ λ

)
;

(2) soft thresholding
δ(s)(θ̃I , λ) =

(
|θ̃I | − λ

)
+

sgn(θ̃I).

In the following we denote either δ(h) or δ(s) by δ(.).
As a basis for our particular choice of the threshold values we take an upper

estimate of the risk of δ(.)(θ̃I , λ) as an estimate of θI . It follows from Lemma 1
of Donoho and Johnstone (1994) that the relation

E
(
δ(.)(θ̃I , λ) − θI

)2 ≤ C
(
ε2
(λ
ε

+ 1
)
ϕ(
λ

ε
) + min{λ2, θ2

I}
)

(2.13)

holds uniformly in λ ≥ 0 and θI ∈ R, where ϕ denotes the standard normal
density. Accordingly, we get from

Ωε ((λI),Θ) := sup
(θI)∈Θ

{∑
I

(
ε2
(λI

ε
+ 1
)
ϕ(
λI

ε
) + min{λ2

I , θ
2
I}
)}

(2.14)

an upper rate bound for the L2 risk of the estimator

f̂ =
∑
I

δ(.)(θ̃I , λI)ψI ,

uniform in the function class {f =
∑

I θIψI | (θI) ∈ Θ}.
A closely related quantity,

Ωε(Θ) = inf
(λI )

{Ωε ((λI),Θ)} , (2.15)

was used in Neumann and von Sachs (1997) as a characterization of the difficulty
of estimation in the functional class given by Θ. A different quantity,

Ω̃ε(Θ) = sup
(θI )∈Θ

{∑
I

min{ε2, θ2
I}
}
,
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has been considered in Donoho and Johnstone (1994) to establish the link be-
tween optimal statistical estimation and approximation theory. There it was
shown that Ω̃ε(Θ) can be attained by the risk of an appropriately thresholded
wavelet estimator up to some logarithmic factor, (log(ε−1))ρ, ρ > 0. We mod-
ify Ω̃ε(Θ) by Ωε((λI),Θ) in order to remove the logarithmic factor, which does
not occur in the lower bound given in Theorem 2.1. This factor appeared in
Donoho and Johnstone (1994) because Ω̃ε does not appropriately capture the
additional difficulty due to sparsity of the signal; and hence ε had to be replaced
by ε
√

log(ε−1). In contrast, Ωε penalizes sparsity of the signal, which arises due
to ignorance of the significant coefficients in a large set of potentially important
ones, by the additional terms (λI/ε+1)ϕ(λI/ε). They arise from upper estimates
of tail probabilities of Gaussian random variables.

Now we intend to show how the lower risk bound given in Theorem 2.1 can be
attained by a particular estimator. This will be a thresholded wavelet estimator,
where the choice of the thresholds is motivated by the upper bound given by
(2.14).

Let j∗1 , . . . , j∗d be chosen in such a way that

2j∗i � ε−(2/ri)/(1/r1+···+1/rd+2). (2.16)

In “homogeneous smoothness classes”, that is, in the case of pi ≥ 2 for i =
1, . . . , d, we would attain the optimal rate of convergence by the linear projection
estimator onto the subspace Vj∗1 ⊗ · · · ⊗ Vj∗d ; see also Lemma 2.2 below for an
upper estimate of the error due to truncation. In the more difficult case of
“inhomogeneous smoothness classes”, that is, if pi < 2 for at least one i, we have
to employ a more refined method.

We define the following thresholds:

λopt
I = εκ

√
max
1≤i≤d

{(ji − j∗i )+ri}(1/r1 + · · · + 1/rd), (2.17)

where κ is any constant satisfying

κ >
√

2 log(2). (2.18)

These particular choices of the λopt
I are similar to those in Delyon and Juditsky

(1996), proposed for isotropic smoothness classes. We consider the estimator

f̂ opt
ε (x) =

∑
I

δ(.)(θ̃I , λ
opt
I )ψI(x). (2.19)

The following theorem establishes the desired result for the rate of convergence.
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Theorem 2.2. Assume (A1) and

p̃i > (1 − p̃i/2)(1/r1 + · · · + 1/rd), for all i = 1, . . . , d,

where p̃i = min{pi, 2}. Then

sup
f∈B

r
p,q(K)

{
E‖f̂ opt

ε − f‖2
L2

}
= O

(
ε2ϑ(r1,...,rd)

)
.

Notice that the above thresholding scheme depends on the unknown param-
eters r1, . . . , rd. Hence, its practical implementation would require an additional
adaptation step. There exists a wide variety of possible approaches to achieve
this in many statistical models of interest. However, there seems to be no univer-
sal recipe for all purposes. To avoid these difficulties one could use an alternative
approach propagated in a series of papers by Donoho and Johnstone, also con-
tained in Donoho, Johnstone, Kerkyacharian and Picard (1995). It consists of
truncating the infinite wavelet expansion of f at a sufficiently high resolution
scale and then treating the remaining empirical coefficients by some universal
thresholding rule. To investigate this approach, we consider first the error in-
curred by truncation at a given level.

Lemma 2.2. Assume (A1) and, for p̃i = min{pi, 2},

p̃i > (1 − p̃i/2)(1/r1 + · · · + 1/rd), for all i = 1, . . . , d.

Define ṼJ =
⊕

j1+···+jd=J (Vj1 ⊗ · · · ⊗ Vjd
). Then

sup
f∈B

r
p,q(K)

{
‖f − Proj

ṼJ∗ f‖2
L2

}
= O

(
2−J∗γ(r1,...,rd,p1,...,pd)

)
,

where

γ(r1, . . . , rd, p1, . . . , pd)

= {2 + [(1 − 2/p̃1)/r1 + · · · + (1 − 2/p̃d)/rd]} / (1/r1 + · · · + 1/rd) .

Provided γ(r1, . . . , rd, p1, . . . , pd) > 0, this lemma basically means that an
approximation rate of ερ (ρ <∞) can be attained by an appropriate set of basis
functions which has algebraic cardinality, say ε−ν(ρ) for some ν(ρ) <∞.

Define Iε = {I | j1 + · · · + jd ≤ J∗
ε }, where 2J∗

ε = O(ε−ν) for some ν <∞.
We consider the estimator

f̂univ
ε (x) =

∑
I∈Iε

δ(.)(θ̃I , λ
univ
ε )ψI(x), (2.20)



410 MICHAEL H. NEUMANN

where
λuniv

ε = ε
√

2 log(#Iε). (2.21)

This estimator f̂univ
ε is much less dependent than f̂ opt

ε on prior assumptions
about the smoothness of f . In practice, one should take some reasonably large ν
in order to keep the truncation bias small in a wide range of smoothness classes.
In view of results of Donoho, Johnstone, Kerkyacharian and Picard (1995), it
is not surprising at all that f̂univ

ε attains the optimal rate of convergence up to
some logarithmic factor. For the reader’s convenience we formally establish this
in the following theorem.

Theorem 2.3. Assume (A1) and, for p̃i = min{pi, 2},

p̃i > (1 − p̃i/2)(1/r1 + · · · + 1/rd), for all i = 1, . . . , d.

Then

sup
f∈B

r
p,q(K)

{
E‖f̂univ

ε − f‖2
L2

}
= O

(
(ε2 log(ε−1))ϑ(r1,...,rd)

)
+O

(
2−J∗

ε γ(r1,...,rd,p1,...,pd)
)
.

