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LOCAL COMPARISON OF RAO AND WALD STATISTICS

IN THE BAHADUR SENSE

Yoshihide Kakizawa

Hokkaido University

Abstract: Global optimality of likelihood ratio test statistics is well-known in the

Bahadur sense. In this paper the behaviors of Rao and Wald statistics (Rn and

Wn) for testing θ = θ0 are studied. It turns out that at alternative θ0 + ε, the

Bahadur slopes of these two statistics for the one-sided case are identical up to

order ε4, while for the two-sided case, they are identical only up to order ε2, in

general i.i.d. models and Gaussian stationary processes. We obtain the second-

(first-) order Bahadur efficiency of Rn and Wn for the one- (two-) sided case. The

third-order Bahadur efficiency depends on the statistical curvature. Two concrete

examples are given. One is a curved exponential family, and the other is a Gaussian

AR(1) process. The latter provides an example that the ε5-term of the Bahadur

slope of Rn for the one-sided case is different from that of Wn.
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1. Introduction

Let X,X1,X2, . . . be independent and identically distributed (i.i.d.) random
variables (or vectors) with a family of densities {p(·; θ)} with respect to a σ-
finite measure on the Borel sets of an Euclidean space, where the parameter θ
takes values in some interval Θ on the real line. Consider the problem of testing
H : θ = θ0, where θ0 is given. Higher order comparison of tests under contigu-
ous alternatives via the χ2 type asymptotic expansion has received considerable
attention (e.g. Mukerjee (1993) and Rao and Mukerjee (1997)). Our study is
based on the large deviation theory approach. Using the concept of exact slope
by Bahadur (1960), we examine the performance of Rao and (modified) Wald
statistics in the testing problem H : θ = θ0 against A1 : θ > θ0 or A2 : θ �= θ0.

Let Tn be a test statistic based on n observations X1, . . . ,Xn such that large
values of Tn are significant. For any t, let Fn(t) = Pθ0(Tn < t). The level attained
by Tn is given by Ln(Tn) = 1 − Fn(Tn). In typical cases there exists c(θ) such
that 0 < c(θ) <∞ and

lim
n→∞n−1 logLn(Tn) = −1

2
c(θ) (1)
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with probability one, or in probability, when θ obtains. In accordance with the
terminology of Raghavachari (1970), we call c(θ) the strong Bahadur slope of Tn

at θ if (1) happens with probability one and the weak Bahadur slope of Tn at θ
if (1) happens in probability. For details regarding comparison of test statistics
through the slopes, refer to Serfling (1980, 10.4). In what follows, the strong
Bahadur slope will be referred to as the Bahadur slope.

It is well-known from Raghavachari (1970) or Bahadur (1971, p.29) that for
each alternative θ,

lim inf
n→∞ n−1 logLn(Tn) ≥ −K(θ, θ0) with Pθ probability one, (2)

where K(θ, θ0) is the Kullback-Leibler information given by

K(θ, θ0) =
∫ {

log
p(x; θ)
p(x; θ0)

}
p(x; θ) dx . (3)

In other words, the slope c(θ) cannot exceed 2K(θ, θ0). Bahadur (1971, p.37)
proved that the likelihood ratio test statistic has the slope 2K(θ, θ0) at all alter-
native θ under certain general conditions. Akritas and Kourouklis (1988) showed
that Rao’s statistic

Rn = n−1/2
n∑

i=1

∂

∂θ
log p(Xi; θ)

∣∣∣
θ=θ0

or n−1/2

∣∣∣∣ n∑
i=1

∂

∂θ
log p(Xi; θ)

∣∣∣∣
θ=θ0

is locally optimal in the sense that cR(θ)/{2K(θ, θ0)} → 1 as θ → θ0. He and
Shao (1996) also considered local optimality of the studentized score test. In
the estimation case, Fu (1982) discussed asymptotic efficiency of the maximum
likelihood estimator (MLE) with respect to the exponential rate limn→∞ n−1

logPθ0(|θ̂n,ML−θ0| ≥ ε). He derived the first four terms of the Taylor expansions
of limn→∞ n−1 logPθ0(θ̂n,ML ≥ θ0 + ε) and limn→∞ n−1 logPθ0(θ̂n,ML ≤ θ0 − ε).
Since, from the point of view of the testing theory, Fu’s work leads to the first
four terms of the Taylor expansion of the Bahadur slope of the Wald’s statistic
Wn =

√
n(θ̂n,ML − θ0) or

√
n|θ̂n,ML − θ0|, the aim of this paper is to make a local

comparison between Rn and Wn in the Bahadur sense, and to elucidate their
local optimality.

