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Abstract: We consider a natural variation of the standard secretary problem: N

groups of applicants are to be interviewed sequentially (in groups) by a manager and

the manager wants to find a strategy which maximizes the probability of selecting

the best applicant. We use the usual backward induction method to find the optimal

strategy, which can be easily described and is a natural extension of the solution

for the standard secretary problem.
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1. Introduction

In the standard secretary problem, N rankable people apply for one secretary
position and are interviewed sequentially in random order by a manager. It is
assumed that the manager knows the relative ranks of the present and previous
applicants at each stage and he must decide immediately whether to accept or
to reject the present applicant. No recall for previous applicants is permitted
and the interviews continue until one of the applicants is accepted. The strategy
which maximizes the probability of selecting the best of the N applicants is well-
known, and is to reject the first r − 1 applicants and then accept the next one
who is preferable to all his/her predecessors, where

r = min{n| 1
n

+ · · · + 1
N − 1

≤ 1}. (1.1)

Under this strategy, the probability of selecting the best applicant is

r − 1
N

N∑
k=r

1
k − 1

. (1.2)

It is easy to see that for large N , r ≈ N/e and the probability of selecting the
best one is ≈ 1/e. The first published solution is due to Lindley (1961).

In this paper, we consider the following natural variation. There are l1+· · ·+
lN rankable applicants who are divided randomly into N groups, the ith group
containing li members. At the ith stage, the manager interviews all members of
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the ith group and then he must decide immediately whether to select the best
member in the ith group. If so, then the interview ends, otherwise he continues
to interview the members of the (i + 1)th group. At each stage the manager is
assumed to know the relative ranks of the applicants who have been interviewed
so far, but no recall is permitted. The objective is to find a strategy which
maximizes the probability of selecting the best applicant. It is not surprising
that the optimal strategy is to reject the applicants in the first r − 1 groups (for
some r) and accept the best one in the next group which contains the one who
is preferable to all the predecessors. But it came as a surprise to us that the
threshold r is determined by the following simple formula

r = min{n|
N∑

k=n+1

lk
bk−1

≤ 1}, where bk =
k∑

i=1

li.

Our variation seems more realistic than the standard version since inter-
views are often held in groups. There are many other variations of the standard
secretary problem in the literature. For example, Gilbert and Mosteller (1966)
studied the consequences of allowing the manager to choose more than one of
the N applicants; Dynkin and Yushkevich (1969) outlined a proof of the opti-
mal strategy for the variation in which the manager aims to select an applicant
whose overall rank is less than or equal to s, s = 2; and for s = 3, Quine and
Law (1996) and Yang (1998) derived exact results by different methods. The in-
terested reader is referred to the review papers by Freeman (1983) and Ferguson
(1989) for additional references.

We organize the paper as follows. In Section 2, we review the usual backward
induction method, which is developed extensively by Chow, Robbins and Sieg-
mund (1971). Section 3 is devoted to proving the optimal strategy. In Section 4,
we consider some interesting examples and asymptotic properties.

2. Preliminaries

In this section, we shall establish some basic general results. Suppose that
there is given a probability space (Ω,F , P ), an increasing sequence F1 ⊂ F2 ⊂
· · · ⊂ FN of sub-σ-algebras of F , and a sequence X1, . . . ,XN of integrable random
variables such that Xn is Fn-measurable, n = 1, . . . , N . A stopping rule T is a
random variable taking values in {1, . . . , N} such that the event {T = n} ∈ Fn,
n = 1, . . . , N . Denote by C the class of all stopping rules and define V =
supT∈C E(XT ). We shall say that a stopping rule S is optimal in C if S ∈ C and
E(XS) = V . The following theorem provides a method (usually referred to as
backward induction) to find an optimal stopping rule for {Xn,Fn}N

1 ; for a proof,
see Chow, Robbins and Siegmund (1971).
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Theorem 2.1. Let N be a fixed positive integer. Define successively γN , . . . , γ1

by setting γN = XN , and γn = max{Xn, E(γn+1|Fn)}, n = N−1, . . . , 1 . Let S

be the smallest n such that Xn = γn. Then S is optimal in C and V = E(XS) =
E(γ1).

Let Z1, . . . , ZN be integer-valued random variables with each Zn being Fn-
measurable. Set Xn = P{Zn = 1|Fn}. Then for any stopping rule T , we have
E(XT ) = P{ZT = 1}. Hence choosing a stopping rule T to maximize the
probability P{ZT = 1} is equivalent to solving the optimal stopping problem for
{Xn,Fn}N

1 with Xn = P{Zn = 1|Fn}. In Section 3, Zn will be the absolute rank
of the best member in the nth group.