Since, under the above condition, γ(r1, . . . , rd, p1, . . . , pd) > 0 holds, the
value of J∗

ε can be chosen so large, that the upper bound given in Theorem 2.3 is
dominated by the first term on the right-hand side. Hence, we obtain the optimal
rate of convergence within some logarithmic factor.

Remark 1. (The corresponding kernel estimator) As already mentioned, we
can attain the optimal rate of convergence in the class Br

p,q(K) by a projection
estimator onto the space Vj∗ ⊗ · · · ⊗ Vj∗, if pi ≥ 2, for all i = 1, . . . , d. Alter-
natively, we can also use a multivariate kernel estimator with a product kernel
K(x) = K1(x1) · · · K1(xd), where K1 is a boundary corrected kernel satisfying∫
K1(x)xk dx = δ0k, for 0 ≤ k ≤ max{�r1�, . . . , �rd�}. Choosing a vector of

directional bandwidths, h = (h1, . . . , hd), with hi � ε(2/ri)/(1/r1+···+1/rd+2) we
obtain the optimal rate of convergence.

Remark 2. So far, our considerations were restricted to anisotropic Besov classes
that impose some global smoothness condition. This is sufficient for our particular
purpose of investigating the capability of the estimator to adapt to different
degrees of smoothness in different directions. Since wavelet thresholding is a
spatially adaptive procedure in that it automatically chooses a reasonable degree
of smoothing according to the local smoothness properties of the function, one
could expect favorable behavior of our estimator in the case of spatially varying
anisotropic smoothness properties of f as well.
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3. Wavelet Estimation in Smoothness Classes with Dominating Mixed
Derivatives

In this section we proceed with the investigation of what wavelet methods
can offer for multivariate estimation problems. Although nonlinear thresholding
in the anisotropic wavelet basis is used again, the object under consideration is
quite different from that considered in the previous section: There we studied
the ability of our estimator to adapt to different degrees of smoothness in differ-
ent directions, which were modeled by anisotropic Besov classes. The “effective
dimension” of such a class in (0, 1)d is d, and therefore at least some of the direc-
tional smoothness parameters ri must be sufficiently large to make a successful
estimation in several dimensions possible. Here we consider the opposite situa-
tion, where the effective dimension of our multivariate function class in (0, 1)d is
still one, or at least very close to one.

Some motivation for the definition of the particular function classes consid-
ered here arises from additive models, which are known to allow rates of conver-
gence corresponding to the one-dimensional case. As we will see below, the ap-
proximate preservation of the one-dimensional rate goes considerably beyond the
case of such semiparametric models. Bearing in mind that nonlinear thresholding
in the anisotropic basis adapts locally to the presence of a different complexity in
different directions, we seek an as large as possible class of functions that allows
a rate of convergence comparable to the one-dimensional case. It turns out that
appropriate function classes are those with dominating mixed derivatives; see,
e. g., Schmeißer and Triebel (1987, Chapter 2).

For the sake of simplicity we first restrict our considerations to the case of
L2-Sobolev constraints, although other definitions of smoothness such as Besov
constraints would also be possible. Let, for some integer r and K <∞,

F (d)
r (K) =

{
f
∣∣∣ ∑

0≤r1,...,rd≤r

∥∥∥ ∂r1+···+rd

∂xr1
1 · · · ∂xrd

d

f
∥∥∥

L2((0,1)d)
≤ K

}
. (3.1)

In contrast to usually considered isotropic smoothness classes such as the d-
dimensional Sobolev class,

Fs(K) =
{
f
∣∣∣ ∑

0≤r1+···+rd≤s

∥∥∥ ∂r1+···+rd

∂xr1
1 · · · ∂xrd

d

f
∥∥∥

L2((0,1)d)
≤ K

}
,

the mixed derivatives play the dominant role in (3.1). Whereas we need a degree
of smoothness of s = rd in Fs(K) to get the rate ε4r/(2r+1) for the minimax risk,
we need only r partial derivatives in each direction in (3.1) to attain this rate up
to a logarithmic factor.
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The class F (d)
r (K) contains additive models such as

f(x) =
d∑

i=1

fi(xi) +
d∑

i,j=1

fij(xi, xj), (3.2)

if fi ∈ F (1)
r (K ′) and fij ∈ F (2)

r (K ′), or a multiplicative model

f(x) =
d∏

i=1

fi(xi), (3.3)

if fi ∈ F (1)
r (K ′), for appropriate K ′, as special cases. However, it is considerably

larger than such semiparametric classes of functions in that it is a truly non-
parametric function class. The restriction of the complexity is attained by an
appropriate smoothness assumption instead of rigorous structural assumptions
as in (3.2) and (3.3).

As a benchmark for the estimation method to be considered, we derive first
a lower bound to the minimax risk in F (d)

r (K). Recall that ψI are the tensor
product wavelets defined by (2.10), and θI =

∫
ψI(x)f(x) dx denotes the corre-

sponding wavelet coefficient. For the one-dimensional scaling function φ and the
wavelet ψ we assume that
(A2) (i)

∫
φ(t)dt = 1,

(ii)
∫
ψ(t)tkdt = 0, for 0 ≤ k ≤ r.

It will be shown in Lemma 3.2 below that membership in F (d)
r (K) implies a

constraint on the wavelet coefficients of the type∑
j1,...,jd

22(j1+···+jd)r
∑

k1,...,kd

|θI |2 ≤ K ′. (3.4)

We again intend to apply the hypercube method for deriving a lower risk bound.
To get a sharp bound, we have to find the hardest cubical subproblem. To this
end, we consider the level-wise contributions to the total risk by any hypothetical
minimax estimator. At coarse scales, that is, for J = j1 + · · · + jd small, the
coefficients θI are allowed to be quite large. Accordingly, the unbiased estimates
θ̃I are appropriate and their level-wise contributions to the total risk are of order
ε2#{I | j1+· · ·+jd = J} � ε22JJd−1. At finer scales, the smoothness constraint
of ∑

j1+···+jd=J

∑
k1,...,kd

θ2
I ≤ K ′2−2(j1+···+jd)r

becomes dominating, and not all coefficients are allowed to be in absolute value
as large as the noise level ε at the same time. Despite the rapidly increasing
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number of coefficients at each level J as J → ∞, the level-wise contribution of
optimal estimators to the total risk will decrease.

In accordance with this heuristic, a sharp lower bound to the minimax rate of
convergence will be generated by the subproblem of estimating the wavelet coeffi-
cients at a level which is at the border between the “dense case” and the “sparse
case”. Roughly speaking, the dense case corresponds to levels {(j1, . . . , jd) |
j1 + · · · + jd = J}, where all coefficients can simultaneously attain the value ε,
whereas the sparse case corresponds to levels at which only a fraction of these
coefficients can be equal to ε at the same time. According to (3.4) and Lemma 3.1
below, the hardest level Jε satisfies the relation

ε22JεJd−1
ε � 2−2Jεr. (3.5)

This yields Jε � log(ε−1) and, therefore,

2Jε �
(
ε2[log(ε−1)]d−1

)−1/(2r+1)
. (3.6)

Let µ be any r times boundedly differentiable wavelet supported on (0, 1) and
satisfying

∫
µ(s)(x) dx = 0 for all 0 ≤ s ≤ r. (In contrast to the case in Subsection

2.1 we need orthogonality of µ(2j · −k) and µ(2j′ · −k′) if (j, k) �= (j′, k′).) Using
the multiindex I = (j1, . . . , jd; k1, . . . , kd) we define

µI(x) = 2(j1+···+jd)/2µ(2j1x1 − k1) · · · µ(2jdxd − kd).

