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Abstract: In a recent paper, Kent and Wood (1997) investigated some new increment-

based estimators of the fractal dimension of a stationary Gaussian process. In the

present paper, we extend this work by constructing increment-based estimators

based on two-dimensional sampling of surface data (as opposed to the one dimen-

sional, or line transect, sampling previously considered). Much of our attention is

focussed on two new estimators based on the “square increment”. The practical

performance of these estimators is examined in the study of several real datasets

and via simulation. We also provide a detailed theoretical study of their properties

in both Gaussian and non-Gaussian settings. Perhaps surprisingly, it turns out that

there are differences in the limit theory in the Gaussian and non-Gaussian cases.
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1. Introduction

Surface roughness is an important property of a surface in many scientific
and engineering contexts, see Thomas (1982) for a general account. One popular
approach has been to use fractals as models for rough surfaces, and to use fractal
dimension as a measure of roughness. See, for example, Mandelbrot, Passoja and
Paullay (1982), Dubuc, Zucker, Tricot, Quiniou and Wehbi (1989) and Davies
and Hall (1998). For general introductions to fractals, see Mandelbrot (1982),
Barnsley (1988) and Falconer (1990).

Our preference is to follow Taylor (1986), Falconer (1990) and Taylor and
Taylor (1991) and define the fractal dimension of a set to be the common value
when the various mathematical notions of dimension, such as box-counting, ca-
pacity, packing and Hausdorff dimension, all agree. This definition requires that
the sets under consideration possess some (minimal) degree of regularity. The
sets under consideration in this paper, namely the graphs of sample functions
of stationary Gaussian and chi-squared fields, possess sufficient regularity (with
probability one) for us to understand “fractal dimension” in the sense indicated
above; see Adler (1981), Taylor (1986) and Falconer (1990) for some mathe-
matical details. However, the reader who prefers to stick with precisely defined



344 GRACE CHAN AND ANDREW T. A. WOOD

mathematical entities may (correctly) take fractal dimension to be Hausdorff
dimension throughout.

This paper is concerned with estimating the fractal dimension of a surface
given the surface height at locations on a two-dimensional rectangular grid. Some
new estimators are proposed and their properties, both numerical and theoretical,
are examined. However, before describing the contents of this paper in more
detail, we shall briefly review some earlier work on the (simpler) case of one-
dimensional sampling.

1.1. One-dimensional sampling

The case in which the grid of sampling locations is one-dimensional (cor-
responding to line transect sampling of surface heights) has been studied in a
number of recent papers; see, for example, Hall and Wood (1993) (“box count-
ing” estimators), Constantine and Hall (1994) (“variogram” estimators) and Kent
and Wood (1997). In each of these papers, the line transect of the surface is mod-
elled as a random process, and the fractal dimension of the graph of the sample
function is used as a measure of surface roughness. If the underlying process
is assumed to be stationary and Gaussian with a covariance function, γ, which
satisfies

γ(t) = γ(0) − c|t|α + o(|t|α) as t→ 0, (1.1)

where 0 < α ≤ 2 and c > 0, then the fractal dimension, D, of the sample paths
of the process takes the following simple form:

D = 2 − α/2; (1.2)

see e.g. Orey (1970) and Adler (1981) for results of this kind. Thus, in the
stationary Gaussian setting with covariance function γ satisfying (1.1), α in (1.1)
can be thought of as a roughness parameter and, by (1.2), estimation of D is
equivalent to estimation of α. Hall and Roy (1994) have shown that relation
(1.2) also holds for many non-Gaussian processes.

The variance of estimators considered by Hall and Wood (1993) and Con-
stantine and Hall (1994) (and also several other estimators) have the following
theoretical rates of convergence: if α̂ is any of the above estimators, and n is the
number of equally-spaced sampling locations, then Var (α̂) is of size O(n−1) if
0 < α < 3/2, of size O(n−1 log n) if α = 3/2, and of size O(n2α−4) if 3/2 < α < 2;
and so, in particular, the theory predicts that these estimators perform less well
in the case of smoother surfaces (i.e. when α is close to 2). However, several sim-
ulation studies have shown that, with realistic sample sizes (such as n = 1000),
there is no noticeable deterioration (and even sometimes an improvement) in per-
formance when α approaches 2. Further discussion may be found in Feuerverger,
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Hall and Wood (1994). Subsequent work has shown that there is a relatively
clear-cut technical explanation for this phenomenon; see Kent and Wood (1997).

In the same paper, Kent and Wood constructed estimators of α with variance
of size O(n−1) for all α ∈ (0, 2), indicating improved asymptotic performance of
the estimator when 3/2 < α < 2. The new idea was to base the estimator on
higher-order increments (equivalently, higher-order differences). They considered
both ordinary least squares (OLS) and generalised least squares (GLS) variants of
this estimator. Higher-order increments have also been used in a similar fashion,
in a related context, by Istas and Lang (1997).

The numerical results in Kent and Wood (1997) suggest that a potential
practical benefit of using estimators based on higher-order increments (relative
to the more standard estimators) is bias reduction, even though the original
(theoretical) motivation for considering these estimators was variance reduction.
There also seem to be modest practical benefits in using GLS rather than OLS.

1.2. Two-dimensional sampling

With two-dimension sampling, the situation under consideration here, the
surface heights are measured at the vertices of a finite rectangular grid in R2.
By analogy with the case of one-dimensional sampling, we make the working as-
sumption that the surface is a realisation of a stationary random field. However,
a new potential complication arises with two-dimensional sampling: the possi-
bility that the (stationary) process is anisotropic. It would seem prudent to take
this possibility into account in any estimation procedure. See Davies and Hall
(1998) for detailed discussion of this point.

In this paper we have three main objectives: (i) to construct estimators of
fractal dimension for two-dimensional surface data using higher-order increments,
taking the possibility of anisotropy into account; (ii) numerical study of these
estimators; and (iii) theoretical study of these estimators under both Gaussian
and non-Gaussian assumptions.

Two new estimators, based on the so-called “square increment”, are con-
structed in Sections 3 and 4. One of these estimators accounts for possible
anisotropy in a generalised least squares procedure. Numerical properties of these
estimators are investigated in Section 6 using both simulated and real data. Our
estimators are different than those considered in Davies and Hall (1998).

Asymptotic properties of these estimators under Gaussian assumptions are
presented in Theorem 3.2 and Corollary 3.3. A result similar to Theorem 3.2 was
proved in the one-dimensional case in the (unpublished) research report by Kent
and Wood (1995, Appendix B); here we extend this result to the multivariate case.
We also establish the asymptotic properties of these estimators in a particular
non-Gaussian setting; see Theorem 5.1. Perhaps surprisingly, it turns out that
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there are appreciable differences in the limit theory in the Gaussian and non-
Gaussian cases.

2. Data Structure and Underlying Model

Consider a surface represented mathematically by the set

{x(t) : t ∈ A}, (2.1)

where A is a connected subset of R2 with non-empty interior. In (2.1), x(t) ∈ R
denotes surface height above a fixed (but arbitrary) level, and t denotes the
location at which the surface height is determined. In practice, it is only possible
to measure surface height at a finite set of locations S ⊂ A. Throughout this
paper, we shall assume that S consists of the vertices of a finite rectangular grid
in R2. From a practical point of view this is a reasonable assumption as surface
height datasets are often of this form; it is the case for the food wrap datasets
considered in Subsection 6.2.

For the moment, it will be convenient to work in a general d-dimensional
setting. Later on, we specialise to d = 1, 2. Any element j of Zd, the d-fold
cartesian product of the set of integers Z, is referred to as a multi-index of
dimension d. We write j = (j[1], . . . , j[d]), with squared brackets used to denote
components of j. In this notation, we define the set of locations at which surface
height is measured by

Sn =
{ j
n

: 0 ≤ j < n
}
⊂ [0, 1]d (2.2)

with d = 2, and {x(t) : t ∈ Sn} is the corresponding set of observed surface
heights. In the above, j and n are multi-indices, and n has strictly positive
components. All the implied operations in (2.2) are performed component-wise,
e.g.

j

n
=

( j[1]
n[1]

, . . . ,
j[d]
n[d]

)
∈ Rd,

and 0 ≤ j < n is equivalent to 0 ≤ j[�] < n[�] for � = 1, . . . , d.
Observe that the set Sn contains N = n[1] . . . n[d] elements. Later, we

consider an asymptotic framework in which the n[�]’s increase in such a way
that the ratios

n[1]/n[�] (� = 2, . . . , d) stay bounded away from 0 and ∞. (2.3)

In other words, the set Sn does not become “thin”. In view of (2.2) and (2.3),
“infill” asymptotics are operating here, in that the set Sn becomes increasingly
dense, but is contained in a fixed set, [0, 1]d.
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We now describe the underlying statistical model in the case d = 2. The basic
idea is to view the surface (2.1) as a realisation of a two-dimensional stationary
Gaussian random field, {X(t) : t ∈ R2} say, but restricted to the set A in (2.1).
The stationarity here is with respect to translations of R2. Since our estimators
depend only on changes in surface height, and not on surface height itself, we
can without loss of generality assume that the field has zero mean.

