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Abstract: Two rank tests for independence of bivariate random variables against
an alternative model with weighted contamination are proposed. The model may
emphasize the association of X and Y on items with high ranks in one variable
(say X) and generalizes an alternative in Héjek and Sidék (1967). The model may
be applied to both complete paired data and paired data which is truncated in one
variable. We derive the locally most powerful rank (LMPR) test under the alter-
native setting. The proposed tests turn out to be asymptotic LMPR, tests under
Logistic and Extreme Value families. Under the null hypothesis of independence,
both rank statistics have limiting normal distributions. An application to a data
set from a special education program in Taiwan and a simulation study are pre-
sented. We also apply the Shapiro-Francia test to find the minimum sample sizes
for approximate normality of exact distributions of the proposed test statistics.
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man’s Rho.

1. Introduction

Let {(X;,Y:), 1 < i < n} be an independently and identically distributed
(i.i.d.) sample from a bivariate population (X,Y’). We introduce two rank statis-
tics for testing independence of X and Y against an alternative with weighted
contamination as follows:

X=X+ wX)AZ and Y; =Y+ AZ;, 1<i<n, (1)

where X/, Y;* and Z; are mutually independent random variables (r.v.’s); A a
constant and w(z) monotone in x. Under (1) it is clear that if A =0, X and Y
are independent, and the larger A is, the more dependent are X and Y. Thus
the constant A may be regarded as a dependence or mixing coefficient. For more
details, see Section 2.1.

Measures of linear association were discussed and studied around 1900 (Gal-
ton (1877), Pearson (1896), Spearman (1904) and Kendall (1938)). In the last
two decades, measures of weighted correlation have been extensively discussed
in Salama and Quade (1982), Iman and Conover (1987), and others. For details,
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see the thorough review paper by Quade and Salama (1992). Motivated by ap-
plications in sensitivity analysis, Iman and Conover (1987) proposed a measure,
the Pearson correlation coefficient computed on Savage scores (Savage (1956)).
This measure reflects well the importance of agreement on the top ranks.

The alternative in (1) may stress the association of X and Y on items with
top ranks in one variable (say X) and generalizes the alternative to indepen-
dence in Hajek and Siddk (1967) by introducing a weight function w(-). The
proposed alternative model allows our rank tests to be applied to both complete
and truncated data.

Examples of the proposed model in (1) are frequently encountered in real
life. Besides complete data sets, the new model may be adopted in the following
situations. For saving costs and/or time, one may exclude many subjects or
items with bottom ranks on one feature in a screening procedure, and then
focus on examining those which passed the screening. For example, a recruiting
committee may screen the applicants by their resumes first and interview only a
few candidates. In this case, one r.v. involved (say X) could be the applicants’
qualifications shown in the resume and the other r.v. (say Y) is the applicants’
qualifications evaluated from an interview. Another example occurs in education
of the gifted. In an identification procedure of the gifted in natural sciences,
suppose that students will take both Mathematics and Physics aptitude tests.
A common belief is that the test scores are positively correlated. Therefore, to
save costs, one may test the students on one subject, say Mathematics, first and
then further test the top-ranked (say the top 10%) in Physics. Here X is the ith
student’s Mathematics aptitude score and Y; the Physics aptitude score. Note
that all values of X;’s are observed but we observe only the values of Y whose
corresponding values of X are top-ranked.

In the above cases, the procedures are fair provided the random variables
are positively correlated or dependent. Thus testing the independence of X and
Y against the alternative in (1) is an important issue. The rank tests are good
tools for this testing problem and this is confirmed by our results and a simulation
study.

In Section 2, we first derive a general form of the locally most powerful rank
(LMPR) test under (1). We then show that the two proposed tests are asymptotic
LMPR tests under Logistic and Extreme Value families. Further, their limiting
distributions under the null hypothesis are derived. In Section 3, an application
to a data set from a special education program in Taiwan is presented. Section
4 includes a power comparison of the new tests to those studied in Iman and
Conover (1987) and Shieh (1998). Powers of the tests are summarized in Tables
1-4. The minimum sample sizes for approximate normality of exact distributions
of both tests are also studied. We conclude with some remarks in Section 5.
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Some critical values of the tests can be obtained from the corresponding author
upon request.