Define the following class of functions, parametrized by the multidimensional
parameter θ = (θI)I: j1+···+jd=Jε :

µθ(x) =
∑

j1+···+jd=Jε

∑
k1,...,kd

θIµI(x).

The following lemma characterizes the complexity of the function class F (d)
r (K)

via the dimensionality of θ.

Lemma 3.1. Let Jε be chosen according to (3.5). If C0 is small enough, then

{µθ | θI ∈ {0, C0ε} for all I : j1 + · · · + jd = Jε} ⊆ F (d)
r (K).

Since the µI ’s are orthogonal, we immediately obtain by the hypercube
method of Bretagnolle and Huber (1979) that the minimax rate of convergence
in F (d)

r (K) can be bounded from below by ε2#{I : j1 + · · · + jd = Jε}, which
leads to the following theorem.

Theorem 3.1. It holds that

inf
f̂ε

sup
f∈F(d)

r (K)

{
E‖f̂ε − f‖2

L2

}
≥ C

(
ε2[log(ε−1)]d−1

)2r/(2r+1)
.
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This rate of convergence could of course be expected, perhaps except for the
logarithmic factor. This factor is also present in approximation-theoretic results
for smoothness classes with dominating mixed derivatives; see Wahba (1990,
pp.145-146) and Barron (1993, Section II).

Now we formulate an upper bound to the complexity of the function class
F (d)

r (K) by an appropriate restriction on the wavelet coefficients.

Lemma 3.2. Assume (A2). Then, for appropriate K ′,

F (d)
r (K) ⊆

f =
∑
I

θIψI

∣∣∣∣∣∣
∑

j1,...,jd

22(j1+···+jd)r
∑

k1,...,kd

θ2
I ≤ K ′

 .
A similar result for Besov-type spaces with dominating mixed derivatives

and coefficients of a function in a tensor-product basis constructed from Franklin
functions or Schauder functions can be found in Kamont (1994, Theorem A.1).
Note that the norm applied to the coefficients θI in Lemma 3.2 is of L2-type.
Therefore it is not surprising that even a simple projection estimator attains the
minimax rate of convergence in F (d)

r (K).

Theorem 3.2. Assume (A2). Let Jε be defined according to the balance relation
(3.5) and let

f̂P
ε (x) =

∑
j1+···+jd≤Jε

∑
k1,...,kd

θ̃IψI(x).

Then

sup
f∈F(d)

r (K)

{
E‖f̂P

ε − f‖2
L2

}
= O

((
ε2[log(ε−1)]d−1

)2r/(2r+1)
)
.

Remark 3. In contrast to the case of anisotropic Besov classes considered in
the previous section, the construction of an appropriate kernel estimator is not
obvious at all. Notice that the wavelet estimator f̂P

ε projects the observations
onto the space

⊕
j1+···+jd=Jε

Vj1 ⊗ · · · ⊗ Vjd
. Since the spaces Vj1 ⊗ · · · ⊗ Vjd

and
Vj′1 ⊗· · ·⊗ Vj′

d
are not orthogonal for (j1, . . . , jd) �= (j′1, . . . , j′d), one has to devise

a quite involved kernel-based projection scheme, which is then able to provide
the optimal rate of convergence.

Remark 4. An assumption of different degrees of smoothness in different direc-
tions such as ∑

(r1,...,rd): 0≤ri≤Ri ∀i

∥∥∥ ∂r1+···+rd

∂xr1
1 · · · ∂xrd

d

f
∥∥∥

L2

≤ K

does not lead to an essential change in the rate of convergence. Here the worst
case described by r = min{Ri} drives essentially the rate of convergence, which is
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again not better than ε4r/(2r+1). More exactly, the minimax rate of convergence
is then (ε2[log(ε−1)]d̃−1)2r/(2r+1), where d̃ = #{Ri | Ri = min{Rj}} is the
multiplicity of the worst direction.

Note that the optimal projection estimator f̂P
ε depends, via Jε, on the

smoothness parameter r. To get a simple, fully adaptive method, we can again
apply certain universal thresholds. Let f̂univ

ε be defined as in (2.20) and (2.21).

Theorem 3.3. Assume (A2). Then

sup
f∈F(d)

r (K)

{
E‖f̂univ

ε − f‖2
L2

}
= O

((
ε2[log(ε−1)]d

)2r/(2r+1)
)

+O
(
2−2J∗

ε r
)
.

Note that the universally thresholded estimator misses the optimal rate of
convergence, which is attained by the projection estimator considered in The-
orem 3.2, by some logarithmic factor. This is because the universal estimator
does not achieve the optimal tradeoff between squared bias and variance. The
same effect is well known for conventional smoothness classes; see, e.g., Donoho,
Johnstone, Kerkyacharian and Picard (1995).

As shown in Donoho and Johnstone (1998) for univariate Besov classes, the
necessity for nonlinear estimators occurs in function classes which allow more
spatial inhomogeneity than L2-classes. To show that appropriate thresholding
works also in our framework of multivariate smoothness classes with dominating
mixed derivatives, we consider now a slightly larger function class, which allows a
more inhomogeneous distribution of the smoothness over (0, 1)d. We define this
class in analogy to the Besov space Br

1,∞, which is the largest one in the scale of
spaces Br

p,q with degree of smoothness r and 1 ≤ p, q ≤ ∞.
According to the inequality

(#I)−1/2
∑
I∈I

|θI | ≤
(∑

I∈I
|θI |2
)1/2

, (3.7)

we define the following function class:

F (d)
r,1,∞(K) =

{
f=
∑
I

θIψI

∣∣∣ sup
J

{2J(r−1/2)J−(d−1)/2
∑

j1+···+jd=J

∑
k1,...,kd

|θI |} ≤ K
}
.

(3.8)
By (3.7) and Lemma 3.2, we can easily see that F (d)

r (K) ⊆ F (d)
r,1,∞(K ′)

holds for an appropriate K ′. Moreover, these classes are considerably larger
than F (d)

r (K), since they contain, for example, one-dimensional functions f(x) =
f1(x1) from the spatially inhomogeneous smoothness class Br

1,∞(K ′). Since linear
estimators are, even in this simple special case of f(x) = f1(x1), f1 ∈ Br

1,∞(K ′),
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restricted to a rate of convergence of ε4r̃/(2r̃+1), r̃ = r − 1/2, we can only hope
to get the desired rate of (ε2[log(ε−1)]d−1)2r/(2r+1) by an appropriate nonlinear
method.

Let Jε be defined according to (3.5). We define the thresholds

λ∗I =

{
0 if j1 + · · · + jd ≤ Jε,

εκ
√

(j1 + · · · + jd) − Jε if j1 + · · · + jd > Jε,
(3.9)

where κ is again any constant larger than
√

2 log(2). Further, let

f̂∗ε (x) =
∑
I

δ(.)(θ̃I , λ
∗
I)ψI(x). (3.10)

The following theorem shows that f̂∗ε is optimal in the class F (d)
r,1,∞(K).

Theorem 3.4. Assume (A2). Then

sup
f∈F(d)

r,1,∞(K)

{
E‖f̂∗ε − f‖2

L2

}
= O

( (
ε2[log(ε−1)]d−1

)2r/(2r+1) )
.