Although Bahadur asymptotic efficiency of estimators was originally devel-
oped for the i.i.d. setting, Sato, Kakizawa and Taniguchi (1998) recently men-
tioned that the MLE of the spectral parameter in a Gaussian stationary process
is asymptotically Bahadur efficient. As a continuation of their work, Kakizawa
(1997) did further study of the exponential rates of the MLE and the quasi-MLE
of the spectral parameter. Thus we are interested in the performance of Rao’s
statistic for Gaussian stationary processes as well as for i.i.d. models.
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The paper is organized as follows. In Section 2, we begin by deriving the
first four terms of the Bahadur slope of Rn for general i.i.d. models and Gaussian
stationary processes. By using the results on the exponential rate of the MLE
(see Fu (1982) for the i.i.d. case and Kakizawa (1997) for Gaussian stationary
processes), it is shown that at alternative θ0 + ε, the Bahadur slopes of Rn and
Wn for the one-sided case are identical up to order ε4, while for the two-sided
case, they are identical only up to order ε2. This yields the second– (first–) order
Bahadur efficiency of Rn and Wn for the one- (two-) sided case. Third order Ba-
hadur efficiency depends on the statistical curvature. In Section 3, we give proofs
of these results. The final section contains two concrete examples for illustrating
the results for the one-sided case in Section 2. One is a curved exponential family,
and the other is a Gaussian AR(1) process. The latter provides an example in
which the ε5-term of the Bahadur slope of Rn for the one-sided case is different
from that of Wn.

2. Main Results

2.1. IID case

Let X,X1,X2, . . . be as in the introduction and write �(x; θ) = log p(x; θ).
Assuming that for almost all x, p(x; θ) is four times continuously differentiable
in θ, let �(i)(x; θ) = (∂/∂θ)i log p(x; θ). We set down the following conditions.
(A1) For every θ0 ∈ Θ, there exists a constant u = u(θ0) > 0 such that the
moment generating function (MGF) Eθ0 [exp{t�(1)(X; θ0)}] = m(t) (say) is finite
for t ∈ (−u, u). We set m(t) = +∞ for t �∈ (−u, u).

It follows that derivatives of all orders of m(t) exist for t ∈ (−u, u) and are
given by differentiation under the integral sign, that is,

di

dti
m(t) = Eθ0 [{�(1)(X; θ0)}i exp{t�(1)(X; θ0)}]

for i ≥ 1. We write µi = Eθ0[{�(1)(X; θ0)}i], i = 1, . . . , 4.
(A2) For every θ0 ∈ Θ, �(1)(X; θ0) is non-degenerate.
(A3) For every θ0 ∈ Θ, there exist a neighborhood U(θ0) and measurable func-
tions Ai(x, θ0) such that

a) |�(i)(x; θ)| < Ai(x, θ0) for all θ ∈ U(θ0), i = 1, . . . , 4, and
b) Eθ0 [{Ai(X, θ0)}ki ] <∞, where k1 = 8, k2 = k3 = 4 and k4 = 2.

Define I(θ), . . . ,H(θ) by

I(θ) = Eθ[{�(1)(X; θ)}2] ,
J(θ) = Eθ[�(1)(X; θ)�(2)(X; θ)] , K(θ) = Eθ[{�(1)(X; θ)}3] ,
L(θ) = Eθ[�(1)(X; θ)�(3)(X; θ)] , M(θ) = Eθ[{�(2)(X; θ)}2] − I2(θ) ,
N(θ) = Eθ[{�(1)(X; θ)}2�(2)(X; θ)] + I2(θ) ,
H(θ) = Eθ[{�(1)(X; θ)}4] − 3I2(θ) .
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To simplify the notation, we write I(θ0), . . . ,H(θ0), as I, . . . ,H, respectively.
These notations have been defined by Akahira and Takeuchi (1981, p.141) in
order to discuss the higher order asymptotic theory of estimators. Note that by
(A1) and (A2),

µ2 = I > 0 , µ3 = K and µ4 − 3µ2
2 = H . (4)

By (A3), we have µ1=Eθ0[�
(1)(X; θ0)]=0, Eθ0 [�

(2)(X; θ0)]=−I, Eθ0 [�
(3)(X; θ0)]=

−3J − K and Eθ0 [�
(4)(X; θ0)] = −4L − 6N − 3M −H. Further, the Kullback-

Leibler information (3) has a four-term Taylor expansion

K(θ0 + ε, θ0) = Eθ0 [{�(X; θ0 + ε) − �(X; θ0)} exp{�(X; θ0 + ε) − �(X; θ0)}]
=

1
2
Iε2 +

1
6

(3J + 2K)ε3 +
1
24

(4L+ 3M + 12N + 3H)ε4 + o(ε4) .

(5)

We say that a test statistic Tn is sth order efficient in the Bahadur sense if the
Bahadur slope c of Tn satisfies

lim
ε→0

ε−(s+1) [2K(θ0 + ε, θ0) − c(θ0 + ε)] = 0 .