2. New Rank Tests

Recall that (X;,Y;), 1 < ¢ < n, are ii.d. bivariate r.v.’s. Let (i, R;),i =
1,...,n, be paired rankings, where R; is the rank of Y whose corresponding X has
rank ¢ among {X;}. We assume that there are no ties among the variables being
ranked. Iman and Conover (1987) propose the top-down correlation coefficient

rr = (Y SiSr, —n)/(n = S), (2)

i=1

where the S; are Savage scores defined as
S; = Z 1/j. (3)
j=i

The correlation coefficient rp reflects the association of top ranks well, and is the
LMPR test statistic under the alternative to independence on page 75 of Hajek
and Siddk (1967) when both X and Y have extreme value distributions. How-
ever, rp is well defined only when the samples are fully observed. As mentioned
earlier, in many cases the data involved are truncated. In addition, a weighting
structure is needed when one wants to emphasize certain part(s) of the ranks,
say those in the middle. To include various types of weights and to address
the weighting structure issue in the alternative, we propose the following rank
statistics: weighted Spearman’s Rho (T5) and weighted top-down statistic (7%).

With objectively or subjectively chosen weights w; that depend solely on 4,
a weighted Spearman’s Rho is defined by

n

T, = Z wi(i — (n+1)/2)(R; — (n +1)/2) (4)

=1

and a weighted top-down statistic is
n
T = wi(Sn—it1 — 1)(Sn—p+1 — 1).
i=1

For instance, we can take w; = Ijj<,,, where m = [(n+ 1)p] and 0 < p < 1 is
roughly the percentage of the observed items (subjects). In general, we choose p
to have small loss in significance level (P-value) and to save computation. This
is illustrated further in the gifted students example of Section 4.

With equal weights w; = 1/(n — S1), T; reduces to rp. Note that rp empha-
sizes agreement of the top ranks by substituting Savage scores for ranks into the
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Pearson correlation coefficient, while T; puts additional weights on top-ranked
ones.

Remark 1. With equal weights 12/[n(n? — 1)], Ty reduces to the Spearman’s
Rho. Thus for convenience, one should not assume that the weights sum up to
one. Instead of (4), we can write T as > {w;[i — (n+1)/2] —cp }[Ri — (n+1)/2],
where ¢, = >, wi[i — (n+1)/2]/(32; w;), which is a centered version. Likewise,
a centered version of T; can be defined.

Remark 2. The dependence of w; on i, and hence on {X;}, implies that the
truncation depends on the ranks of {X;}. Thus in practice we let X be the
variable that can be, or is, easily truncated.

We note that the weights in T; and T; can be adjusted easily to test for
both top-down and bottom-up correlation alternatives. Recall that the top-down
correlation emphasizes the agreement in the top ranks, whereas the bottom-up
correlation stresses the agreement in the bottom ranks.

2.1. LMPR tests

In the following, we first derive a general form of the LMPR test under the
weighted contamination alternative in (1). Further, we show that T and T} are
the asymptotic LMPR tests with respect to Logistic and Extreme Value families,
respectively. Recall (1). Usually, the weight function w(z) is increasing in =,
and in many cases it is also differentiable. However these are not essential in our
limit theorems. The alternative hypothesis of a weighted contamination can be
detected by either T or T;. The weighted rank tests are especially useful when
the marginal distributions of the variables being ranked are skewed to the right.

Let X* and Y* have densities f(z) and g(y), respectively, while the dis-
tribution of Z; is arbitrary. For ease of statement, in the sequel we assume
that w(z) is increasing and differentiable. Thus for given x and Az, the equa-
tion z = z* + w(z*)Az has a unique solution for z*, denoted z* = s(z,Az).
Then the i.i.d. sample (X;,Y;), i = 1,...,n, has a density given by ga =
ITinq ha(xi, yi), —o0 < A < 0o, where

[ flagly - Az)
ha(z,y) = /_OO 1+ w'(s(z,Az))Az

dM(2),
and M (z) is a distribution of Z with mean . and finite variance o2.

Let X(; and Y{; be the ith order statistics of {X;} and {Y;}, respectively.
Further, let an(i,w, f) = E{-[(wf)'/f](X)} and bu(i,g) = E{-[g'/gl(Y(»))}
denote the score functions corresponding to the density f and weight function

w, and to density g, respectively. The following theorem states the general form
of the LMPR test.
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Theorem 1. Assume that [*° |(wf) (z)|dx < oo, [75,|¢'(z)]|dx < oo, and that
(wf)(x) and ¢'(x) are continuous almost everywhere. Then the test with critical
region Y i1 an(i,w, f)bn(Ri,g) > k is the LMPR test for Hy : A = 0 against
Hi:A>0.

The proof is given in Appendix 1.