Remark 5. A different scale of multivariate smoothness classes which allow
dimension-independent rates for data compression and, therefore, also dimension-
independent rates in statistical estimation is considered by Barron (1993). Bar-
ron’s classes are defined via an integrability condition on the Fourier transform
and allow rates of convergence in the context of neural networks known from the
one-dimensional case. As pointed out in Section 2 in Barron (1993), the smooth-
ness conditions in such classes cannot be equivalently formulated in terms of
restrictions on the derivatives. Hence, our study complements the work of Bar-
ron (1993) in a more traditional framework.

4. Discussion

4.1. More realistic statistical models

We used the model “signal plus Gaussian white noise” since it contains all
essential features of problems in nonparametric curve estimation and since we
do not want to hide the main messages of this article behind technicalities that
unavoidably occur with more realistic statistical models. It is well known that
analogous results are usually attainable for models in which statisticians are really
interested. Under reasonable assumptions and by setting ε � n−1/2, the lower
bounds from the previous sections can be transferred both to nonparametric
regression (even with non-Gaussian errors) and density estimation. (Note that
the hypercube approach of Bretagnolle and Huber (1979) was developed in the
density estimation setting.)
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On the other hand, convergence rates derived in the Gaussian white noise
model are also attainable in usually considered settings of nonparametric curve
estimation. It turns out that in many of those models appropriate versions
of empirical wavelet coefficients are asymptotically normally distributed. As
mentioned in Neumann (1995), asymptotic normality in terms of probabilities of
large deviations leads to the equivalence, on the level of risks, to the Gaussian
case. This is described in more detail in Neumann and von Sachs (1995), while
Neumann and Spokoiny (1995), Neumann (1996), Neumann and von Sachs (1997)
and Dahlhaus, Neumann and von Sachs (1998) provide rigorous derivations in
the particular cases of nonparametric regression, spectral density estimation for
stationary and nonstationary processes, and nonparametric estimation of time-
varying autoregression parameters, respectively.

4.2. What can wavelets offer for multivariate curve estimation?

It is well known that nonparametric curve estimation in conventional
(isotropic) smoothness classes suffers from the curse of dimensionality. The min-
imax rate of convergence in Sobolev classes W r

p (Rd) is known to be ε4r/(2r+d)

in the Gaussian white noise model or, analogously, n−2r/(2r+d) in nonparamet-
ric regression and density estimation. These rates deteriorate seriously when d
grows.

On the other hand, assessing the difficulty of estimation by the membership
to such a large function class is sometimes rather pessimistic. Under certain
circumstances, when the true complexity of the target function f is lower than
those prescribed by W

r(f)
p (Rd), where r(f) is the maximal value such that f is

contained in this class, one can hope for better rates of convergence. Depend-
ing on particular prior assumptions such as additivity for example, there exist
specific estimators that enjoy better rates of convergence. A typical example is
the integration estimator proposed by Tjøstheim and Auestad (1994) and Lin-
ton and Nielsen (1995) in nonparametric additive models. However, although
such specific procedures are quite successful in cases they are designed for, they
can completely fail if the true function does not obey the presumed structural
assumption. Our anisotropic wavelet estimators attain optimal or near-optimal
rates of convergence in cases where directional adaptation improves the rate cor-
responding to the respective isotropic smoothness class. However, they are more
flexible than some of the specific methods since they are even consistent without
extra structural assumptions.

5. Proofs

Proof of Lemma 2.1. First we have by (2.6),

‖µθ‖p0 ≤ ‖µθ‖∞ = O
(
ε2(j1+···+jd)/2

)
= O(1). (5.1)
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For q <∞, we have

‖µθ‖b
ri
i,pi,q

≤ 21/q
( ∫ 2−ji

0
|h|(si−ri)q−1

∥∥∥∆2
i,h

( ∂si

∂xsi
i

µθ

)∥∥∥q
Lpi(gi,h)

dh
)1/q

+ 21/q
( ∫ 1

2−ji

|h|(si−ri)q−1
∥∥∥∆2

i,h

( ∂si

∂xsi
i

µθ

)∥∥∥q
Lpi(gi,h)

dh
)1/q

= I1 + I2, (5.2)

say. Since, for h ≤ 2−ji ,

supp
(
∆2

i,h

( ∂si

∂xsi
i

µk1,...,kd

))
∩ supp

(
∆2

i,h

( ∂si

∂xsi
i

µk′
1,...,k′

d

))
= ∅

holds if |ki − k′i| > C or kj �= k′j for any j �= i, we obtain∥∥∥∆2
i,h

( ∂si

∂xsi
i

µθ

)∥∥∥pi

pi

= O
(
2j1+···+jdεpi

∥∥∥∆2
i,h

( ∂si

∂xsi
i

µk1,...,kd

)∥∥∥pi

pi

)
= O
(
εpi2jisipi2pi(j1+···+jd)/2

∥∥∥∆2
i,2jih

( ∂si

∂xsi
i

µ⊗ · · · ⊗ µ
)∥∥∥pi

pi

)
.

This implies

I1 = O
(
ε2jisi2(j1+···+jd)/2

( ∫ 2−ji

0
|h|(si−ri)q−1

∥∥∥∆2
i,2jih

( ∂si

∂xsi
i

µ⊗ · · · ⊗ µ
)∥∥∥q

Lpi (gi,h)
dh
)1/q)

= O
(
ε2jisi2(j1+···+jd)/22ji(ri−si)( ∫ 1

0
|h|(si−ri)q−1

∥∥∥∆2
i,h

( ∂si

∂xsi
i

µ⊗ · · · ⊗ µ
)∥∥∥q

Lpi
(gi,h)

dh
)1/q)

= O
(
ε2jisi2(j1+···+jd)/22ji(ri−si)

)
= O(1). (5.3)

Since the µk1,...,kd
have disjoint support, we get∥∥∥ ∂si

∂xsi
i

µθ

∥∥∥
pi

= O
(
ε2(j1+···+jd)/22jisi

)
.

Hence, we obtain

I2 = O
(
ε2(j1+···+jd)/22jisi

( ∫ 1

2−ji

|h|(si−ri)q−1 dh
)1/q)

= O
(
ε2(j1+···+jd)/22jiri

)
= O(1). (5.4)

From (5.1) to (5.4) we obtain, for q <∞ and C0 sufficiently small, that

‖µθ‖B
r
p,q

≤ K.



MULTIVARIATE WAVELET THRESHOLDING 419

The proof for q = ∞ is analogous.