3. The Optimal Strategy

Let Ak be the absolute rank of the kth applicant for k = 1, . . . , bN . Setting
M = bN , by assumption, (A1, . . . , AM ) is a random permutation of the integers
1, . . . ,M , all M ! permutations being equally likely. Let Yk be the relative rank
of the kth applicant among the first k people. Let Zn = min{Abn−1+1, . . . , Abn},
the absolute rank of the best member in the nth group, and Fn = σ(Y1, . . . , Ybn).
By Theorem 2.1, the optimal strategy is determined by the optimal stopping
rule for {Xn,Fn}N

1 with Xn = P{Zn = 1|Fn}. We state two simple lemmas
without proof. (The first one is due to Rényi (1962) and the second one an easy
consequence of the first.)

Lemma 3.1. Y1, . . . , YM are independent random variables and for each k =
1, . . . ,M,

P{Yk = j} = 1/k, j = 1, . . . , k. (3.1)

Lemma 3.2. For any n = 1, . . . , N ,

Xn = P{Zn = 1|Fn}

=

{
cn = bn/M, if Yk = 1 for some k, bn−1 + 1 ≤ k ≤ bn

0, if Yk �= 1 for all k, bn−1 + 1 ≤ k ≤ bn,
(3.2)

where we use the convention b0 = 0.

From Lemma 3.2, note that Xn is a function of Ybn−1+1, . . . , Ybn . Now, as in
Theorem 2.1, define

γN = XN

γn = max{Xn, E(γn+1|Fn)}, n = N − 1, . . . , 1.

Since the Y ′s are independent, FN−1 and YbN−1+1, . . . , YbN
are independent. This

implies E(γN |FN−1) = E(γN ), since γN = XN is a function of YbN−1+1, . . . , YbN
.
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Consequently, γN−1 = max{XN−1, E(γN )} is a function of XN−1, and hence a
function of YbN−2+1, . . . , YbN−1

. By a similar argument and backward induction, it
is not difficult to show that γn is a function of Ybn−1+1, . . . , Ybn and E(γn+1|Fn) =
E(γn+1) ≡ Vn+1 for n = 1, . . . , N − 1. Then if VN+1 = 0,

γn = max{Xn, Vn+1}, n = 1, . . . , N. (3.3)

Observe that E(γ1) ≡ V1 ≥ V2 ≥ · · · ≥ VN ≥ VN+1 = 0 and 0 ≡ c0 < c1 < c2 <

· · · < cN = bN/M = 1. So we can find a unique positive integer r, 1 ≤ r ≤ N ,
such that ci ≥ Vi+1 whenever r ≤ i ≤ N and cr−1 < Vr.

The optimal stopping rule S defined in Theorem 2.1 can be described as

S = the smallest n ≥ r such that Yk = 1 for some k, bn−1 + 1 ≤ k ≤ bn.

By (3.2), (3.3) and the definition of r, for each n = r, . . . ,N ,

γn = max{Xn, Vn+1} =

{
bn/M, if Yk = 1 for some k, bn−1 + 1 ≤ k ≤ bn,

Vn+1, if Yk �= 1 for all k, bn−1 + 1 ≤ k ≤ bn.

Now for r ≤ n ≤ N , the Vn satisfy the following recursive formula with VN+1 = 0:

Vn = E(γn) = (bn/M)P{Yk = 1 for some bn−1 + 1 ≤ k ≤ bn}
+Vn+1P{Yk �= 1 for all bn−1 + 1 ≤ k ≤ bn} (3.4)

= (bn/M)(ln/bn) + Vn+1(bn−1/bn) = (ln/M) + (bn−1/bn)Vn+1.

Solving (3.4) yields

Vn =
bn−1

M

N∑
k=n

lk
bk−1

, r ≤ n ≤ N. (3.5)

(If r = 1 then, from (3.4), V1 = l1/M , though some ambiguity arises at (3.5).)
In view of (3.5) and the definition of r, we have

br

M
= cr ≥ Vr+1 =

br

M

N∑
k=r+1

lk
bk−1

and
br−1

M
= cr−1 < Vr =

br−1

M

N∑
k=r

lk
bk−1

.

Equivalently, 1 ≥ ∑N
k=r+1(lk/bk−1) and 1 <

∑N
k=r(lk/bk−1). Hence

r = min{n|
N∑

k=n+1

lk
bk−1

≤ 1}. (3.6)
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On the other hand, from (3.3) and the definition of r, for each n = 1, . . . , r−1,
γn = max{Xn, Vn+1} = Vn+1, which implies that

V1 = V2 = · · · = Vr. (3.7)

Now by (3.1), (3.5), (3.7) and Theorem 2.1, we have

P{ZS = 1} = E(XS) = E(γ1) = V1 = Vr =
br−1

M

N∑
k=r

lk
bk−1

. (3.8)

This establishes the following theorem.