Remark 3. When w(z) is not continuously differentiable (or even continuous)
but w(z)f(x) is of bounded variation, if we define the score function a, (i, w, f)
as

an (i, w, f) =

n! ; ;
m/F’_l(ﬂf)(l — F(z))"d(w(z)f(z)),  (5)

then Theorem 1 remains valid.
For w(z) = I (F(x)) = I(—sog,)(x), where & = F~1(p), we have from (5)
that

an(ia w, f)
n!

€P . . . .
O V_OO F™H2)(1 = F(2))" ™ f'(2)dz — p' (1 = p)" 7' f (&)

#gn—mpi_l“ —0)" (),

where Uy; is the ith ordered sample from U0,1] and ¢(u, f) = (f'/f)(F~!(u)).
Then in the LMPR test statistic the factor a,(i,w, f) can be approximated by

= E[I[Uu) < pl- (U, )] -

an(isw, f) = Ijijmyny<pe(i/(n + 1), f).

The reason is the following: for |np —i| > ¢y/n with a large constant e,
Elly,<pn®eUa, )] # Ljijm+1)<pe(i/(n+ 1), f), and there are only [2¢\/n] neg-
ligible terms satisfying |np — i| < ¢y/n.

Corollary 1. If F' and G are from the Logistic family, then the test Ts with
w; = ljj<m), m = [(n + 1)p] and critical region Ts > k, where k is a constant, is
the asymptotic LMPR test for Hy : A =0 versus Hy : A >0 at (1).

Proof. By (13) in page 67 of Hajek and Sidak (1967), b, (i, f) = @(i/(n + 1), f)
is the approximate scores corresponding to f, and when f is logistic, ¢(i, f) =
2i — 1. Thus ¢(i/(n+1),f) =2 2i/(n+1) =1 < i — (n+ 1)/2 and by (5),
an(i,w, f) = Ijijins1)<pP(i/(n + 1), f). Tt follows that the asymptotic LMPR
test statistic is proportional to > i, w;[i — (n +1)/2][R; — (n + 1)/2].

Similarly, for the Extreme Value family with p.d.f. f(z) = exp{x —e "}, we
have (i, f) = —In(1—1i)—1. Taking ¢(i/n, f) as approximate scores correspond-
ing to f and by In(i/n) = —S;11, we obtain ¢(i/n, f) = —In((n —i)/n) — 1 =
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Sn—iv1 — 1. Again by (5), we have a,(i,w, f) = Ij1/(m+1)<p](Sn—it1 — 1). This
and the fact that b,(R;,g) = Sp—r,+1 — 1 imply Corollary 2.

Corollary 2. If F(x) and G(z) are from the Extreme Value family, then the
test Ty with w; = Ijj<yy), m = [(n + 1)p] and critical region T; > k, where k is a
constant, is the asymptotic LMPR test for Hy : A = 0 versus Hy : A >0 at (1).

2.2. Null limit distributions

In this section, the asymptotic distributions of Ts and T; are derived under
Hy, the hypothesis of independence. Let I(f) denote Fisher information, I(f) =

J25 [F' @)/ f(@)]f (@) da.

Theorem 2. Assume that Hy holds, I(f)<oo and I(g) <oo. Then /T/{n(n?—
Dp[3(1 — p)® +p?]/12}/* —pN(0,1).

The proof is given in Appendix 2. When p = 1, T reduces to the usual
Spearman’s Rho 75 and Var(v/T) equals [n(n? —1)]/12.

Theorem 3. Assume Hy holds, I(f) < oo and I(g) < co. Then Ty/(nc,)/?
—pN(0,1), where ¢, = p — (1 —p)(2 - p)In*(1 - p).

The proof is given in Appendix 3. When p = 1, after some normalization T}
reduces to r7 as in Iman and Conover (1987), and ¢, = 1 implies that Var(7}) =
n(l+ o(1)) which agrees with the fact that Var(rp) =n — Sj.

3. Simulation Results

In this section, the results of a power comparison and the minimum n re-
quired for approximate normality of exact distributions of the new tests are
presented.

3.1. Power comparison

We first compare the powers of the new tests with those of the top-down
statistic 77 in (2) (Iman and Conover (1987)) and the weighted Kendall’s Tau in
Shieh (1998) for finite sample sizes. A weighted Kendall’s Tau is defined as

1

Tw S o, ;wlesgn(z J)sgn(R; — R;j),
where w; = Ij;<p,) and m = [(n + 1)p].

The alternative used is at (1). Four choices of p were studied, namely p = 0.1,
0.2, 0.3 and 0.5. Let p denote the correlation between X; and Y;. The relationship
of p versus A is: p = pA202/[(02 + pA?o2) (o] + A262)]'/2. The choices of p
include p = 0.0 (which gives the null hypothesis), p = 0.1(0.1 or 0.2)pmas, Where
Pmaz 18 /p rounded to the first decimal place.
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Table 1. Powers of weighted Spearman’s Rho, Kendall’s Tau and top-down
statistic with p = 0.1.