Proof of Theorem 2.2. By (2.13), we only have to study the decay of the
functional Ωε((λ

opt
I ),Θ) given by (2.14) as ε→ 0, where Θ = {(θI) | ∑I θIψI ∈

B
r
p,q(K)}. We proceed from the decomposition

Ωε

(
(λopt

I ),Θ
)

≤
∑

(j1,...,jd): ji≤j∗i ∀ i

∑
k1,...,kd

ε2

+
d∑

i=1

∞∑
ji=j∗i +1

∑
(j1,...,ji−1,ji+1,...,jd):jkrk≤jiri ∀ k

∑
k1,...,kd

ε2
(λopt

I

ε
+ 1
)
ϕ
(λopt

I

ε

)

+
d∑

i=1

∞∑
ji=j∗i +1

sup
(θI )∈Θ

{ ∑
(j1,...,ji−1,ji+1,...,jd):jkrk≤jiri∀k

∑
k1,...,kd

min
{
(λopt

I )2, θ2
I

}}
= S1 + S2 + S3, (5.5)

say. By (2.16), we have

S1 = O
(
ε22j∗1+···+j∗

d

)
= O

(
ε2[1−(1/r1+···+1/rd)/(1/r1+···+1/rd+2)]

)
= O

(
ε2ϑ(r1,...,rd)

)
. (5.6)

Fix i and ji > j∗i . Note that

# {I | jkrk ≤ jiri for all k} = O
(
2jiri(1/r1+···+1/rd)

)
= O

(
2j∗1+···+j∗

d 2(ji−j∗i )ri(1/r1+···+1/rd)
)
. (5.7)

This implies that

∑
(j1,...,ji−1,ji+1,...,jd): jkrk≤jiri ∀ k

∑
k1,...,kd

ε2
(λopt

I

ε
+ 1
)
ϕ
(λopt

I

ε

)
= O

(
ε22j∗1+···+j∗d

)
×O
(
2(ji−j∗i )ri(1/r1+···+1/rd)

√
ji−j∗i exp(−κ

2(ji−j∗i )ri(1/r1 + · · · + 1/rd)
2

)
)

= O
(
ε2ϑ(r1,...,rd) × exp

[
(ji−j∗i )ri(1/r1+· · ·+1/rd)

(
log(2)−κ2/2

)]√
ji−j∗i

)
.

Since log(2) − κ2/2 < 0, we find

S2 = O
(
ε2ϑ(r1,...,rd)

)
. (5.8)
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Choose p̂i such that 1 ≤ p̂i ≤ pi, p̂i < 2 and p̂i > (1− p̂i/2)(1/r1 +· · ·+1/rd).
It follows immediately from the definition of anisotropic Besov spaces that Br

p,q ⊆
B

r

(p0,p̂1,...,p̂d),q
. Hence, we obtain by Lemma A.1 that

sup
(θI )∈Θ

{ ∑
(j1,...,ji−1,ji+1,...,jd): jkrk≤jiri ∀ k

∑
k1,...,kd

|θI |p̂i

}
≤ C2−jirip̂i2jiri(1−p̂i/2)(1/r1+···+1/rd). (5.9)

This implies, for ji > j∗i ,

sup
(θI)∈Θ

{ ∑
(j1,...,ji−1,ji+1,...,jd): jkrk≤jiri ∀ k

∑
k1,...,kd

min{(λopt
I )2, θ2

I}
}

≤ (λopt
I )2−p̂i sup

(θI )∈Θ

 ∑
(j1,...,ji−1,ji+1,...,jd): jkrk≤jiri ∀ k

∑
k1,...,kd

|θI |p̂i


= O

(
ε2−p̂i(ji − j∗i )1−p̂i/2 2−jirip̂i2jiri(1−p̂i/2)(1/r1+···+1/rd)

)
= O

(
ε22j∗i ri(1/r1+···+1/rd)

)
O
(
ε−p̂i2−j∗i rip̂i2−j∗i rip̂i/2(1/r1+···+1/rd)

)
×O

(
2(ji−j∗i )ri[(1−p̂i/2)(1/r1+···+1/rd)−p̂i](ji − j∗i )1−p̂i/2

)
. (5.10)

From (2.16) we get ε22j∗i ri(1/r1+···+1/rd) = ε22j∗1+···+j∗
d � ε2ϑ(r1,...,rd) and

ε−p̂i2−j∗i rip̂i2−j∗i rip̂i/2(1/r1+···+1/rd) � 1. Since [(1−p̂i/2)(1/r1+· · ·+1/rd)−p̂i] < 0
we obtain

S3 = O
(
ε2ϑ(r1,...,rd)

) d∑
i=1

∞∑
ji=j∗i +1

O
(
2(ji−j∗i )ri[(1−p̂i/2)(1/r1+···+1/rd)−p̂i](ji−j∗i )1−p̂i/2

)
= O

(
ε2ϑ(r1,...,rd)

)
. (5.11)

Collecting the estimates in (5.5), (5.6), (5.8), and (5.11) the assertion follows.

Proof of Lemma 2.2. By (5.9) we obtain, for i = 1, . . . , d,∑
k1,...,kd

|θI |2 ≤
( ∑

k1,...,kd

|θI |p̃i

)2/p̃i
= O

(
2−2jiri+(j1+···+jd)(2/p̃i−1)

)
. (5.12)

Suppose that i minimizes the term on the right-hand side of (5.12), that is,

2jiri+(j1+· · ·+jd)(1−2/p̃i) ≥ 2jkrk+(j1+· · ·+jd)(1−2/p̃k), for all k.

Dividing both sides by rk and summing up over k = 1, . . . , d we get

[2jiri + (j1 + · · · + jd)(1 − 2/p̃i)] (1/r1 + · · · + 1/rd)

≥ (j1 + · · · + jd) {2 + [(1 − 2/p̃1)/r1 + · · · + (1 − 2/p̃d)/rd]} ,
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which is equivalent to

2jiri + (j1 + · · · + jd)(1 − 2/p̃i) ≥ (j1 + · · · + jd)γ(r1, . . . , rd, p1, . . . , pd). (5.13)

(5.12) and (5.13) imply

‖f − Proj
ṼJ∗ f‖2

L2

=
∑

J>J∗

∑
j1+···+jd=J

∑
k1,...,kd

θ2
I

≤
∑

J>J∗

d∑
i=1

∑
ji: 2jiri≥J(γ(r1,...,rd,p1,...,pd)+2/p̃i−1)

#{(j1, . . . , ji−1, ji+1, . . . , jd) : j1 + · · · + jd = J

and 2jiri+J(1−2/p̃i) ≥ 2jkrk+J(1−2/p̃k)∀ k} O
(
2−2jiri+J(2/p̃i−1)

)
=
∑

J>J∗
O
(
2−Jγ(r1,...,rd,p1,...,pd)

)
= O

(
2−J∗γ(r1,...,rd,p1,...,pd)

)
.

Proof of Theorem 2.3. As before, we have that

sup
f∈B

r
p,q(K)

{
E‖f̂univ

ε − f‖2
L2

}
≤ CΩ((λuniv

ε ),Θ), (5.14)

where Θ = {(θI) | ∑I θIψI ∈ B
r
p,q(K)}.

Let j′i be chosen such that 2j′iri � (ε2 log(ε−1))−1/(1/r1+···+1/rd+2). We split
up

Ω
(
(λuniv

ε ),Θ
)
≤
∑
I∈Iε

ε2
(λuniv

ε

ε
+ 1
)
ϕ
(λuniv

ε

ε

)
+ sup

(θI)∈Θ

{ ∑
j1+···+jd≤J∗

ε
ji≤j′

i
for all i=1,...,d

∑
k1,...,kd

min
{
(λuniv

ε )2, θ2
I

}}

+ sup
(θI)∈Θ

{ ∑
j1+···+jd≤J∗

ε
ji>j′

i
for some i

∑
k1,...,kd

min
{
(λuniv

ε )2, θ2
I

}}

+ sup
(θI)∈Θ

{ ∑
I /∈Iε

θ2
I

}
. (5.15)

The first term on the right-hand side is obviously of order ε2
√

log(ε−1). The second
term can be majorized by C(λuniv

ε )22j′1+···+j′
d , which is O((ε2 log(ε−1))ϑ(r1,...,rd)).