A d-dimensional zero-mean Gaussian field is characterized by its covariance
function, γ, defined by γ(t) = E{X(s)X(s + t)} where s, t ∈ Rd. The key
technical assumption we make about γ is the following:

γ(t) = γ(0) − ||t||αM(t/||t||) +O(||t||α+β) as ||t|| → 0, (2.4)

where α ∈ (0, 2] (to ensure that γ is a non-negative definite function), β > 0,
t ∈ Rd, ||t|| = (tT t)1/2 is the usual Euclidean norm, and M(.) is a smooth (and
necessarily non-negative) function on the unit sphere in Rd. Note that (2.4) is
a natural d-dimensional extension of (1.1). If M(.) in (2.4) is constant, then the
process is (locally) isotropic; otherwise, it is anisotropic. The model (2.4) was
considered by Davies and Hall (1998) and, briefly, by Kent and Wood (1995,
Section 8).

We also need to consider a mild additional technical assumption on γ. If
r ∈ Zd is a multi-index, we write |r| =

∑d
�=1 |r[�]| and we use the following

shorthand for partial derivatives: for any non-negative multi-index r with |r| = q,

γ(r) =
∂|r|γ
∂tr

=
∂qγ

∂t[1]r[1] . . . ∂t[d]r[d]
,

where t = (t[1], . . . , t[d])T . Using this notation, our technical condition may be
stated as follows.
Condition A(d)

q : for each non-negative multi-index r with |r| = q,

γ(r)(t) = −∂
|r|

∂tr

{
||t||αM(t/||t||)

}
+ o(||t||α−q) as ||t|| → 0, (2.5)

where all partial derivatives of order q + 1 of the function M(θ), θ ∈ Sd, are
assumed continuous. Note that the derivative on the right hand side of (2.5) is of
size O(||t||α−q) as we are assuming that M(.) is smooth. In our setting we shall
mainly be concerned with d = 1, 2 and q = 2p + 2 where p = 0, 1 is the order of
the increment concerned (see next section).

When d = 2, the fractal dimension, D, of the sample function of a stationary
Gaussian random field with a covariance function which satisfies (2.4) is given
by

D = 3 − α/2; (2.6)
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see e.g. Adler (1981). The relationship (2.6) also often holds if the field is
non-Gaussian; see Hall and Roy (1994) for results on non-Gaussian fields in the
one-dimensional case. Their arguments easily extend to higher dimensional cases.

As a consequence of relationship (2.6), estimation of the fractal dimension
D is equivalent to estimating the covariance parameter α in (2.4). So, under our
modelling assumptions, the basic problem may be formulated as follows: given
observed data {x(t) : t ∈ Sn}, obtain an estimate of α.

3. Increments in the Multivariate Case

We now explain how increments can be used with two-dimensional sur-
face data. Once again, it will be convenient initially to consider the general
d-dimensional setting and then specialise to d = 2 later. The basic ideas in the
case d = 1 are discussed in detail by Kent and Wood (1997) and the general
d-dimensional case was considered briefly by Kent and Wood (1995, Section 8).
The multivariate extension of the increment-based approach is straightforward
and natural, but in order to make this paper self-contained we give details here.

Given multi-indices j and r we define jr =
∏d

�=1 j[�]
r[�], with the convention

that 00 = 1.
In the d-dimensional case, an increment of order p, where p is a non-negative

integer, is a finite array a = {aj : −J ≤ j ≤ J}, where j, J ∈ Zd and aj ∈ R,
with the following properties: for all non-negative multi-indices r which satisfy
|r| ≤ p, ∑

j:−J≤j≤J

jraj = 0; (3.1)

and for some non-negative multi-index r with |r| = p+ 1,
∑

j:−J≤j≤J

jraj �= 0. (3.2)

It is straightforward to check that when d = 2,

a = {a(0,0) = −1, a(1,0) = 1} and a = {a(0,0) = −1, a(0,1) = 1} (3.3)

are both increments of order p = 0. Increments of order p = 1 include

a{H} = {a(−1,0) = a(1,0) = 1, a(0,0) = −2}, (3.4)

a{V } = {a(0,−1) = a(0,1) = 1, a(0,0) = −2}, (3.5)

a{�} = {a(0,0) = a(1,1) = 1, a(1,0) = a(0,1) = −1}, (3.6)

a{D+} = {a(1,1) = a(−1,−1) = 1, a(0,0) = −2} (3.7)

and
a{D−} = {a(−1,1) = a(1,−1) = 1, a(0,0) = −2}. (3.8)
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In the above we have adopted the convention that those aj which are not given
explicitly are zero. The characters H,V,�,D+ and D− stand for, respectively,
“horizontal”, “vertical”, “square”, “diagonal with positive gradient” and “diag-
onal with negative gradient”. The “square-increment” estimators described in
the next section are based principally on a{�}, but the other four increments are
used to construct a suitable weight matrix for use in generalised least squares.

It may be helpful to indicate the close correspondence between increments
and difference operators. Suppose d = 2 and let f(j), j ∈ Z2, be a given
function. Define the multi-indices ex = (1, 0) and ey = (0, 1) and let Bx and By

be the “backwards” shift operators defined by Bxf(j) = f(j− ex) and Byf(j) =
f(j − ey). Then

∑
j

f(j)aj{H} = f(−ex) + f(ex) − 2f(0) = (1 −Bx)2f(ex),

∑
j

f(j)aj{V } = f(−ey) + f(ey) − 2f(0) = (1 −By)2f(ey),

and
∑
j

f(j)aj{�} = f(ex + ey) + f(0)− f(ex)− f(ey) = (1−Bx)(1−By)f(ex + ey).

The diagonal increments (3.7) and (3.8) have similar definitions in terms of back-
shift operators defined on the diagonals. The relationship between increments
and difference operators indicated above holds generally. Our reason for working
with increments rather than difference operators is purely a matter of notational
convenience.

The dilation au = {au
j : −Ju ≤ j ≤ Ju} for integer u ≥ 1 of an increment a

is defined as follows:

au
j =




aj′ if j = j′u,

0 otherwise.
− Ju ≤ j ≤ Ju

It follows immediately from this definition that
∑

jrau
j = u|r|

∑
jraj for |r| > p, (3.9)

while both sides vanish if |r| ≤ p.
Given an underlying stationary Gaussian random field {X(t) : t ∈ Rd} which

is sampled at locations t ∈ Sn, where Sn is defined in (2.2), we define the fields
Y u

N (i) and Zu
N (i) by

Y u
N (i) = Nα/(2d)

∑
−Ju≤j≤Ju

au
jX

( i+ j

n

)
, i ∈ In, (3.10)
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and
Zu

N (i) = {Y u
N (i)}2, (3.11)

where N is the cardinality of the set In = {i : 0 ≤ i < n}. In order for Y u
N (i) to

be well-defined when i is close to the boundary of In, we assume that the process
is also observed at the appropriate grid points just outside In.

We now define Z̄N = (Z̄u
N , u = 1, . . . ,m) to be the m-dimensional column

vector containing the means

Z̄u
N = N−1

∑
i∈In

Zu
N (i). (3.12)

The reason for considering these quantities is now explained. Let σuv
N (h) =

cov{Y u
N (i+h), Y v

N (i)} denote the cross-covariance function of the Y -process. Us-
ing (2.3) and (2.4) we obtain

σuv
N (h) = E{Y u

N (i)Y v
N (i+ h)}

=Nα/d
∑
j,k

au
j a

v
kγ

(h+ k − j

n

)

= −
∑
j,k

au
j a

v
k||h+ k − j||αM

( h+ k − j

||h+ k − j||
)

+ o(1)

= σuv
0 (h) + o(1)

as N → ∞, where σuv
0 (h) is defined to be the sum in the penultimate line. Using

(3.9) and the fact that E{Zu
N (i)} = Var {Y u

N (i)} = σuu
N (0), we find that

E{Zu
N (i)} → σuu

0 (0) = −
∑
j,k

au
j a

u
k ||k − j||αM

( k − j

||k − j||
)

= −uα
∑
j,k

ajak||k − j||αM
( k − j

||k − j||
)

= Cuα. (3.13)

Consequently, using the approximate relationship (3.13), we may estimate α by
regressing log(Z̄u

N ) on log(u), u = 1, . . . ,m. Note that (3.13) holds for any
increment a of order p ≥ 0.

Let α̂ be an estimator obtained using this regression procedure. A Taylor
expansion argument shows that the stochastic component of the error in estimat-
ing α with α̂ is determined by the covariance matrix ΦN = (φuv

N ) of Z̄N . Using a
standard formula for the covariance of two sums of squared, correlated Gaussian
variables, we find that

φuv
N = cov(Z̄u

N , Z̄
v
N ) = N−1

∑
−n<h<n

{ d∏
�=1

(
1 − |h[�]|

n[�]

)}
2{σuv

N (h)}2, (3.14)
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where, for each h ∈ Zd, σuv
N (h) → σuv

0 (h).
In the three results below, it is assumed that the underlying random field

is stationary and Gaussian with a covariance function which satisfies (2.4), and
that the sampling condition (2.3) is satisfied. Proofs are given in Section 7.