N(0,1) Logistic(0, —1) Extreme value dist.®
Tw Tw Tw rT Tw Tw Tw rT Tw Tw Tw rT

n+1m
10 1

.055  — .063 .057| .061 — .069 .065| .052 — .056 .063
.08 ~— .110 .075| .082 — .106 .076| .079 — .100 .079
1000 — 143 .083| .103 ~— .145 .079| .100 — .146 .081

S

20 2 .070 .079 .112 .104| .080 .076 .128 .097| .053 .073 .066 .092
147 .089 .304 .108| .136 .086 .286 .115| .144 .085 .277 .117

.260 .098 492 .131| .219 .096 .489 .121| .264 .095 .501 .128

W b =

30 3 .087 .144 .123 .109| .084 .142 .135 .104| .072 .133 .076 .099
220 205 .401 .154| .236 .204 .384 .144| .209 .193 .344 .142

435 271 653 .158| 454 .269 .662 .170| .449 .264 .650 .177

W b =

50 5 135 .378  .167 .142| 123 373 .202 .134| .080 .329 .080 .126
426 .699 .595 .221| 387 .676 .569 .199| .333 .618 .493 .198

745 955 867 .256| .724 946 .849 .254| .759 .933 .845 .266

W N =

100 10 233 .857 .284 .227| 227 .754 .323 .203| .117 .670 .093 .182
756 .989 .869 .340| .675 .980 .836 .346| .587 .961 .750 .338

1982 1.000 .993 .424| .980 1.000 .991 .430| .989 .999 .986 .454

W b =

200 20 422 987 466 .383| .349 .966 .508 .345| .183 .931 .137 .295
1969 1.000 .990 .583| .936 1.000 .983 .543| .872 .999 .947 .537

1.000 1.000 1.000 .704|1.000 1.000 1.000 .702|1.000 1.000 1.000 .730

W b =

400 40 .1| .664 1.000 .731 .574| .592 1.000 .744 .525| .253 .999 .194 .452
1.000 1.000 1.000 .860| .999 1.000 1.000 .825| .989 1.000 .997 .813
1.000 1.000 1.000 .954|1.000 1.000 1.000 .943|1.000 1.000 1.000 .956

W o

¢ pdd. f(z) ~exp{z —exp{z}}.

The powers of T, 7, and T; under the alternative, with X;,Y; and Z; ~
N(0,1), X;,Y; and Z; ~ Logistic(0,—1), and X;,Y; and Z; ~ the Extreme Value
distribution with p.d.f. f(z) ~ exp{xr — e*}, are summarized in Tables 1-4,
respectively. In each simulation, the number of replications used was 5,000
which yields a standard error of about .0071. The sample sizes studied are
9, 19, 29, 49, 99, 199 and 399. The 95% confidence interval for a power is
(power — 1.96 x 0.0071, power + 1.96 x 0.0071). We note that for fixed n and p, as
p increases the power of rp increases, although 7 does not depend on p. (Since a
larger value of p leads to a larger “top-down” correlation of X and Y, it leads to
a significantly larger rp value.) For instance, for n + 1 = 10, p = 0.3, the power
of rp in Table 2 (p = 0.2) is significantly larger than that in Table 1 (p = 0.1).
The test statistics are discrete and we have randomized so that empirical powers
of the tests with p = 0 under H; are equal to 0.05. For instance, for tests with
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n+ 1= 10 and p = 0.1, the largest and second largest values of T} equal to 16
and 12 with empirical probabilities (say) p; and py respectively, and we added
the empirical power of Ty = 12 with weight (0.05 — p1)/p2 to that of T; = 16 to
obtain 0.05.

Table 2. Powers of weighted Spearman’s Rho, Kendall’s Tau and top-down
statistic with p = 0.2.