As in the proof of Theorem 2.2, choose p̂i such that 1 ≤ p̂i ≤ pi, p̂i < 2 and
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p̂i > (1 − p̂i/2)(1/r1 + · · · + 1/rd). By (5.9), the third term can be estimated by

sup
(θI )∈Θ

{ d∑
i=1

(λuniv
ε )2−p̂i

∑
ji>j′i

∑
(j1,...,ji−1,ji+1,...,jd): jkrk≤jiri ∀ k

∑
k1,...,kd

|θI |p̂i

}
=
∑

i

O
(
(ε2 log(ε−1))1−p̂i/2

) ∑
ji>j′i

O
(
2jiri[(1−p̂i/2)(1/r1+···+1/rd)− p̂i]

)
=
∑

i

O
(
(ε2 log(ε−1))1−p̂i/22j′iri[(1−p̂i/2)(1/r1+···+1/rd)− p̂i]

)
= O

(
(ε2 log(ε−1))ϑ(r1,...,rd)

)
.

Finally, by Lemma 2.2, the fourth term is of order 2−J∗
ε γ(r1,...,rd,p1,...,pd), which

completes the proof.

Proof of Lemma 3.1. Let 0 ≤ r1, . . . , rd ≤ r. Define I = {I | j1+· · ·+jd = Jε}.
We denote by 〈·, ·〉 the inner product in L2. Using Lemma A.2(i) we obtain∥∥∥∑

I∈I
θIµ

(r1,...,rd)
I

∥∥∥2
L2

=
∑

I,I′∈I
θIθI′〈µ(r1,...,rd)

I , µ
(r1,...,rd)
I′ 〉

≤
√ ∑

I,I′∈I
θ2
I

∣∣∣〈µ(r1,...,rd)
I , µ

(r1,...,rd)
I′ 〉

∣∣∣√ ∑
I,I′∈I

θ2
I′
∣∣∣〈µ(r1,...,rd)

I , µ
(r1,...,rd)
I′ 〉

∣∣∣
≤ sup

I′∈I

{∑
I∈I

∣∣∣〈µ(r1,...,rd)
I , µ

(r1,...,rd)
I′ 〉

∣∣∣}×
∑
I′∈I

θ2
I′ ,

= O
(
22Jεr 2JεJd−1

ε ε2
)

= O(1). (5.16)

Proof of Lemma 3.2. To prove this lemma, we use the idea of the proof of
Theorem 4.2.3 in Young (1980, pp.156/157). We consider an arbitrary subset
A ⊆ {1, . . . , d} and define

IA = {I : ji ≥ l for all i ∈ A, ji = l − 1 for all i �∈ A} .

By (A2)(i) we have ψ(−s)
ji,ki

(0) = ψ
(−s)
ji,ki

(1) = 0 for ji ≥ l and s = 0, . . . , r. Hence
we obtain by integration by parts, for I ∈ IA, that

θI = (−1)r#A〈f (r,A), ψ
(−r,A)
I 〉,

where g(s,A) = g(s1,...,sd) with si = s if i ∈ A and si = 0 if i �∈ A.
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Now we choose an arbitrary finite index set IA,fin ⊆ IA. Then∣∣∣ ∑
I∈IA,fin

22(j1+···+jd)rθ2
I

∣∣∣2 =
∣∣∣ ∑
I∈IA,fin

22(j1+···+jd)rθI〈f (r,A), ψ
(−r,A)
I 〉

∣∣∣2
=
∣∣∣〈f (r,A),

∑
I∈IA,fin

22(j1+···+jd)rθIψ
(−r,A)
I 〉

∣∣∣2
=
∥∥∥f (r,A)

∥∥∥2
L2

∥∥∥ ∑
I∈IA,fin

22(j1+···+jd)rθIψ
(−r,A)
I

∥∥∥2
L2

.

Furthermore, we obtain in complete analogy to (5.16) that∥∥∥ ∑
I∈IA,fin

22(j1+···+jd)rθIψ
(−r,A)
I

∥∥∥2
L2

≤ sup
I′∈IA,fin

{ ∑
I∈IA,fin

2[(j1+···+jd)+(j′1+···+j′d)]r
∣∣∣〈ψ(−r,I)

I , ψ
(−r,I′)
I′ 〉

∣∣∣}
×

∑
I′∈IA,fin

22(j′1+···+j′d)rθ2
I′ .

This implies by Lemma A.2(ii) that∑
I∈IA,fin

22(j1+···+jd)rθ2
I

≤
∥∥∥f (r,A)

∥∥∥2
L2

sup
I′∈IA,fin

{ ∑
I∈IA,fin

2[(j1+···+jd)+(j′1+···+j′d)]
∣∣∣〈ψ(−r,I)

I , ψ
(−r,I′)
I′ 〉

∣∣∣ }
≤ C(A)

∥∥∥f (r,A)
∥∥∥2

L2

.

Since this relation is true for any arbitrary finite subset IA,fin we obtain∑
I

22(j1+···+jd)rθ2
I =

∑
A:A⊆{1,...,d}

∑
I∈IA

22(j1+···+jd)rθ2
I ≤

∑
A:A⊆{1,...,d}

C(A)
∥∥∥f (r,A)

∥∥∥2
L2

,

which completes the proof.

Proof of Theorem 3.3. We conclude from (2.13) and Lemma 3.2 that

E‖f̂univ
ε − f‖2

L2

≤ ε2#Iε

(λuniv
ε

ε
+ 1
)
ϕ
(λuniv

ε

ε

)
+
∑
I∈Iε

min
{
(λuniv

ε )2, θ2
I

}
+
∑
I 	∈Iε

θ2
I

= O

(
ε2
√

log(ε−1)
)

+O

(∑
J

min
{
(λuniv

ε )22JJd−1, 2−2Jr
})

+O
(
2−2J∗

ε r
)
.
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To estimate the second term on the right-hand side, we choose J ′ such that the
balance relation

ε2 log(ε−1)2J ′
J ′d−1 � 2−2J ′r

is satisfied. This implies J ′ � log(ε−1) and, therefore, ε2[log(ε−1)]d � 2−(2r+1)J ′
.

Hence, we get∑
J

min
{
(λuniv

ε )22JJd−1, 2−2Jr
}

= O
(
2−2J ′r

)
= O

(
(ε2[log(ε−1]d)2r/(2r+1)

)
,

which completes the proof.