Lemma 3.1. Let a and b be increments of order p′ ≥ p and q′ ≥ q, respectively,
and define

Y u
N,c(i) = Nα/(2d)

∑
j

cujX
( i+ j

n

)
, c = a,b. (3.15)

If condition A(d)
p+q+2 in (2.5) holds, then

cov{Y u
N,a(i), Y

v
N,b(i+ h)} = O{(1 + ||h||)α−p−q−2}

uniformly for ||h|| < N1/d, as N → ∞.

Remark 3.1. Lemma 3.1 is a straightforward extension of part (i), Theorem 3.1,
in Kent and Wood (1997). The need to consider increments a and b with a �= b
arises in the proof of Theorem 5.1 below. The quantities p′ and q′ appear in the
statement of the lemma because this is usually the form in which the lemma is
used below.

Theorem 3.2. Suppose that d = 1, 2, (Z̄u
N : u = 1, . . . ,m) in (3.12) is based on

an increment of order p ≥ 1, (2.3) and (2.4) hold, and A(d)
4 in (2.5) is satisfied.

Then
Nφuv

N → φuv
0 =

∑

h∈Zd

2{σuv
0 (h)}2. (3.16)

Moreover, N1/2{Z̄N −E(Z̄N )} converges in distribution to the m-variate normal
distribution with mean zero and covariance matrix Φ0 = (φuv

0 ).

Remark 3.2. If the increment in Theorem 3.2 is of order p = 0, then a rather
different asymptotic picture emerges. When p ≥ 1, Theorem 3.2 tells us that
φuv

N = O(N−1); but when p = 0,

φuv
N =




O(N−1) if 0 < α < 2 − d/2,
O{N−1L(N)} if α = 2 − d/2,
O(N (2α−4)/d) if 2 − d/2 < α < 2,

(3.17)

where L(·) is a function which is slowly-varying at infinity. Moreover, the limit
distribution of {cov(Z̄N )}−1/2{Z̄N − EZ̄N} is non-normal if 2 − d/2 < α < 2,
but normal if 0 < α < 2 − d/2. The case p = 0 and d = 1 is covered by
Constantine and Hall (1994); see also Kent and Wood (1997). A result for
general d incorporating both Theorem 3.2 and (3.17) was stated without proof
in Kent and Wood (1995).
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Remark 3.3. In cases where the limit distribution is non-normal (i.e. when
p = 0 and 2 − d/2 < α < 2) the relevant limit theory can be established using
results due to Taqqu (1975), Dobrushin and Major (1979) and Major (1981).

In our third result, let Lu, u = 1, . . . ,m, be any fixed numbers such that
∑
u

Lu = 0 and
∑
u

Lu log(u) = 1, (3.18)

and define the estimator α̂ by

α̂ =
m∑

u=1

Lu log(Z̄u
N ). (3.19)

Note that the (unknown) factor Nα/d which appears in the definition of Z̄u
N via

(3.10)-(3.12) disappears from (3.19) because of the first condition in (3.18).

Corollary 3.3. Under the conditions of Theorem 3.2,

α̂− α = N−1/2ξ + op(N−1/2) +O(N−β/d) (3.20)

where ξ ∼ N(0, σ2
ξ ), σ2

ξ = tT Φ0t, t = (L1/E(Z̄1
N ), . . . , Lm/E(Z̄m

N ))T , and β > 0
is the quantity which appears in (2.4).

Proof. From (3.19),

α̂ =
∑
u

Lu log(Z̄u
N ) =

∑
u

Lu log
(
1+

Z̄u
N − E(Z̄u

N )
E(Z̄u

N )

)
+

∑
u

Lu log{E(Z̄u
N )}. (3.21)

The first two terms on the right hand side of (3.20) are accounted for by Theorem
3.2, combined with Taylor expansion applied to the first term on the right hand
side of (3.21). Also, using (3.12) and an argument rather similar to that leading
to (3.13), but taking explicit account of the remainder term in (2.4), it is found
that E(Z̄u

N ) = Cuα{1 + O(N−β/d)}. Consequently, using (3.18), it is seen that∑
u Lu log{E(Z̄u

N )} = α+O(N−β/d), and the desired conclusion follows.

Excluding exceptional circumstances, the O(N−β/d) in (3.20) will be zero
only if the remainder term in (2.4) is zero.

4. The Square-increment Estimator

We now define two estimators of α, focussing exclusively on the case d =
2. Both estimators are based on the “square increment” (3.6) and they are
calculated using linear regression to estimate α in the approximate relationship

log(Z̄u
N ) 	 c+ α log(u), u = 1, . . . ,m, (4.1)
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where m is fixed. The heuristic justification for assuming that (4.1) holds ap-
proximately is now explained: (3.13) implies that E(Z̄u

N ) 	 Cuα or, equivalently,
log{E(Z̄u

N )} 	 c + α log u, where c = log(C); and, assuming that Z̄u
N is a con-

sistent estimator of E(Z̄u
N ) as N → ∞, log(Z̄u

N ) will be close to log{E(Z̄u
N )}

with high probability when N is sufficiently large. The combination of these two
approximations yields (4.1), since m is assumed fixed.

The difference between the two estimators of α we consider is that one is
obtained using ordinary least squares (OLS) while the other is obtained using
generalised least squares (GLS) with a suitable symmetric weight matrix; cf.
Kent and Wood (1997).

Let λ = (λu : u = 1, . . . ,m) where λu = log u. Given a multi-index i ∈ In

and integers q and r, we define iq,r = (i[1] + q, i[2] + r) and write

Āu
� = N−1

∑
i∈In

{
X

( i0,0

n

)
+X

( iu,u

n

)
−X

( iu,0

n

)
−X

( i0,u

n

)}2
. (4.2)

Note that Z̄u
N = Nα/dĀu

� where Āu
� depends only on the data and Z̄u

N is defined
in (3.12) and is based on the square increment (3.6). In order that all terms in
the sum (4.2) are well-defined, it is assumed that we actually observe the random
field X(t) at all t ∈ I∗

n,m where I∗
n,m = {n−1iq,r : i ∈ In; q, r = 1, . . . ,m}.

4.1. The OLS estimator

The OLS estimator, α̂1, is defined as

α̂1 =

∑m
u=1

(
λu −m−1 ∑m

v=1 λv

)
log Āu

�
∑m

u=1

(
λu −m−1

∑m
v=1 λv

)2 . (4.3)

4.2. The GLS estimator

Given an m ×m weight matrix W , the GLS estimator of α based on W is
given by

α̂2 =
(1TW1)(λTWy) − (1TWλ)(1TWy)

(1TW1)(λTWλ) − (1TWλ)2
, (4.4)

where y = (log Āu
� : u = 1, . . . ,m) and 1 is the m-vector of ones. See Kent and

Wood (1997, Section 4) for relevant discussion. Observe that if W is the m×m

identity matrix, or m = 2, then α̂2 = α̂1. The GLS estimator we consider is
based on a choice of W given below.

4.3. The weight matrix W

Our choice of weight matrix is motivated by the elliptical covariance func-
tion model (i.e. it is assumed that the contours of the covariance function are
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elliptical). This model was discussed in some detail by Davies and Hall (1998).
In our notation, the assumption of elliptical contours corresponds to choosing
the function M in (2.4) to be of the form

M(t/||t||) =
{e21t21 + e22t

2
2 + 2e12t1t2

t21 + t22

}α/2
. (4.5)

We take W to be the inverse of the matrix with element (u, v), u, v = 1, . . . ,m,
given by

2N−1
∑

−n<h<n

(
1 − |h[1]|

n[1]

)(
1 − |h[2]|

n[2]

) {σ̂uv
0 (h)}2

σ̂uu
0 (0)σ̂vv

0 (0)
, (4.6)

where
σ̂uv

0 (h) = −
∑
j,k

au
j a

v
k||h+ k − j||α̂1M̂

( h+ k − j

||h+ k − j||
)

(4.7)

and M̂ isM as given by (4.5), but with e1, e2, e12 replaced by estimators ê1, ê2, ê12
which are defined explicitly in Appendix A, and α estimated by α̂1, the estimator
defined in (4.3). If the elliptical model (4.5) is correct, then (4.6) is a consistent
estimate of the covariance matrix of log(Z̄u), which may be obtained using (3.14)
and Taylor expansion. If the elliptic assumption is not exactly correct, but
anisotropy is still present, it is still reasonable to hope that use of the weight
matrix W will at least partially take account of any anisotropy.

4.4. Standard errors

Under the conditions of Theorem 3.2, the asymptotic behaviour of α̂1 and
α̂2 is described by Corollary 3.3. The standard errors of α̂1 and α̂2 can be
estimated by N−1/2σ̂ξ where σ̂ξ is a suitable estimator of σξ in (3.20) in each
case.

5. The Non-Gaussian Case

So far we have assumed that the underlying random field is Gaussian. In
this section we explore what happens when the field is a stationary but non-
Gaussian random field. Many distinct types of departure from the Gaussian
assumption are possible and, taken as a whole, these departures are difficult to
characterize. Here, we focus on a particular type of departure which is easy to
describe: the field is assumed to be a point transformation of a Gaussian field.
More specifically, it is assumed that the observed field is of the form g{X(t)}
where g : R → R is a smooth, non-linear function and {X(t)} is a stationary
Gaussian field as before.