N(0,1) Logistic(0, —1) Extreme value dist.
Tw Tw Tw rT Tw Tw Tw rT Tw Tw Tw rT

n+1m
10 2

.060 .067 .064 .079| .064 .069 .074 .080| .050 .067 .055 .072
112 .077 164 .099| .134 .079 .183 .113| .085 .077 .129 .107
174 .086 292 .130| .173 .086 .286 .123| .159 .084 .275 .122
265 .092 445 .162| .258 .094 .419 .150| .263 .094 .444 .155

NSRS ORI S

20 4 102 .169 .084 .109| .095 .157 .097 .103| .074 .136 .055 .094
218 .291 252 .166| .212 .269 .266 .161| .150 .243 .165 .153
411 441 499 .228| 387 423 486 .218| .344 .375 437 .216

.615 .678 .719 .258| .605 .653 .709 .245| .631 .613 .731 .255

S b =

30 6 124262 .093 .136| .120 .267 .112 .143| .090 .226 .067 .126
295 498 347 .209| .281 491 .351 .206| .209 427 .218 .191
564 729 .653 .277| 522 720 .621 .275| 484 .658 .569 .273

836 941 .895 .348| .813 .926 .874 .346| .831 .900 .879 .363

oo b =

50 10 150 472 116 .180| .162 .431 .166 .169| .101 .367 .074 .151
429 .824 490 .312| 436 .827 .511 .303| .297 .763 .304 .279
790 971 .853 .429| .730 .950 .822 .389| .671 .913 .756 .380

974 1.000 .988 .536| .959 .998 .982 .508| .973 .996 .980 .528

L b =

100 20 256 .764 188 .300| .263 .717 .256 .274| .148 .625 .096 .228
.695 989 .746 .517| .680 .979 .747 .476| 475 .948 451 439
969 1.000 985 .678] .960 .999 .983 .638| .929 .998 .956 .630

1.000 1.000 1.000 .822| .999 1.000 .999 .809|1.000 1.000 1.000 .828

N

200 40 383 973 287 .443| 420 954 393 .432| .224 .920 .126 .372
942999 955 .794| .926 1.000 .954 .754| .747 .999 .715 .689
1.000 1.000 1.000 .921| .999 1.000 1.000 .910| .997 1.000 .999 .901

1.000 1.000 1.000 .978|1.000 1.000 1.000 .978{1.000 1.000 1.000 .984

B b =

400 80 665 .999 499 .710| .670 .999 .621 .658| .360 .994 .193 .564
997 1.000 .999 .964| .997 1.000 .998 .946| .952 1.000 .933 .916
1.000 1.000 1.000 .997|1.000 1.000 1.000 .996(1.000 1.000 1.000 .995

1.000 1.000 1.000 1.000{1.000 1.000 1.000 1.000|1.000 1.000 1.000 1.000

N

From Tables 1-4, we find that for values of samples sizes and p studied, all
three rank tests, T, 7, and T}, are much more powerful than rp. When m < 4,
T; has slightly more power than T and 7,,, whereas for m > 5, T and 7, perform
better than 77 in most cases. Although 7, is not the LMPR test with respect
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to either the Logistic or the Extreme Value distribution, it does perform rather
well. It would be interesting to investigate under what distribution 7, or 7, (the
projection of 7, onto the linear rank statistics) is the LMPR test.

Table 3. Powers of weighted Spearman’s Rho, Kendall’s Tau and top-down
statistic with p = 0.3

N(0,1) Logistic(0, —1) Extreme value dist.
Tw Tw Tw rT Tw Tw Tw rT Tw Tw Tw rT

n+1 m

10 3 .087 .086 .074 .087| .088 .084 .083 .083| .072 .081 .064 .077
271 152 282 158 .264 .145 .290 .149| .233 .138 .246 .144

045 235 591 .223| 522 .230 .601 .233| .548 .224 .617 .242

[ BRJCRE ST st

20 6 1220 180 093 .123| 126 .193 .118 .114| .096 .173 .069 .102
463 548 483 .270| .450 .514 489 .251| .382 457 .399 .238

.880 .939 .908 .423| .883 .918 .898 .418| .902 .894 .902 .438

S

30 9 146 271 105 .146| 169 .271 137 .157| .116 .236 .076 .140
613 794 639 .344| .594 .754 .627 .348| 497 .682 .508 .331

978 .997 986 .562| .964 .994 .972 .555| 976 .988 .974 .580

oo =

50 15 210 449 143 .208| .212 409 .182 .201| .146 .351 .091 .172
.808 .970 .821 .539| .800 .946 .827 .522| .697 .912 .697 .499

1999 1.000 .999 .800| .998 1.000 .999 .757| .999 1.000 .999 .784

oo =

100 30 .1| .288 .722 .189 .306| .336 .689 .260 .312| .211 .596 .119 .262
3| 974 1.000 976 .781| .967 .999 976 .764| 915 .995 .913 .732
5(1.000 1.000 1.000 .972{1.000 1.000 1.000 .969|1.000 1.000 1.000 .977