Theorem 3.1. Let r be defined as in (3.6). Then the strategy which maximizes
the probability of selecting the best applicant is as follows: the manager should
reject the applicants in the first r − 1 groups and accept the best one in the next
group which contains the one who is preferable to all his/her predecessors. Under
this strategy, the probability of selecting the best applicant is

br−1

M

N∑
k=r

lk
bk−1

.

As pointed out by a referee, this theorem can also be derived elegantly from
the generating function approach of Bruss (1984a). The original version of our
paper was completed in January, 1998. The main result, Theorem 3.1, was later
generalized by Bruss (1998) in the following elegant form.

Theorem (Bruss (1998)). Let I1, . . . , IN be a sequence of independent indicator
functions with pj = E(Ij). Let qj = 1− pj and rj = pj/qj . Then an optimal rule
τN for stopping on the last success exists and stops on the first index (if any) k

with Ik = 1 and k ≥ s, where

s = sup{1, sup{1 ≤ k ≤ N :
N∑

j=k

rj ≥ 1}}.

The optimal reward is given by V (N) =
∏N

j=s qj
∑N

j=s rj.

While Bruss’s result includes Theorem 3.1 as a special case, it can be proved
by observing that Theorem 3.1 is essentially equivalent to Bruss’s result with the
pj’s rational. The general case can then be approximated by the rational case.

4. Examples and Approximations

In this section, we apply the previous result to three examples. Incidentally,
we find that br/bN and P{ZS = 1} have the same asymptotic behavior under
some weak conditions.
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Example 1. If lk = l for each k = 1, . . . , N , then bk =
∑k

i=1 li = kl and
r = min{n|∑N

k=n+1(k − 1)−1 ≤ 1}, as in the standard secretary problem.

Example 2. If lk = k, 1 ≤ k ≤ N , then bk =
∑k

i=1 li = k(k + 1)/2 and

r = min{n|
N∑

k=n+1

1
k − 1

≤ 1
2
}.

Under the optimal strategy, the probability of selecting the best one is

P{ZS = 1} =
2r(r − 1)
N(N + 1)

N∑
k=r

1
k − 1

.

When N is large, we get r ≈ N/
√

e, br/bN ≈ 1/e and P{ZS = 1} ≈ 1/e, as in
the standard one.

(As a referee pointed out, this stability of the 1/e answer in solutions of
various versions of the secretary problem was already observed in the case of an
unknown number of candidates (Bruss (1984b)) as well as in several examples of
Samuel-Cahn (1995) for the model of hiring freeze.) In fact, for our problem we
have the following result which can explain the asymptotic behaviors of br/bN

and P{ZS = 1} in the above two examples.

Theorem 4.1. Let r be defined as in (3.6). Then

br/bN ≥ P{ZS = 1} ≥ 1/e. (4.1)

Moreover, setting l = maxr≤i≤N li, then if l/bN < 1/2e, we have

0 ≤ P{ZS = 1} − 1
e
≤ br

bN
− 1

e
≤ (

2e − 1
e

)(
l

bN
). (4.2)

Proof. By (3.6), 1 ≥ ∑N
k=r+1(lk/bk−1). Hence

ln
bN

br
=

∫ bN

br

1
x

dx ≤
N∑

k=r+1

lk
bk−1

≤ 1,

which implies that br/bN ≥ 1/e. Next we prove that P{ZS = 1} ≤ br/bN . By
(3.8) and (3.6) it follows that

P{ZS = 1} =
br−1

M

N∑
k=r

lk
bk−1

=
br−1

bN
(

lr
br−1

+
N∑

k=r+1

lk
bk−1

)

=
br

bN
+

br−1

bN

N∑
k=r+1

lk
bk−1

≤ lr
bN

+
br−1

bN
(1) =

br

bN
.
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To complete the proof of (4.1), it remains to show P{ZS = 1} ≥ 1/e. This
is a simple consequence of the fact that P{ZS = 1} is at least as large as the
probability of selecting the best one among l1+· · ·+lN applicants for the standard
secretary problem and the well-known fact that, under the standard version, the
(optimal) probability of selecting the best one decreases to 1/e as the number of
applicants increases to infinity.

Furthermore, when l/bN < 1/2e, since br/bN ≥ 1/e, we have br−1 − l =
(br−lr)−l ≥ bN/e−2l > 0. It follows that 0 < bn−l ≤ bn−1 for all n = r, . . . ,N .
Then we have 1 <

∑N
k=r(lk/bk−1) ≤ ∑N

k=r[lk/(bk − l)] ≤ ∫ bN
br−1

(x − l)−1dx, and
consequently 1 ≤ ln[(bN − l)/(br−1 − l)], i.e., bN ≥ e(br−1 − l) + l. It follows that

br

bN
− 1

e
=

ebr − bN

ebN
≤ ebr − e(br−1 − l) − l

ebN

≤ elr + el − l

ebN
≤ (2e − 1)

e
(

l

bN
).
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