In Theorem 5.1 below, we focus on the particular choice g(x) = x2, resulting
in a stationary χ2

1 field. Even under this relatively simple departure, there are
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some appreciable differences to the Gaussian case, as will be seen below. Further
work is required to determine the extent to which the special case g(x) = x2 is
representative of the general case of smooth, non-linear g.

An application of Theorem 3.1 in Hall and Roy (1994) shows that, when
d = 1, the fractal dimension of the sample function of a χ2

1 field constructed as
indicated above satisfies (1.2) with probability one. Using broadly similar argu-
ments, it can be shown that (2.7) holds for χ2

1 fields when d = 2. Consequently,
the approximate linear relationship (4.1) can still be used to estimate the fractal
dimension of the sample function via (1.2) or (2.7). Of particular interest here
is the question of whether the performance of estimators based on (4.1) differ in
the Gaussian and non-Gaussian cases. Theorem 5.1 and its proof indicate that
there are quite substantial theoretical differences.

Simplified notation will be used in this section. In particular dependence
on n ∈ Zd and N ∈ Z will often be suppressed. Write Xi for X(i/n), Yu,i

for Nα/(2d) ∑
−Ju≤j≤Ju a

u
jXi+j and put µu = E(Y 2

u,i). The sum of squares of a
typical dilated increment is given by

Z̄u = N−1
∑
i∈In

{
Nα/(2d)

∑
j

au
j g(Xi+j)

}2
. (5.1)

We assume that α̂, the estimator of α under consideration, is of the form described
in (3.18) and (3.19). Note that if X is a stationary Gaussian random field which
satisfies (2.4), then the proof of Corollary 3.3 shows that

αN =
m∑

u=1

Lu log(µu) = α+O(N−β/d) (5.2)

as N → ∞. In (5.2), β > 0 is the quantity given in (2.4). We also define

Ḡ = N−1
∑
i∈In

{g′(Xi)}2. (5.3)

We now formulate our main result in the non-Gaussian case. In the theorem
below, a is an increment of order p ≥ 0; the number of dilations, m, stays
fixed; the estimator α̂ is defined by (5.1), (3.18) and (3.19); X is a stationary d-
dimensional Gaussian random field (with d = 1 or 2) which is assumed to satisfy
(2.4) and A(d)

4 in (2.5); and (2.3) is assumed to hold.

Theorem 5.1. Suppose that g(·) = (·)2 and d = 1 or 2. Then

α̂− α = Ḡ−1TN +O(N−β/d) + op(TN ) (5.4)

where Ḡ, defined in (5.3), is bounded away from zero and infinity, and TN is a
random variable with the following properties: for any increment of order p ≥ 0,

E(TN ) = O(N−α/d) (5.5)
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and

Var (TN ) =




O(N−1) if 0 < α < 2p+ 2 − d/2,
O{N−1L(N)} if α = 2 − d/2 and p = 0,
O(N−(4−2α)/d) if 2 − d/2 < α < 2 and p = 0,

where L(N) is a function slowly varying at infinity. Note that when p ≥ 1,
Var (TN ) is O(N−1) for all 0 < α < 2 (because 2p+ 2− d/2 > 2 when p ≥ 1 and
d ≤ 2).

The proof is given in Subsection 7.2 below.

Remark 5.1. Under the assumptions of Theorem 5.1, we have the following
non-Gaussian analogue of Corollary 3.3, provided the increment used has order
p ≥ 1:

α̂− α = Op(N−1/2) +Op(N−α/d) +O(N−β/d) (5.6)

for any α ∈ (0, 2).

Remark 5.2. The early part of the proof of Theorem 5.1 makes use of a con-
sistency argument for α̂ in the non-Gaussian case which is due to Peter Hall
(personal communication). His argument works for any g belonging to a broad
class of functions. The subtle point in the non-Gaussian case is that even though
the variogram cannot be estimated consistently, the quantity Ḡ which is causing
the trouble disappears when we calculate the estimator α̂.

Remark 5.3. One may ask whether the order statement for E(TN ) in Theorem
5.1 is tight when 0 < α < d/2. Scrutiny of formula (7.20) indicates that the
order statement is “typical” and “representative”, even if (perhaps) it does not
hold in every possible case.

Remark 5.4. In principle it should be possible to extend our method of proof
without substantial change to the case of a general polynomial g but so far we
have not attempted to do so.

Remark 5.5. Theorem 5.1 does not say anything about the limit distribution of
{Var (TN )}−1/2{Tn −E(TN )}. Our guess is that the limit distribution is normal
when Var (TN ) = O(N−1), and non-normal when Var (TN ) = O(N−(4−2α)/d),
where the relevant distribution theory in the non-normal case is indicated in Re-
mark 3.3. However, the extra layer of non-linearity introduced by the transfor-
mation g(·) seems to make the problem difficult, and so far we have not obtained
any rigorous results in either of the cases distinguished above.

Remark 5.6. Even if we could prove that N1/2{TN − E(TN )} is asymptoti-
cally normal when Var (TN ) = O(N−1), it would not be the case that α̂ − αN

is asymptotically normal. The latter distribution would be a scale mixture of
normals (where the random scale factor is Ḡ−1).
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6. Numerical Results

In this section, we first compare the performance of the five order 1 in-
crements introduced in Section 3; see (3.4)–(3.8). Then we concentrate on the
square-increment and compare the performance of the OLS and GLS estimators
defined in (4.3) and (4.4). We study the performance of these estimators in both
Gaussian and χ2

1 settings. Finally, in Subsection 6.2 we try these estimators out
on real data consisting of surface height measurement on six food wrap surfaces.
These data were analysed by Davies and Hall (1998).

6.1. Simulation studies

We simulated Gaussian random fields on grids of dimension 50×50, 128×128,
and 500×500 with γ, the covariance function, given by γ(t) = exp{−M(t/||t||)
||t||α}, where M(t/||t||) is defined in (4.5). Gaussian and χ2

1 fields with fractal
dimension ranging from 2.05 to 2.95 are considered. These fractal dimensions
correspond to α ranging from 0.1 to 1.9. The shape-and-scale parameters e1, e2
and e12 are chosen to be 1, 1, 0 for isotropic processes and 2, 1, 0 for anisotropic
processes. The maximum dilation m is chosen to be between 2 and 8, inclusive.
Note that when m = 2, the OLS and GLS estimators are identical. The fields
were simulated using the circulant embedding procedure described by Wood and
Chan (1994); for larger values of α it was necessary to use an approximate form
of the procedure; see Section 4 of that paper for further discussion. In Tables 1,
2 and 3 some representative results are shown.

In the first study, we consider OLS estimators based on the five first-order
increments defined in (3.4)-(3.8). The most striking (and unexpected) aspect of
Table 1 is that the magnitude of the bias of all estimators, with the exception
the square-increment estimator, increases sharply as α increases. These large
biases appear to be a consequence of using the approximate simulation proce-
dure described in Wood and Chan (1994, Section 4), and seem not to be due
to the estimators themselves; in other words, the problem seems to be with the
simulation procedure rather than the estimators. The approximate simulation
procedure was used because when simulating smoother processes (i.e. processes
with α close to 2) it was not feasible to use the exact form of the procedure.
Similar dramatic increases in bias do not seem to occur in the one-dimensional
case (which suggests that the approximate simulation procedure is satisfactory
when d = 1); see e.g. the numerical results in Kent and Wood (1997). For
some reason that we do not fully understand, the differencing employed by the
square-increment estimator largely removes the distributional error in the re-
alisation, whereas the differencing employed by the other estimators does not.
Consequently, Table 1 suggests that the square-increment estimator may possess
certain robustness properties not shared by the four other estimators.
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Table 1. Comparison of the five order 1 increments.

Bias SD MSE

α = 0.7
m = 2 H 0.0002 0.0070 0.00005

V −.00005 0.0072 0.00005
� −.0028 0.0065 0.00005
D+ −.0027 0.0038 0.00002
D− −.0009 0.0053 0.00003

m = 5 H −.0018 0.0058 0.00004
V −.0020 0.0049 0.00003
� −.0049 0.0048 0.00005
D+ −.0054 0.0053 0.00006
D− −.0029 0.0040 0.00002

α = 1.3
m = 2 H −.2208 0.0681 0.0534

V −.2051 0.0694 0.0469
� 0.0004 0.0062 0.00004
D+ −.1970 0.0233 0.0393
D− −.1419 0.0325 0.0212

m = 5 H −.2020 0.0392 0.0423
V −.1987 0.0427 0.0413
� 0.0015 0.0059 0.00004
D+ −.1882 0.0225 0.0359
D− −.1331 0.0185 0.0181

α = 1.9
m = 2 H −.8990 0.1033 0.8189

V −.9044 0.1041 0.8288
� 0.0822 0.0042 0.0068
D+ −.8941 0.0436 0.8013
D− −.5737 0.0512 0.3318

m = 5 H −.9026 0.0762 0.8204
V −.9014 0.0708 0.8175
� 0.0841 0.0061 0.0071
D+ −.8900 0.0386 0.7936
D− −.5733 0.0375 0.3301