200 60 .1| .478 .950 .313 .494| .532 .949 415 .463| .338 .869 .180 .410
310999 1.000 .999 .961| .999 1.000 1.000 .954| .995 1.000 .990 .944
5/1.000 1.000 1.000 .999(1.000 1.000 1.000 .999|1.000 1.000 1.000 .999

400 120

—_

738 998 496 .716| .790 .998 .637 .695| .532 .991 .285 .590
1.000 1.000 1.000 1.000{1.000 1.000 1.000 .999|1.000 1.000 1.000 .999
1.000 1.000 1.000 1.000{1.000 1.000 1.000 1.000|1.000 1.000 1.000 1.000

w

S

3.2. Minimum n for approximate normality of T; and T;

Both T, and T} are discrete statistics. When n is small we do not know
their exact distributions. Thus it would be useful to study the minimum n that
ensures good normal approximations of the exact distributions of T and T;. The
Shapiro-Francia W’ test (Shapiro and Francia (1972)) is employed for testing
departure from normality. The test assumes the form:

W' = (Ei\il biy(i))2
S (v — )2
where b’ = (by,...,by) = m'/(m'm)*/? and m is the vector of expected values

of standard normal order statistics. We employ W’ to obtain the minimum



586 GRACE S. SHIEH, ZHIDONG BAI AND WEI-YANN TSAI

value of n required for good normal approximations of the exact distributions
of the weighted rank statistics. With N = 100 (100 points of Ts and T}), and
p=0.1,0.2,0.3 and 0.5, we find that n = 19,9,6 and 6 are required for T, and
121,18,9 and 6 are required for T;.

Table 4. Powers of weighted Spearman’s Rho, Kendall’s Tau and top-down
statistic with p = 0.5.

N(0,1) Logistic(0, —1) Extreme value dist.
n+l m pl re Tw Tw 17 | Tw Tw Tw T | Tw Tw Tw Tr

10 5 123 109 133 .092| .169 .103 .149 .091| .155 .098 .133 .084
366 255 371 .196| .390 .240 .397 .194| 370 .212 .369 .188
.661 478 .680 .333| .649 .467 .681 .330| .632 .418 .649 .331

948 970 .954 .551| 963 .967 .955 .538| .964 .959 .950 .545

Nonw =

20 10 183 156 145 .116| .188 .195 .173 .117| .156 .175 .139 .103
576 519 537 .309| .589 .552 .566 .292| 517 481 .484 .277
912 .898 .899 .547| 911 .879 .896 .536| .893 .831 .866 .539

1.000 1.000 .999 .784| .999 1.000 1.000 .785| .999 1.000 .998 .816

No e =

30 15 207 246 168 .148| .244 227 .209 .138| .200 .199 .152 .128
739 783 .689 .427| 728 727 .693 .422| .654 .652 .605 .399
983 986 974 .717| 974 978 968 .692| .962 957 .945 .694

1.000 1.000 1.000 .930(1.000 1.000 1.000 .939(1.000 1.000 1.000 .957

Nonw =

50 25 286 .347 227 183 318 .356 .253 .187| .250 .307 .188 .159
897 934 .838 .592| .891 .923 .847 .572| .820 .868 .744 .541
999 1.000 .999 .891| .997 .999 .997 .864| .995 .997 .988 .860

1.000 1.000 1.000 .993{1.000 1.000 1.000 .994|1.000 1.000 1.000 .998

Notw =

100 50 475 .600 317 .284| .500 .589 .350 .284| .390 .507 .247 .244
993 999 974 .850| .993 .999 .982 .831| 975 .995 .933 .805
1.000 1.000 1.000 .993|1.000 1.000 1.000 .989(1.000 1.000 1.000 .980

1.000 1.000 1.000 1.000{1.000 1.000 1.000 1.000{1.000 1.000 1.000 1.000

Non L =

200 100 676 .842 .465 .450| .745 .864 .561 .443| .601 .789 .393 .377
1.000 1.000 .998 .983(1.000 1.000 .999 .981| .999 1.000 .995 .970
1.000 1.000 1.000 1.000{1.000 1.000 1.000 1.000{1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 |1.000 1.000 1.000 1.000{1.000 1.000 1.000 1.000

N e

400 200 905 985 .692 .685| .938 .985 .796 .684| .839 .961 .605 .585
1.000 1.000 1.000 1.000 |1.000 1.000 1.000 1.000{1.000 1.000 1.000 .999
1.000 1.000 1.000 1.000 |1.000 1.000 1.000 1.000{1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000{1.000 1.000 1.000 1.000{1.000 1.000 1.000 1.000

Non s =

4. Application

In the following, we apply the rank tests to a data set from the identification
of junior high gifted students (Kuo (1995)). The data shown in Figure 1 are from
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111 7th grade students at Ho-Ping and Min-Sen Junior High Schools in Taipei,

Taiwan in 1992.