Proof of Theorem 3.4. By (2.13), the proof of the theorem is reduced to esti-
mating Ωε((λ∗I),Θ), where, according to (3.8), Θ={(θI)| supJ{2J(r−1/2)J−(d−1)/2∑

j1+···+jd=J

∑
k1,...,kd

|θI |} ≤ K}. We have

Ωε ((λ∗I),Θ) ≤
∑

j1+···+jd≤Jε

∑
k1,...,kd

ε2

+
∞∑

J=Jε+1

∑
j1+···+jd=J

∑
k1,...,kd

ε2
(λ∗I
ε

+ 1
)
ϕ
(λ∗I
ε

)

+ sup
(θI )∈Θ

{ ∞∑
J=Jε+1

∑
j1+···+jd=J

∑
k1,...,kd

min
{
(λ∗I)

2, θ2
I

}}
= T1 + T2 + T3. (5.17)

From (3.5) and (3.6) we see that

T1 = O
(
ε22Jε Jd−1

ε

)
= O

(
(ε2[log(ε−1)]d−1)2r/(2r+1)

)
. (5.18)

Since ∑
J>Jε

2J−Jε(J/Jε)d−1
(
λ∗I
ε

+ 1
)
ϕ

(
λ∗I
ε

)
=
∑

J>Jε

O
(
exp
(
(J − Jε)[log(2) − κ2/2]

)
(J/Jε)d−1

√
J − Jε

)
= O(1),

we get

T2 = O
(
ε22JεJd−1

ε

) ∑
J>Jε

O

(
2J−Jε(J/Jε)d−1

(
λ∗I
ε

+ 1
)
ϕ

(
λ∗I
ε

))
= O

(
ε22JεJd−1

ε

)
= O

(
(ε2[log(ε−1)]d−1)2r/(2r+1)

)
. (5.19)

Finally, we have∑
j1+···+jd=J

∑
k1,...,kd

min
{
(λ∗I)

2, θ2
I

}
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≤ λ∗I
∑

j1+···+jd=J

∑
k1,...,kd

|θI |

= O
(
ε
√
J − Jε 2−J(r−1/2)J (d−1)/2

)
= O

(
ε2−Jε(r−1/2)J (d−1)/2

ε

)
O
(
2−(J−Jε)(r−1/2)

√
J − Jε(J/Jε)(d−1)/2

)
,

which implies, by ε2−Jε(r−1/2)J
(d−1)/2
ε � 2−2Jεr = O((ε2[log(ε−1)]d−1)2r/(2r+1)),

that
T3 = O

(
(ε2[log(ε−1)]d−1)2r/(2r+1)

)
. (5.20)
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Appendix

Lemma A.1. Let Θ = {(θI)|
∑
θIψI ∈ B

r
p,q(K)}. Then there exists some K ′

such that, for all j1, . . . , jd and all i,

sup
(θI )∈Θ

{ ∑
k1,...,kd

|θI |pi

}
≤ K ′2−jiripi2(j1+···+jd)(1−pi/2).

Proof. Let P(j1,...,jd) be the projector onto the subspace spanned by
{ψ(j1,...,jd;k1,...,kd)}k1,...,kd

, that is,(
P(j1,...,jd)g

)
(x) =

∫
K(x, y)g(y)dy,

where K(x, y) =
∑

k1,...,kd
ψ(j1,...,jd;k1,...,kd)(x)ψ(j1,...,jd;k1,...,kd)(y).

Let f =
∑

I θIψI . Since θ(j1,...,jd;k1,...,kd) =
∫
P(j1,...,jd)f(x)ψ(j1,...,jd;k1,...,kd)

(x)d(x) we obtain by Hölder’s inequality

|θI | ≤
(∫

|(P(j1,...,jd)f)(x)|pi |ψI(x)| dx
)1/pi

(∫
|ψI(x)| dx

)1−1/pi

,

which implies∑
k1,...,kd

|θI |pi

≤ sup
x

{ ∑
k1,...,kd

|ψI(x)|
}∫

|(P(j1,...,jd)f)(x)|pidx sup
k1,...,kd

{(∫
|ψI(x)|dx

)pi−1}
. (A.1)

We readily obtain

sup
x

{ ∑
k1,...,kd

|ψI(x)|
}

= O
(
2(j1+···+jd)/2

)
(A.2)
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and
sup

k1,...,kd

{(∫
|ψI(x)| dx

)pi−1}
= O

(
2((j1+···+jd)(1/2−pi/2)

)
. (A.3)

It remains to derive an upper estimate for the second term on the right-hand side
of (A.1). To this end, we have to use a Littlewood-Paley decomposition; see, for
example, Härdle, Kerkyacharian, Picard and Tsybakov (1998, Section 9.3) for a
convenient description in the univariate case.

In our multivariate context, we introduce such a decomposition in the direc-
tion of xi. Since the following definitions involve also values of f for x outside
the unit cube, we have to extend f appropriately. As described in Besov, Il’in
and Nikol’skii (1979b, Theorem 18.5), we can extend f on (0, 1)i−1×R×(0, 1)d−i

in such a way that, for q <∞,( ∫
|h|(si−ri)q−1

∥∥∥∆2
i,h

( ∂si

∂xsi
i

f
)∥∥∥q

Lpi ((0,1)i−1×R×(0,1)d−i)
dh
)1/q ≤ C, (A.4)

and, for q = ∞,

sup
h

{
|h|si−ri

∥∥∥∆2
i,h

( ∂si

∂xsi
i

f
)∥∥∥

Lpi((0,1)i−1×R×(0,1)d−i)

}
≤ C. (A.5)

Let G be a symmetric kernel function whose Fourier transform Ĝ satisfies,
for some A > 0,

supp(Ĝ) ⊆ [−A,A],

Ĝ(ξ) = 1 for ξ ∈ [−3A/4, 3A/4].

We decompose f as

f = G
[i]
−1f +

∞∑
l=0

G
[i]
l f, (A.6)

where (
G

[i]
l f
)

(x) =
∫
Gl(y)f(x1, . . . , xi−1, xi − y, xi+1, . . . , xd) dy,

G−1(y) = G(y), and, for l ≥ 0, Gl(y) = 2l+1G(2l+1y) − 2lG(2ly).
We have ∥∥∥P(j1,...,jd)f

∥∥∥
pi

≤
∞∑

l=−1

∥∥∥P(j1,...,jd)(G
[i]
l f)
∥∥∥

pi

. (A.7)

Next we show that ∥∥∥G[i]
l f
∥∥∥

pi

= O(2−lri). (A.8)
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This relation is obviously fulfilled for any fixed l, in particular for l = −1. There-
fore it suffices to prove (A.8) for l ≥ 0. Since

∫
Gl(y)dy = 0 for l ≥ 0 and

Gl(y) = Gl(−y), we get(
G

[i]
l f
)

(x) =
1
2

∫
Gl(y)∆2

i,yf(x1, . . . , xi−1, xi − y, xi+1, . . . , xd) dy.

This yields, by si-fold integration by parts, that

G
[i]
l f(x) = (−1)si/2

∫
G

(−si)
l (y)∆2

i,y(
∂si

∂xsi
i

f)(x1, . . . , xi−1, xi − y, xi+1, . . . , xd) dy.

Hence, we obtain by the Generalized Minkowski inequality (see, e.g., Besov, Il’in
and Nikol’skii (1979a, p.24) that∥∥∥G[i]

l f
∥∥∥

pi

≤ 1
2

∫
|G(−si)

l (y)|
∥∥∥∆2

i,y

( ∂si

∂xsi
i

f
)∥∥∥

pi

dy.

In the case q <∞ we get (here q̃ is chosen such that 1/q + 1/q̃ = 1)

‖G[i]
l f‖pi ≤

1
2

( ∫
|y|(si−ri)q−1

∥∥∥∆2
i,y

( ∂si

∂xsi
i

f
)∥∥∥q

pi

dy
)1/q

×
( ∫

|G(−si)
l (y)|q̃|y|(ri−si)q̃+q̃/q dy

)1/q̃

= O(1) ×
( ∫

|2−lsi2lG
(−si)
0 (2ly)|q̃|y|(ri−si)q̃+q̃/q dy

)1/q̃

= O(2−lri),

while in the case of q = ∞ we get

‖G[i]
l f‖pi ≤

1
2

∫
|G(−si)

l (y)||y|ri−sidy× sup
y

{
|y|si−ri

∥∥∥∆2
i,y

( ∂si

∂xsi
i

f
)∥∥∥

pi

}
= O(2−lri).