Notes: each cell estimate is based on 100 simulated Gaussian fields with
covariance function (4.5); in each case, the number of grid points is 500 ×
500 = 250, 000; H , V , �, D+ and D− denote the corresponding increments
(see (3.4)–(3.8)); the bias is the mean of the 100 simulated estimates of α
minus the true value of α; SD denotes the standard deviation of the 100
simulated estimates of α; MSE = Bias2 + SD2.
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Table 2. Comparison of the estimators α̂1 and α̂2.
(a) Isotropic Gaussian Processes

α̂1(4.3) α̂1(4.4)
Bias SD MSE Bias SD MSE

α = 0.1
m = 2 −.0315 0.0908 0.0092 (20) −.0315 0.0908 0.0092 (20)
m = 4 −.0326 0.0447 0.0031 (7) −.0325 0.0476 0.0033 (5)
m = 6 −.0359 0.0366 0.0026 (3) −.0359 0.0390 0.0028 (4)
m = 8 −.0352 0.0269 0.0020 (1) −.0354 0.0306 0.0022 (3)

α = 1.0
m = 2 −.0034 0.0903 0.0082 −.0034 0.0903 0.0082
m = 4 −.0033 0.0760 0.0058 −.0049 0.0722 0.0052
m = 6 −.0129 0.0788 0.0064 −.0095 0.0685 0.0048
m = 8 −.0231 0.0839 0.0076 −.0105 0.0668 0.0046

α = 1.9
m = 2 0.0070 0.0807 0.0066 (13) 0.0070 0.0807 0.0066 (13)
m = 4 0.0337 0.0907 0.0094 (22) 0.0138 0.0786 0.0064 (18)
m = 6 0.0654 0.1112 0.0166 (42) 0.0217 0.0793 0.0068 (19)
m = 8 0.1012 0.1342 0.0282 (56) 0.0267 0.0980 0.0103 (24)

(b) Anisotropic Gaussian Processes

α̂1(4.3) α̂1(4.4)
Bias SD MSE Bias SD MSE

α = 0.1
m = 2 −.0309 0.0896 0.0090 (22) −.0309 0.0896 0.0090 (22)
m = 4 −.0282 0.0408 0.0025 (4) −.0279 0.0427 0.0026 (5)
m = 6 −.0301 0.0312 0.0019 (2) −.0286 0.0329 0.0019 (2)
m = 8 −.0348 0.0271 0.0019 (1) −.0320 0.0278 0.0018 (1)

α = 1.0
m = 2 −.0218 0.0880 0.0082 −.0218 0.0880 0.0082
m = 4 −.0127 0.0713 0.0052 −.0167 0.0687 0.0050
m = 6 −.0148 0.0708 0.0052 −.0164 0.0635 0.0044
m = 8 −.0244 0.0829 0.0075 −.0230 0.0646 0.0047

α = 1.9
m = 2 0.0621 0.0988 0.0136 (35) 0.0621 0.0988 0.0136 (35)
m = 4 0.1277 0.1124 0.0289 (59) 0.0843 0.0971 0.0165 (38)
m = 6 0.1932 0.1453 0.0584 (76) 0.0986 0.1096 0.0217 (47)
m = 8 0.2554 0.1775 0.0967 (82) 0.1155 0.1489 0.0355 (47)

Notes: each row is based on 100 simulated Gaussian fields with 50×50 = 2500
grid points; α̂1 and α̂2 are the OLS and GLS estimates based on the square
increment; the number in curved brackets (·) is the number of realisations
which give estimates of α which lie outside (0, 2].
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In the second study, we compare the performance of the OLS and GLS
estimators for both isotropic and anisotropic random fields. Selected simulation
results for isotropic fields are presented in Table 2(a). The performances of α̂1 and
α̂2 are quite similar for rougher surfaces (see α = 0.1). For smoother surfaces (see
α = 1.0 and especially α = 1.9), α̂2 performs better than α̂1: in most cases, both
the absolute bias and variance are smaller. The performance of both estimators
deteriorates as m increases, but the deterioration is more marked in the case of
α̂1. Broadly similar results were obtained for the anisotropic fields; see Table
2(b).

The last study is concerned with the performance of both estimators for χ2
1

fields. Table 3 shows that for rougher surfaces both estimators perform equally
well. However for smoother surfaces the GLS estimator performs slightly better
than the OLS estimator. Note that the absolute bias in Table 3 is large when α
is either close to zero or close to 2. Note that large bias when α is close to zero is
predicted by Theorem 5.1 (though it should be remembered that there are also
other sources of bias which could be contributing).

Table 3. Simulation results for χ2 fields.

α̂1(4.3) α̂1(4.4)
α Bias SD MSE Bias SD MSE
0.2 −.0919 0.0795 0.0148 (9) −.0906 0.0799 0.0146 (9)
0.4 −.1282 0.0847 0.0236 −.1286 0.0845 0.0237
0.6 −.0742 0.1085 0.0173 −.0728 0.1057 0.0165
0.8 −.0315 0.0982 0.0106 −.0313 0.0934 0.0097
1.0 −.0146 0.1188 0.0143 −.0178 0.1106 0.0125
1.2 0.0240 0.1218 0.0154 0.0161 0.1049 0.0113
1.4 0.0269 0.1331 0.0185 0.0159 0.1116 0.0127
1.6 0.0465 0.1464 0.0236 (2) 0.0385 0.1372 0.0203 (2)
1.8 0.1112 0.1458 0.0336 (21) 0.0737 0.1316 0.0228 (16)

Notes: each cell estimate is based on 100 simulated χ2 fields with 50 × 50 =
2500 grid points; m = 4 in all cases; the number in curved brackets (·) is the
number of realisations which give estimates of α outside the range (0, 2].

Our simulation results suggest the following (rather tentative) conclusions.
(i) If we are prepared to work with the Gaussian assumption, then the estimator

α̂2 with m = 4 seems to be a good choice for an estimator of α.
(ii) Table 3 suggests that, under the non-Gaussian model described in Section 5,

there will be little or no advantage in using α̂2 rather than the computationally
simpler α̂1. Further numerical work would be required to establish whether or
not the results in Table 3 are in fact broadly representative of non-Gaussian
cases.
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In the case of non-Gaussian data, a referee has suggested the possibility of
applying a transformation such as Box-Cox to the raw data before constructing
the estimate of α; this is an interesting avenue for further work.

6.2. An example: food wrap data

We now estimate the fractal dimension and other unknown covariance func-
tion parameters using a set of six food wrap datasets. The aim of the original
study was to determine which manufacturing process produces the smoothest
wrapping. This is of interest because the smoother the wrapping, the smaller
is the tendency for micro-organisms to adhere. See Davies and Hall (1999) for
more detailed description of these data.

Among these six food wraps, the fourth one is obviously different from the
others. It is more regular and also smoother. Figure 1 shows surface 4 and one
of the more typical surfaces, surface 5, while Figure 2(a) gives the six log-log
plots. Three log-log plots for simulated surfaces are shown in Figure 2(b) for
comparison.
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Figure 1. Perspective plots for food wraps 4 and 5.
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(a) The six food wrap datasets.
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(b) Three simulated surfaces: isotropic Gaussian; anisotropic Gaussian; isotropic χ2
1.
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Figure 2. Log-log plots based on (4.1).
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All unknown parameters in the covariance function are estimated for m =
2, . . . , 8. The different choices of m give very similar results. Hence in Table 4
we have only presented results obtained with m = 4. We first note that α̂1 and
α̂2 are very close. Computing the estimated fractal dimension, D̂, based on the
relationship (2.7), we can compare our estimates of fractal dimension with those
given in Davies and Hall (1998). Overall, our estimates and standard errors are
fairly similar to theirs, even though the two approaches are quite different.

Table 4. Numerical results for the six food wrap surfaces.

Surface α̂1 {s.e.} α̂2 {s.e.} D̂ hats ψ̂

1 1.09 {0.022} 1.11 {0.018} 2.44 (2.50) 0.46 (0.41) 0.26 (0.12)
2 0.73 {0.019} 0.73 {0.018} 2.63 (2.48) 0.57 (0.67) 0.14 (0.12)
3 1.35 {0.022} 1.21 {0.036} 2.39 (2.31) 0.77 (0.72) −0.10 (−0.18)
4 1.95 {0.025} 1.76 {0.047} 2.12 (2.19) 0.97 (0.69) −0.04 (−0.04)
5 1.11 {0.022} 1.12 {0.019} 2.44 (2.46) 0.60 (0.60) 0.23 (0.17)
6 0.89 {0.021} 0.91 {0.017} 2.55 (2.58) 0.72 (0.59) 0.09 (0.09)

Notes: for each surface, α̂1 and α̂2 are the OLS and GLS estimators of α;
the estimated standard errors were obtained using Corollary 3.3; and in all
cases, m = 4. The quantity D̂ is given by 3 − α̂2/2, and the estimates ŝ and
ψ̂ are calculated using (5.1)–(5.3). The numbers in curved brackets (·) in the
D̂, ŝ and ψ̂ columns are the corresponding Davies and Hall (1999) estimates.