120

n-(Rank of Physics Aptitude scores)+1
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120

n-(Rank of Mathematics Aptitude scores)+1

Figure 1. Mathematics scores versus Physics scores.

The paired ranks of Mathematics and Physics aptitude test scores are plotted
against each other. According to Kuo (1995), the identification of the gifted is
based on the results of multiple instruments, and what instruments to use is an

important issue. Are Mathematics and Physics aptitude test scores correlated

in the top ranks? Significant values of Ts and T; imply that an aptitude test on

one subject (say Mathematics) can be used as a screening instrument at the first

stage, and then only those top-ranked in Mathematics take the Physics aptitude
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test at the next stage. The gifted may be chosen from those top-ranked in both
(or a combination of ) Mathematics and Physics tests, when non-significant values
of Ts and T} imply that both tests are needed for all students.

For p = 0.1,0.2,0.3 and 0.5, the values of Ty equal 15,997, 21,915, 21,220
and 22,518, respectively, and all of their P-values are less than 0.001. We can
estimate the P-values by Py,(Z > ts/s.d.), where Z is a N(0,1) r.v., 5 is the
value of Ty and s.d. is the asymptotic standard deviation of Ty (which can be
obtained from Theorem 2). The estimated P-values are .0008, < .0002, .0004 and
< .0002. To have small loss in the P-value and to save computation, we choose
p = 0.2 for Ts. Similarly, for all four values of p, the values of T; are 6.674, 9.375,
10.488 and 10.016, respectively. The estimated P-values are .012,.006,.005 and
.006 respectively. This suggests the choice of p = 0.2. Both Ty and T; reject Hy
at o = 0.05 in this example. We conclude that the Physics aptitude test can
be skipped by all students except those top-ranked in the Mathematics aptitude
test.

5. Conclusion

The proposed rank tests are good for testing independence against a weighted
contamination alternative. The general form of the LMPR test under the
weighted contaminated alternative is derived. We show that the tests are asymp-
totic LMPR tests with respect to the Logistic and the Extreme Value families,
respectively. The two statistics Ts and T; generalize, respectively, Spearman’s
Rho and 77 in Iman and Conover (1987). Despite the fact that 7, is not the
LMPR test for either the Logistic or the Extreme Value family, it performs com-
parably to Ts and T; in the simulation study. Thus Pitman and/or Bahadur
asymptotic relative efficiencies (Pitman (1949) and Bahadur (1960)) of T,
and T; to rp are of interest, but are deferred to a future study. Weighted concor-
dance among b sets of rankings, b > 2, are often encountered in the real world, for
instance when three or more techniques need to be compared in sensitivity anal-
ysis. Besides the top-down concordance measure studied by Iman and Conover
(1987), other adequate measures require investigation. We leave these questions
open.
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Appendix
Proof of Theorem 1.
Recall that under Hy, we have

where X, Y;* and Z; are mutually independent, the densities of X* and Y™
are known and denoted by f and g, respectively, and the distribution of Z; is
not specified. Here, we present a brief outline of the proof for the case x =
x* + w(x*)Az is monotone in x* and w is continuously differentiable. Let z* =
s(z, Az) be a solution of z = x* + w(z*)Az. The Jacobian is

17| = ‘3771/2) = (1+ Azw/(z%))" L.

5

Thus the joint p.d.f. of X and Y and their marginal distributions are given as

ha(z,y) :/f (s(z, A2))g(y — Az)[1 + Azw'(s(z, A2))]1dM(2),
fa@) = [ [ ha@ypdydni@)= [ flst A+ e/ (s(a, 52))] M (2),
9a(y) = /g(y — Az)dM(z).
By symmetrization, we have
Salha(e.y) — fale)ga ()
2A2{//[ s(z, A2))[1 + Azw'(s(z, A2))] 7' — f(s(z,AZ))
1+ A5/ (s(a, A2)) | lofy — A2) = gly — ALAM (M () }
=5 [ = P+ B AN |50, A (s ) +
f(s(z, AQ)[L + Azw'(s(z, A)] ™ ' (s(, Af))} 9y - A”?)dM(Z)dM(Z')}a
where both £ and 7 fall in the interval (2, z). Thus
lim —5[ha(e,y) — fa(@)ga(y)] = o2 (wf) (2)g' (y)

A0 A2

at each point (z,y) such that x and y are continuity points of (wf)’(-) and ¢'(-),
respectively. Similar to page 77 of Héjek and Siddk (1967), we have that