Hence, (A.8) is proved.
With the definition F (x)=supy{|K(y, y+x)|}, we get the inequality |K(x, y)|

≤ F (x − y), where ‖F‖1 = O(1). Applying Young’s inequality (see, e.g., Besov,
Il’in and Nikol’skii (1979a, p.26)) we obtain∥∥∥P(j1,...,jd)(G

[i]
l f)
∥∥∥

pi

≤
∥∥∥F ∗ |G[i]

l f(·)|
∥∥∥

pi

≤ ‖F‖1‖G[i]
l f‖pi = O(2−lri). (A.9)

Now

∂ti

∂xti
i

G
[i]
l f(x) =

∫
∂ti

∂xti
i

Gl(xi − y)f(x1, . . . , xi−1, y, xi+1, . . . , xd) dy

= 2lti

∫
2lG

(ti)
0 (2l(xi − y))f(x1, . . . , xi−1, y, xi+1, . . . , xd) dy,
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which yields, analogously to (A.8) (with G
(ti)
0 instead of G0),∥∥∥∥∥ ∂ti

∂xti
i

G
[i]
l f

∥∥∥∥∥
pi

= O
(
2lti2−lri

)
. (A.10)

Using the Taylor series expansion

(G[i]
l f)(y)

=
ti−1∑
k=0

1
k!

∂k

∂xk
i

(G[i]
l f)(y1, . . . , yi−1, xi, yi+1, . . . , yd)(yi − xi)k

+
∫ 1

0
(yi−xi)ti

(1−u)ti−1

(ti−1)!
∂ti

∂xti
i

(G[i]
l f)(y1, . . . , yi−1, xi + u(yi−xi), yi+1, . . . , yd)du,

we obtain

P(j1,...,jd)(G
[i]
l f)(x)

=
∑

k1,...,kd

ψI(x)
∫

Rd
ψI(y) ×

( ∫ 1

0
(yi−xi)ti

(1−u)ti−1

(ti−1)!

∂ti

∂xti
i

(G[i]
l f)(y1, . . . , yi−1, xi + u(yi − xi), yi+1, . . . , yd) du

)
dy

=
∫ 1

0

∫
Rd
K(x, y)(yi − xi)ti

(1 − u)ti−1

(ti − 1)!

× ∂ti

∂xti
i

(G[i]
l f)(y1, . . . , yi−1, xi + u(yi − xi), yi+1, . . . , yd) dy du.

Hence,∣∣∣P(j1,...,jd)(G
[i]
l f)(x)

∣∣∣ ≤ ∫ 1

0
du

∫
Rd
F (x− y)|yi − xi|ti∣∣∣ ∂ti

∂xti
i

(G[i]
l f)(y1, . . . , yi−1, xi + u(yi − xi), yi+1, . . . , yd)

∣∣∣ dy,
which implies ∥∥∥P(j1,...,jd)(G

[i]
l f)
∥∥∥

pi

= O
(
2−jiti2l(ti−ri)

)
. (A.11)

From (A.7), (A.8) and (A.11) we obtain∥∥∥P(j1,...,jd)f
∥∥∥

pi

= O
(
2−jiri

)
. (A.12)

This implies, in conjunction with (A.1) to (A.3), the assertion of the lemma.

Lemma A.2. (Near-orthogonality of certain families of functions)
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(i) Let ζ be an r-times boundedly differentiable function with finite support and∫
ζ(s)(x) dx = 0 for all 0 ≤ s ≤ r. Define ζI(x) = 2(j1+···+jd)/2ζ(2j1x1 −

k1) · · · ζ(2jdxd − kd). Then, for 0 ≤ r1, . . . , rd ≤ r,

sup
I′

{∑
I

2−[(j1+j′1)r1+···+(jd+j′d)rd]
∣∣∣〈ζ(r1,...,rd)

I , ζ
(r1,...,rd)
I′ 〉

∣∣∣ } ≤ C.

(ii) Assume (A2). For A ⊆ {1, . . . , d}, define g(−r,A) = g(−r1,...,−rd), where ri = r

if i ∈ A and ri = 0 if i �∈ A. Let IA = {I : ji ≥ l for all i ∈ A and ji =
l − 1 for all i �∈ A}. Then

sup
I′∈IA

{ ∑
I∈IA

2[(j1+···+jd)+(j′1+···+j′d)]r
∣∣∣〈ψ(−r,A)

I , ψ
(−r,A)
I′ 〉

∣∣∣ } ≤ C.

Proof.
(i) For ji > j′i, we get from

∫
ζ
(ri)
ji,ki

(x) dx = 0 that

∑
ki

∣∣∣∣∫ ζ
(ri)
ji,ki

(x)ζ(ri)
j′i,k

′
i
(x)dx

∣∣∣∣=O (∥∥∥ζ(ri)
ji,ki

∥∥∥
1
TV
(
ζ
(ri)
j′i,k

′
i

))
=O
(
2(ji+j′i)ri2(j′i−ji)/2

)
.

For ji ≤ j′i, we have

∑
ki

∣∣∣∣∫ ζ
(ri)
ji,ki

(x)ζ(ri)
j′i,k

′
i
(x) dx

∣∣∣∣ = O
(∥∥∥ζ(ri)

ji,ki

∥∥∥∞ ∥∥∥ζ(ri)
j′i,k

′
i

∥∥∥
1

)
= O

(
2(ji+j′i)ri2(ji−j′i)/2

)
.

Using the product structure of ζ(r1,...,rd)
I we obtain

∞∑
j1,...,jd=−∞

2−[(j1+j′1)r1+···+(jd+j′
d
)rd]

∑
k1,...,kd

∣∣∣〈ζ(r1,...,rd)
I , ζ

(r1,...,rd)
I′ 〉

∣∣∣
=

d∏
i=1

O

 ∞∑
ji=−∞

2|ji−j′i|/2

 = O (1) .

(ii) For i ∈ A we proceed as above. For ji > j′i, we get from (A2) that∫
ψ

(−r)
ji,ki

(x) dx = 0, which implies

∑
ki

∣∣∣∣∫ 2jirψ
(−r)
ji,ki

(x) 2j′irψ
(−r)
j′i,k

′
i
(x) dx

∣∣∣∣ = O
(
2(j′i−ji)/2

)
.

For ji ≤ j′i, we have

∑
ki

∣∣∣∣∫ 2jirψ
(−r)
ji,ki

(x) 2j′irψ
(−r)
j′i,k

′
i
(x) dx

∣∣∣∣ = O
(
2(ji−j′i)/2

)
.
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Finally, for i �∈ A and ji = j′i = l − 1, we get immediately that

∑
ki

∣∣∣∣∫ 2jirψji,ki
(x) 2j′irψj′i,k

′
i
(x) dx

∣∣∣∣ = O(1).

Hence, we obtain∑
I∈IA

2[(j1+···+jd)+(j′1+···+j′d)]r
∣∣∣〈ψ(−r,A)

I , ψ
(−r,A)
I′ 〉

∣∣∣
=
∏
i∈A

O

∑
ji≥l

2|ji−j′i|/2

∏
i	∈A

O(1) = O(1).
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