Moreover, we can also compare parameters in the covariance function that
characterise other features of food wraps. Let us first recall their choice of M
and show how our parameters, e1, e2 and e12 relate to their parametrisation, with
the latter given by M(θ) = (c0/2)[1 + s cos{2(θ − ψ)}]α/2, where s ∈ [0, 1] is a
measure of isotropy (isotropic surfaces will have s = 0). The quantities ψ and c0
are the “maximal roughness orientation” and “average topothesy” respectively.

With elementary manipulations, we find that c0 = 21−(α/2)(e21 + e22)
α/2,

ψ =
1
2

arctan
( 2e12
e21 − e22

)
and s =

(
1 − 4(e21e

2
2 − e212)

(e21 + e22)2
)1/2

.

To obtain estimates for ψ and s, we simply substitute the estimates of e1, e2 and
e12 described in Appendix A. The quantity ĉ0 is calculated based on information
obtained in both the ordinary and generalised least squares. Apart from the esti-
mate ĉ0, which depends on the somewhat arbitrary choice of scale, our estimates
for all other parameters are very close to the Davies and Hall (1999) estimates
for all surfaces; see Table 4. The estimated standard errors in Table 4 for α̂1

and α̂2 were obtained using Corollary 3.3. One could also obtain estimates of
the standard errors of the other parameter estimates in Table 4 by applying Tay-
lor expansion arguments to the formulae in Appendix A. We have not done so,
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principally because we view the other parameter estimates as “quick–and–dirty”,
whose main purpose is for substitution in the GLS weight matrix.

The results in Table 4 suggest that all six food wrap surfaces are anisotropic.

7. Proofs

We begin by stating a key elementary result. Let n be a multi-index with
positive components which converge to infinity according to (2.3), In the set (of
cardinality N) defined by In = {i : 0 ≤ i < n}, and L the generic symbol for a
function which is slowly varying at infinity. Then

∑
−n<h<n

{1 + ||h||}−ρ =




O(1) if ρ > d,

O{L(N)} if ρ = d,

O(N (d−ρ)/d) if ρ < d.
(7.1)

An equivalent statement of (7.1) will sometimes be more convenient for our pur-
poses:

N−2
∑
i∈In

∑
j∈In

(1 + ||i− j||)−ρ =




O(N−1) if ρ > d,

O{N−1L(N)} if ρ = d,

O(N−ρ/d) if ρ < d.
(7.2)

7.1. Proof of results in Section 3

Proof of Lemma 3.1. For 0 ≤ r ∈ Zd, define r! =
∏d

�=1(r[�]!). It follows
directly from the defining property of increments that if increments a and b have
orders p′ ≥ p and q′ ≥ q, respectively, and the multi-index r satisfies |r| ≤ p+q+1,
then

∑
j,k

au
j b

v
k(k − j)r =

∑
j,k

au
j b

v
k

∑
0≤h≤r

r!
h!(r − h)!

(−1)hjhkr−h

=
∑

0≤h≤r

(−1)h
r!

h!(r − h)!

( ∑
j

jhau
j

)( ∑
k

kr−hbvk

)

= 0, (7.3)

because for all multi-indices 0 ≤ h ≤ r such that |r| ≤ p+ q+ 1, either |h| ≤ p in
which case

∑
j j

hau
j = 0, or |r − h| ≤ q in which case

∑
k k

r−hbvk = 0. (Note that
when d ≥ 2 and a �= b, it is possible that (7.3) also holds true for larger values
of |r|, depending on the particular choices of a and b.) Now

σuv
N,a,b(h) = cov{Y u

N,a(i), Y v
N,b(i+ h)}

=Nα/d
∑
j,k

au
j b

v
kγ

(h+ k − j

n

)
. (7.4)
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Using A(d)
p+q+2 in (2.5), we may Taylor expand γ about h as follows:

γ
(h+ k − j

n

)
=

p+q+1∑
s=0

∑
|r|=s

1
r!
γ(r)

(h
n

)(k − j

n

)r

+
∑

|r|=p+q+2

1
r!
γ(r)

(h∗
n

)(k − j

n

)r
, (7.5)

where h∗ = h + η(k − j) for some η ∈ [0, 1]. Now (7.3) implies that when
we substitute (7.5) into (7.4), the first sum on the right hand side of (7.5) is
annihilated and we obtain

σuv
N,a,b = Nα/d

∑
j,k

au
j b

v
k

∑
|r|=p+q+2

γ(r)
(h∗
n

) 1
r!

(k − j

n

)r
. (7.6)

Finally, we note that condition A(d)
p+q+2 in (2.5) and condition (2.3) imply that,

for each non-negative multi-index r satisfying |r| = p+ q + 2,

Nα/dγ(r)
(h∗
n

)(k − j

n

)r
= O{(1 + ||h||)α−p−q−2}, (7.7)

and the conclusion of the lemma follows from (7.6) and (7.7).

Proof of Theorem 3.2. To establish the first part of the theorem, we apply
(7.1) and Lemma 3.1, with a = b and p ≥ 1, to the right hand side of (3.16).
See the proof of part (ii) of Theorem 3.1 in Kent and Wood (1997) for further
details.

We now establish asymptotic normality of Z̄N . Fix an m-vector f and define
the mN ×mN diagonal matrix ΓN by ΓN = diag{fT , . . . , fT } for N ≥ 1. Define
the mN -vector WN = (YT

N (j), j ∈ In), where YN (j) = (Y u
N (j), u = 1, . . . ,m);

it does not matter how we arrange the components in WN .
By construction, we have N−1WT

NΓNWN = fT Z̄N . If we can show that

SN ≡ N1/2fT (Z̄N − EZ̄N ) = N−1/2{WT
NΓNWN − E(WNΓNWN )} (7.8)

is asymptotically normal for each fixed f, then the conclusion will follow imme-
diately from an application of the Cramér-Wold device (see Billingsley (1968)).

Let VN denote the covariance matrix of WN . Note that each entry of VN is
of the form σuv

N (h) with suitable choices of u, v and h. Standard manipulations
involving quadratic forms in normal variables show that the cumulant generating
function of SN in (7.8) is given by

κN (θ) ≡ log (E eθSN ) = −1
2

mN∑
q=1

{log (1 − θλq,N) + θλq,N} , (7.9)
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where λq,N is the qth eigenvalue of ΛN = 2N−1/2 V
1/2
N ΓN V

1/2
N , and V

1/2
N is the

symmetric positive definite square root of VN .
The key step in our proof is to show that

tr(Λ4
N ) =

mN∑
j=1

λ4
q,N → 0 as N → ∞. (7.10)

Before proving (7.10), we show that (7.10) is sufficient to ensure asymptotic
normality of SN .

First, note that (7.10) implies that max1≤q≤mN λq,N → 0 as N → ∞, and
that δ = supN≥1 max1≤q≤mN |λq,N | is finite. Expanding (7.9) about θ = 0 using
Taylor’s theorem, we obtain

κN (θ) =
1
2

mN∑
q=1

{1
2
θ2 λ2

q,N +
1
3
θ3 λ3

q,N +
1
4
θ4 λ4

q,N (1 − θ∗λq,N )−4
}

(7.11)

for some θ∗ which satisfies 0 ≤ |θ∗| ≤ |θ|. If we restrict attention to |θ| ≤ 1
2δ

−1,
then (1 − θ∗λq,N ) > 1/2 for all q and N . For such θ,

κN (θ) =
1
2
θ2

(1
2

∑
λ2

q,N

)
+O

(∣∣∣
∑

λ3
q,N

∣∣∣
)

+O
( ∑

λ4
q,N

)
.

Now

1
2

∑
λ2

q,N =
1
2

tr(Λ2
N ) = 2N−1 tr{(VN ΓN )2} = N fT ΦN f , (7.12)

where ΦN is defined above (3.14). Also, by the first part of the theorem, ζ =
N limN→∞ fT ΦN f = fT Φ0f exists and is finite. Moreover, (7.10) implies that

∣∣∣
∑

λr
q,N

∣∣∣ ≤
(

max
1≤q≤mN

|λq,N |
)r−2 ∑

λ2
q,N → 0 as N → ∞ (7.13)

for r ≥ 3. Putting (7.11)-(7.13) together, we see that for each θ ∈ (−(2δ)−1,
(2δ)−1), κN (θ) → θ2ζ/2 as N → ∞. Thus, if (7.10) holds, κN (θ) converges
pointwise to the cumulant generating function of an N(0, ζ) variable in a neigh-
bourhood of the origin, which is sufficient to ensure that SN → N(0, ζ) in distri-
bution.

We now establish (7.10). Direct calculation shows that

tr(Λ4
N ) = 16N−2 tr{(V 1/2

N ΓN V
1/2
N )4}

= 16N−2 tr{(VN ΓN )4}

= 16N−2
m∑

u1=1

. . .
m∑

u4=1

fu1 . . . fu4 ∆N (u1, . . . , u4), (7.14)
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where

∆N (u1, . . . , u4)

=
∑

i1∈In

. . .
∑

i4∈In

σu1u2
N (i1−i2)σu2u3

N (i2−i3)σu3u4
N (i3−i4)σu4u1

N (i4 − i1); (7.15)

see e.g. Taqqu (1975) for related calculations (though the result proved there
is different than Theorem 3.2). For each triple (h1, h2, h3) which satisfies −n <
ha < n, 1 ≤ a ≤ 3, the cardinality of the set

#{(i1, i2, i3, i4) : ia ∈ In , a = 1, . . . , 4 ;ha = ia − ia+1 , 1 ≤ a ≤ 3}

is bounded above by N . It follows that

|∆N (u1, . . . , u4)|
≤N

∑
−n<h1<n

. . .
∑

−n<h3<n

|σu1u2
N (h1)σu2u3

N (h2)σu3u4
N (h3)σu1u4

N (h1 + h2 + h3)| .