Jim é [(n)?’Qa(Rx =r,Ry =R) — 1]
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~ Jim (n) z ) NI (NESARFACATNTANES

k—1

H fa(@galz:) ] hA(xj,yj)]dl’l e drpdyy - - dyp
i=k+1 Jj=1
= o kzi:l[n'/ /x_r< (xg) f(xk) /fa:k)lf[ (x;)dzy - - xn}
[n'/ / ( yk/gyk)]—[gyzdyl dy]
= o2 i an (g, w, f)bn (R, g) (A.1.1)
k=1

,D:]:Ug Z an(k, w, f)bn(Rkag)a
k=1

where denotes equality in distribution. Further, the limit under the integral

sign can be justified by the Dominated Convergence Theorem.
The following is a further justification of (A.1.1).

n!/.../Rx:r((wf)//f)(:ck)izl_[lf(xi)dxl___dx

n!/. : ./([(wf)//f](fck) I[R(xi)Zm,i;ék]I[R(g;k):rk]) izl_[lf(xi)dxl o da,

= B (1 910 3 Do) = B0 /7)) ).

j=1

Proof of Theorem 2.

n

Var (Tg) = Var <Z[w,(z _nt 1)(Ri _nE 1)])

i=1

+[ Z (i — n—;l)(j— n+1)} Cov (R1, R2) (A.2.1)

Now w; = Ijj<,) and m = [(n + 1)p]. Further, we have

B(Ry) = (=

) , Var(Ry) =(n”—1)/12 ,



RANK TESTS FOR INDEPENDENCE 591

E(RiRs) = [(n + 1)(3n +2)]/12 and Cov(Rl,Rg):—nl—gl.

Plugging these into (A.2.1), after some algebra we have
Var (T,) = [(n + 1)m(3n — 9mn? + 10m*n — 3m> — n)]/144.
Thus
Var (v/nTs/[n(n? — 1)/12]) —p[3(1 — p)® + p?] as n —oc.

Assuming that I(f) < oo, I(g) < 0o, and applying Theorem V.1.6a in Hajek and
Sidék (1967) to T, we obtain Theorem 2.

Proof of Theorem 3.

With ¢, = wi(Sp—it1 — 1) and an(R;) = Sp—pg,+1 — 1, we can write T} =
Yoy cinan(R;). Since under Hy, {i} and {R;} are independent, we may treat
T, = it cinan(R;) as a linear rank statistic. Although c¢;, here depends on
n and the ¢; in Theorem V.1.6 of Hijek and Siddk (1967) does not, one can
similarly prove that

Ti/or — N(0,1),
where 0% = Var (T}).

Next, we proceed to compute the variance of T;. Let ¢ =n — m + 1. Under

H07

Var (T}) = E(T?) = zn:w?(sn—i—i-l —1)2E[(Sr, —1)°]
i=1

+ > wiwj(Sn—i+1 = 1)(Sn—j+1 = DE[(Sr, — 1)(Sk, — 1)]

i
= 3205, — DH{E(Sk, — 1) El(Sk, — )(Sk, ~ ]}
3208~ D El(Sh, ~ 1)(Sk, — )

By straightforward calculation,

Note that

S; ~ In(n/i), > S =mn, > SE=2n-5, (A.3.1)
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1 n
El(Sw, ~ 1 = - > 8~ 1=1-Si/n
i=1

and
E[(SRl—l)(SRz—l)]Z{[Z(Si—l)]Z—Z(Si—1)2}/(n(n—1))=—(n—Sl)/(nQ—n)-
i=1 i=1
(A.3.2)
By S; ~ In(n/i), rectangular approximation and letting n tend to infinity, we
have

(1/n)iSi —>—/11_plnydy:p+(1—p)ln(1—p), (A.3.3)
and . .
(1/n) Zsf — — (1 =p)(In(1 - p))* -2 . In y dy. (A.3.4)

As n —o0, m/n —p. This together with (A.3.1), (A.3.3) and (A.3.4) yield

n

(1/m) Y (5i=12(ElSw ~ 1)~ El(Spy ~1(Sr, = 1)) —=p—(1-p)ln(1-)

o (A.3.5)
Further, by (A.3.3) and (A.3.4), we have
n 2

A, = [Z(Si - 1)/n] —(1—p)%n?(1 - p), (A.3.6)

as n —oo. Plugging (A.3.5), (A.3.2) and (A.3.6) into Var (1), we have Var (1)/
n — p—(1—p)(2—p)in®(1 —p) as n —oo. Hence Theorem 3 follows.
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