When the increment concerned has order p ≥ 1 and condition A(d)
4 in (2.5) holds,

then it follows from Lemma 3.1 that for some constants C1 and C2,

|∆N (u1, . . . , u4)| ≤ C1N
3∏

a=1

( ∑
−n<h<n

|σuaua+1

N (h)|
)

≤ C1N
3∏

a=1

( ∑

h∈Zd

|σuaua+1

N (h)|
)

≤ C2N
( ∑

h∈Zd

(1 + ||h||)α−2p−2
)3

= O(N) ,

since α − 2p − 2 < −d when p ≥ 1, 0 < α < 2 and d = 1, 2. Thus, tr (Λ4
N ) =

O(N−1), and the theorem is proved.

7.2. Proof of Theorem 5.1

Before giving a proof, we state the “diagram formula”. This formula, which
plays a very useful role in our proof, gives an explicit expression in terms of
variances and covariances for the expectation of an arbitrary product of Hermite
polynomials in correlated Gaussian variables. We now recall the definition of
the Hermite polynomials: for integer a ≥ 0, the Hermite polynomial of degree
a is given by Ha(x) = (−1)a exp(x2/2)Da exp(−x2/2) where D ≡ d/dx. So, for
example, H0(x) = 1, H1(x) = x and H2(x) = x2 − 1.
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Lemma 7.1. (“Diagram Formula”). Let U1, . . . , UK (K ≥ 2) be Gaussian
variables with E(Uk) = 0, E(U2

k ) = 1 and cov(Uk, U�) = σk,� for 1 ≤ k, � ≤ K.
Let a1, . . . , aK be positive integers. If a1 + a2 + · · · + aK is even and equals 2q,
say, then

E{Ha1(U1) . . . HaK
(UK)} =

a1! . . . aK !
2qq!

∑
σk1,�1 . . . σkq ,�q

where summation is over all indices k1, �1, . . . kq, �q ∈ {1, . . . ,K} such that (i)
k1 �= �1, . . . kq �= �q, and (ii) there are precisely a1 indices 1, a2 indices 2, . . . , aK

indices K. When a1 + · · · + aK is odd, the expectation of the above product is
zero.

See Taqqu (1977), Major (1981) and Breuer and Major (1983). In the proof
of Theorem 5.1, we need the following easy consequence of Lemma 7.1.

Lemma 7.2. Choose L ∈ {1, . . . ,K − 1}. In the notation of Lemma 7.1, if
a1 + · · · + ak is even,

cov{Ha1(U1) · · ·HaL
(UL),HaL+1

(UL+1) · · ·HaK
(UK)}

=
a1! · · · aK !

2qq!

∑
σk1,�1 · · · σkq ,�q ,

where the summation is over all k1, �1, . . . , kq, �q ∈ {1, . . . ,K} such that (i) and
(ii) of Lemma 7.1 are satisfied and, in addition, the following holds: for some
r ∈ {1, . . . , q},

min{kr, �r} ≤ L and max{kr, �r} > L.

If a1 + · · · + aK is odd, the above covariance is zero.

Proof of Theorem 5.1. Using g(·) = (·)2 in the definition of Z̄u in (5.1),
putting Wi,j = Nα/(2d)(Xi+j −Xi), and using the definition of Yu,i given at the
beginning of section 5, we obtain

Z̄u = N−1
∑
i∈In

{
2Xi

( ∑
j

au
jWi,j

)
+N−α/(2d)

∑
j

au
jW

2
i,j

}2

= N−1
∑
i∈In

{
4X2

i Y
2
u,i + 4N−α/(2d)XiYu,i

∑
j

au
jW

2
i,j +N−α/d

( ∑
j

au
jW

2
i,j

)2}

= N−1
∑
i∈In

{
4X2

i µu +R0,u,i +N−α/(2d)R1,u,i +N−α/dR2,u,i

}

= Ḡµu + R̄0,u +N−α/(2d)R̄1,u +N−α/dR̄2,u, (7.16)

where R0,u,i = 4X2
i (Y 2

u,i − µu), R1,u,i = 4XiYu,i
∑

j a
u
jW

2
i,j,

R2,u,i =
{ ∑

j

au
jW

2
i,j

}2
and R̄q,u = N−1

∑
i∈In

Rq,u,i (q=0, 1, 2; u=1, . . . ,m).
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Noting that Ḡ is finite and strictly positive with probability one, and taking
logarithms, we obtain

log(Z̄u) = log(Ḡ) + log(µu) + log
{
1 +

R̄0,u +N−α/(2d)R̄1,u +N−α/dR̄2,u

Ḡµu

}
.

Now if (UN ) is any sequence of random variables converging to 0 in probability,
then log(1 + UN ) = UN{1 + op(1)}. Consequently, if it can be shown that

R̄0,u = op(1) and R̄q,u = Op(1), q = 1, 2, u = 1, . . . ,m. (7.17)

Then it will follow from (3.18), (3.19) and (7.17) that

Ḡ(α̂− αN ) = Ḡ
[{ m∑

u=1

Lu log(Z̄u)
}
− αN

]

= Ḡ
{ ∑

u

Lu log(Ḡ) +
∑
u

Lu log(µu) − αN

}

+
∑
u

Luµ
−1
u {R̄0,u +N−α/(2d)R̄1,u +N−α/dR̄2,u}{1 + op(1)}

= 0 + αN − αN

+
∑
u

Luµ
−1
u {R̄0,u +N−α/(2d)R̄1,u +N−α/dR̄2,u}{1 + op(1)}

= TN{1 + op(1)}, (7.18)

where

TN =
∑
u

Luµ
−1
u {R̄0,u +N−α/(2d)R̄1,u +N−α/dR̄2,u}

= R̄0 +N−α/(2d)R̄1 +N−α/dR̄2, (7.19)

with the obvious definitions for R̄0, R̄1 and R̄2. The truth of statement (7.17)
is a direct consequence of steps (a), (b) and (c) given below. Using (5.2), (7.18)
and the positivity of Ḡ, it is seen that α̂− α = Ḡ−1TN +O(N−β/d) + op(TN ) as
required.

The remainder of the proof is concerned with the calculation of E(TN ) and
Var (TN ). In Appendix B, it is proved that

E(TN ) = 2DN−α/d
m∑

u=1

uαLu +O(N−(α+β)/d), (7.20)

where β > 0 is the quantity given in (2.5) and D, which depends on N only
through nN−1/d, is given by

D = −
∑

j,k ajakf(j − k)2∑
j,k ajakf(j − k)

, where f(t) =
∣∣∣
∣∣∣ t
ν

∣∣∣
∣∣∣αM

( t
ν

/∣∣∣
∣∣∣ t
ν

∣∣∣
∣∣∣
)
, (7.21)
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t = j, k, j − k, and ν = nN−1/d. Inspection of D shows that it will be non-
zero except (possibly) in exceptional circumstances. Therefore, since

∑
u u

αLu is
non-zero in general, E(TN ) is typically asymptotic to const.N−α/d.

In the final part of the proof we determine the order of Var (TN ). From
(7.19) we have

Var (TN ) =
m∑

u,v=1

Luµ
−1
u Lvµ

−1
v

2∑
q,r=0

cov(N−αq/(2d)R̄q,u, N
−αr/(2d)R̄r,v). (7.22)

Since the (u, v)-sum is finite, we only need to examine the order of

cov(N−αq/(2d)R̄q,u, N
−αr/(2d)R̄r,v), q, r = 0, 1, 2.

For convenience, let us write Wi = Wi,j and Yi = Yu,i (since the dependence
of the W ’s and Y ’s on the omitted subscript does not affect the validity of any of
the order statements below). Consider the joint covariance structure of the X,
Y and W fields. We write σXX(i − j) = cov(Xi,Xj), σXY (i − j) = cov(Xi, Yj)
and so on. Using Lemma 3.1 combined with elementary calculations we obtain
the following:

σWW (i− j) = O{(1 + ||i− j||)α−2}; σXX(i− j) = O(1); (7.23)

σY Y (i− j) = O{(1 + ||i− j||)α−2p−2}, (7.24)

where p is the order of the increment used;

σWX(i− j) = O{N−α/(2d)(1 + ||i− j||)α−1}, (7.25)

σXY (i− j) = O{N−α/(2d)(1 + ||i− j||)α−p−1}, (7.26)

and
σWY (i− j) = O{(1 + ||i− j||)α−p−2}. (7.27)

All the above statements hold uniformly for fixed i, j ∈ In as N increases.
We complete the proof by evaluating the order of the terms in (7.22) one by

one; only selected details are given. The results below are obtained by repeated
use of Lemma 7.2 combined with (7.2) and (7.23)-(7.27).
(a) Var (R̄0,u). From the definition of R̄0,u we have

Var (R̄0,u) = 16γ0µ
2
uN

−2
∑

i,j∈In

cov[{H2(Xi/
√
γ0) + 1}H2(Yi/

√
µu),

{H2(Xj/
√
γ0) + 1}H2(Yj/

√
µu)],

where γ0 = γ(0) = Var (Xi). Now

cov[{H2(Xi/
√
γ0) + 1}H2(Yi/

√
µu), {H2(Xj/

√
γ0) + 1}H2(Yj/

√
µu)]
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= cov{H2(Xi/
√
γ0)H2(Yi/

√
µu),H2(Xj/

√
γ0)H2(Yj/

√
µu)}

+2cov{H2(Xi/
√
γ0)H2(Yi/

√
µu),H2(Yj/

√
µu)}

+cov{H2(Yi/
√
µu),H2(Yj/

√
µu)}.

Several applications of Lemma 7.2 show that

cov{H2(Xi/
√
γ0)H2(Xj/

√
γ0)H2(Yj/

√
µu)}

= O{σY Y (i− j)2} +O{N−α/dσY Y (i− j)} +O{N−α/dσXY (i− j)2}
+O{σXY (i− j)2σY Y (i− j)},

cov{H2(Xi/
√
γ0)H2(Yi/

√
µu),H2(Yj/

√
µu)} = O{N−α/(2d)σY Y (i−j)σXY (i−j)},

and
cov{H2(Yi/

√
µu),H2(Yj/

√
µu)} = O{σY Y (i− j)2}.

Consequently

Var (R̄0,u) = O
{
N−2

∑
i,j

σY Y (i− j)2
}

+O
{
N−2

∑
i,j

σY Y (i− j)σXY (i− j)
}

= O
{
N−2

∑
i,j

σY Y (i− j)2
}

+O(N−1),

= O
{
N−2

∑
i,j

σY Y (i− j)2
}
,

which is compatible with the stated order of Var (TN ) in the theorem.
(b) Var (R̄1,u). Arguing along the lines indicated in case (a), and using (7.2) and
Lemma 7.2, we find that

Var (N−α/(2d)R̄1,u)

= O
{
N−α/dN−2

∑
i,j∈In

σWW (i− j)
}

+O
{
N−α/dN−2

∑
i,j∈In

σWX(i− j)2
}

= O(N−1).

Consequently Var (N−α/dR̄1,u) does not violate any of the order statements in
the theorem. In fact, using the elementary properties of increments and without
further assumptions, we can show that Var (N−α/(2d)R̄1,u) = o(N−1).
(c) Var (N−α/dR̄2,u). In this case, we have

Var (N−α/dR̄2,u) = O
{
N−2α/dN−2

∑
i,j∈In

σWW (i− j)2
}

= o(N−1),

and once again this is compatible with the requirements of the theorem.
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(d) Covariance terms. Steps (a), (b) and (c) above take care of the variance terms
in (7.22). To account for the covariance terms in (7.22), we use the Cauchy-
Schwartz inequality as follows:

cov(N−αq/(2d)R̄q,u, N
−αr/(2d)R̄r,v)

= O[{Var (N−αq/(2d)R̄q,u)Var (N−αr/(2d)R̄r,v)}1/2]

= O
{
N−2

∑
i,j∈In

σY Y (i− j)2
}
,

as required. The proof is now complete.
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Appendix

A. Calculation of the Weight Matrix

We now give explicit definitions of the estimators of e1,e2 and e12 in (4.5)
which were used in our numerical work. Consider the mean sums of squares
corresponding to the increments (3.4)-(3.8):

Āu
H = N−1

∑
i∈In

{
X

( iu,0

n

)
+X

( i−u,0

n

)
− 2X

( i0,0

n

)}2
,

Āu
V = N−1

∑
i∈In

{
X

( i0,u

n

)
+X

( i0,−u

n

)
− 2X

( i0,0

n

)}2
,

Āu
D+

= N−1
∑
i∈In

{
X

( iu,u

n

)
+X

( i−u,−u

n

)
− 2X

( i0,0

n

)}2
,

Āu
D− = N−1

∑
i∈In

{
X

( i−u,u

n

)
+X

( iu,−u

n

)
− 2X

( i0,0

n

)}2
,

with Āu
� defined as in (4.2). From (3.13) we have

E(Āu
∗ ) = C∗uα{1 + o(1)}, (A1)
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where ∗ = H,V,D+,D−,�. In the above, u ranges from 1 to m and iq,r =
(i[1] + q, i[2] + r), where i ∈ Z2 and q, r ∈ Z. Direct calculation shows that

CH = (8 − 21+α)(e1/n[1])α, CV = (8 − 21+α)(e2/n[2])α (A2)

and

CD± = (8 − 21+α)
{ e21
n[1]2

+
e22
n[2]2

± 2e12
n[1]n[2]

}α/2
. (A3)

From (A2),

e1 = n[1]
( CH

8 − 21+α

)1/α
and e2 = n[2]

( CV

8 − 21+α

)1/α
. (A4)

In the case of e12, we note from (A1) that E(Āu
D+

)/E(Āu
D−) = CD+/CD− . Using

(A3), making e12 the subject for each u, and then averaging over u, we obtain

e12 =
n[1]n[2]

2

( e21
n[1]2

+
e22
n[2]2

)
m−1

m∑
u=1

(ρu − 1
ρu + 1

)
, (A5)

where ρu = {E(Āu
D+

)/E(Āu
D−)}2/α.

Our estimates of e1,e2 and e12 are based on estimates α̂∗ and ĉ∗ of α and c∗
obtained using the approximate linear relationship log Āu∗ 	 c∗ + α log u, where
u = 1, . . . ,m,c∗ = logC∗ and ∗ = H,V,D+,D−,�. More specifically, we have

α̂∗ =

∑m
u=1

(
log u−m−1 ∑m

v=1 log v
)

log Āu∗
∑m

u=1

(
log u−m−1

∑m
v=1 log v

)2 ,

ĉ∗ = m−1
m∑

u=1

(log Āu
∗ − α̂∗ log u),

and Ĉ∗ = exp(ĉ∗). To estimate e1 in (A4), we put CH = ĈH and α = α̂H ; to
estimate e2 in (A4), we put CV = ĈV and α = α̂V ; and to estimate e12 in (A5),
we use the estimates of e1 and e2 already obtained, and estimate ρu and α by
ρ̂u = Āu

D+
/Āu

D− and (α̂D+ + α̂D−)/2, respectively.

B. Calculation of (7.20)

Since
∑

j aj = 0, it follows that Yu,i =
∑

j a
u
jWi,j. By direct calculation, we

find that

E(TN ) =
m∑

u=1

Luµ
−1
u

∑
j,k

au
j a

u
kE

[
4X2

i {Wi,jWi,k − E(Wi,jWi,k)}

+4N−α/(2d)XiWi,jW
2
i,k +N−α/dW 2

i,jW
2
i,k

]
. (B1)
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Using the diagram formula with correlated, zero-mean Gaussian variables U1, U2,
U3, we have

E{H2(U1)H1(U2)H1(U3)} = 2cov(U1, U2)cov(U1, U3)

and
E{H2(U1)H2(U2)} = 2{cov(U1, U2)}2.

Consequently, starting from (B1) and performing some elementary calculations,
we obtain

E(TN ) =
∑
u

Luµ
−1
u

∑
j,k

au
j a

u
k

[
8ρXW (j)ρXW (k)

+N−α/(2d){8ρXW (k)ρWW (j, k) + 4ρXW (j)ρWW (k, k)}
+N−α/d{2ρWW (j, k)2 + ρWW (j, j)ρWW (k, k)}

]
, (B2)

where ρXW (j) = cov(Xi,Wi,j) and ρWW (j, k) = cov(Wi,j,Wi,k) do not depend
on i because of stationarity of the underlying process.

From the definition of Wi,j and using (2.4), we have

ρXW (j) = cov{Xi, N
α/(2d)(Xi+j −Xi)}

=Nα/(2d){γ(j/n) − γ(0)}
= −N−α/(2d)f(j) +O(N−(α+2β)/(2d)), (B3)

where f(j) is defined in (7.21). By a similar argument we obtain

ρWW (j, k) = f(j) + f(k) − f(j − k) +O(N−β/d)), (B4)

and from (3.13) we have

µu = −uα
∑
j,k

ajakf(j − k) +O(N−β/d) = Cuα +O(N−β/d). (B5)

Substituting (B3)–(B5) into (B2), using the fact that f(j − k) = f(k − j), and
suppressing the O(N−(α+β)/d) term until the final line, we obtain

E(TN ) = 2C−1N−α/d
∑
u

u−αLu

∑
j,k

au
j a

u
k

[
4f(j)f(k)

−4f(k){f(j) + f(k) − f(j − k)} − 4f(j)f(k)

+{f(j) + f(k) − f(j − k)}2 + 2f(j)f(k)
]

= 2C−1N−α/d
∑
u

uαLu

∑
j,k

ajakf(j − k){f(j − k) + 2f(k) − 2f(j)}

= 2DN−α/d
∑
u

uαLu +O(N−(α+β)/d),

as required.
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