Theorem 1. [One-sided case A1]
(i) The Bahadur slope of Rao’s statistic

Rn = n−1/2
n∑

i=1

∂

∂θ
log p(Xi; θ)

∣∣∣
θ=θ0

at θ = θ0 + ε, where ε > 0, has an expansion

cR(θ0 + ε) = Iε2 +
1
3

(3J + 2K)ε3

+
1
12

(
3
J2

I
+ 4L+ 12N + 3H

)
ε4 + o(ε4) , (6)

so that Rn is second-order efficient in the Bahadur sense.
(ii) The difference between the optimal slope 2K(θ0+ε, θ0) and cR(θ0+ε) appears

in the fourth-order term through Efron’s statistical curvature

γ(θ) =
{M(θ)I(θ) − J(θ)2} 1

2

I(θ)
3
2

,

that is,

lim
ε→0

ε−i [2K(θ0 + ε, θ0) − cR(θ0 + ε)] =


0 , i = 1, 2, 3
1
4
I(θ0)2γ(θ0)2, i = 4 .

(7)



YOSHIHIDE KAKIZAWA 301

(iii) Rn is locally equivalent to Wald’s statistic Wn =
√
n(θ̂n,ML−θ0) up to order

ε4 in the sense that limε→0 ε
−4 [cR(θ0 + ε) − cW (θ0 + ε)] = 0.

Theorem 2. [Two-sided case A2]
(i) The Bahadur slopes of Rao’s statistic

Rn = n−1/2

∣∣∣∣ n∑
i=1

∂

∂θ
log p(Xi; θ)

∣∣∣∣
θ=θ0

and Wald’s statistic Wn =
√
n|θ̂n,ML − θ0| at θ = θ0 + ε, where ε �= 0, have

expansions

cR(θ0 + ε) = min
[
ε2I +

ε3

3
(3J + 2K) + O(ε4) , ε2I +

ε3

3
(3J + 4K) + O(ε4)

]
and

cW (θ0 + ε) = min
[
ε2I ± ε3

3
(3J + 2K) + O(ε4)

]
,

respectively. Both Rn and Wn are only first-order efficient in the Bahadur
sense.

(ii) Rn is second-order efficient in the Bahadur sense if and only if K(θ0) = 0.
In this case, the relation (7) holds.

(iii) Wn is second-order efficient in the Bahadur sense if and only if 3J(θ0) +
2K(θ0) = 0. In this case, the relation (7) holds for cW .

2.2. Gaussian stationary processes

Suppose that Xn = (X1, . . . ,Xn)′ is an observed stretch of a Gaussian sta-
tionary process with mean 0 and spectral density fθ(λ) > 0, where θ is an
unknown parameter. The methodology and the results given here are parallel to
the i.i.d. case.

Denote the n× n Toeplitz matrix associated with h(λ) by

Tn(h) =
(∫ π

−π
exp{i(s − t)λ}h(λ) dλ

)
,

s, t = 1, . . . , n, where h(λ) is assumed to be an integrable real symmetric function
on [−π, π] (not necessarily nonnegative). The joint density of Xn =(X1, . . . ,Xn)′

from the above Gaussian stationary process is given by pn(Xn; θ) = exp{�n(θ)},
where

�n(θ) = −n
2

log 2π − 1
2

log detTn(fθ) − 1
2

X ′
n Tn(fθ)−1Xn (8)

is the (exact) log-likelihood of Xn = (X1, . . . ,Xn)′. In this case, Rao’s statistic
is defined by

Rn = n−1/2 ∂

∂θ
�n(θ)

∣∣∣
θ=θ0

or Rn = n−1/2

∣∣∣∣ ∂∂θ�n(θ)
∣∣∣∣
θ=θ0
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and Wald’s statistic is

Wn =
√
n(θ̂n,ML − θ0) or Wn =

√
n|θ̂n,ML − θ0| ,

where θ̂n,ML = arg maxθ �n(θ). Since several authors often use Whittle’s (quasi)
log-likelihood given by

�n(θ) = − n

4π

∫ π

−π

{
log fθ(λ) +

In(λ)
fθ(λ)

}
dλ

= − n

4π

∫ π

−π
log fθ(λ) dλ− 1

2
X ′

n Tn(f−1
θ /(4π2))Xn ,

where

In(λ) =
1

2πn

∣∣∣∣ n∑
t=1

Xte−itλ

∣∣∣∣2
is the periodogram of Xn = (X1, . . . ,Xn)′, we also examine quasi versions of
Rao’s statistics qRn and Wald’s statistic qWn, with �n(θ) replaced by �n(θ).

Now, we introduce D, a space of functions on [−π, π] defined by

D =
{
h(λ) =

∞∑
u=−∞

a(u) exp(−iuλ) : a(u) = a(−u),
∞∑

u=−∞
|a(u)| <∞

}
,

and set down the following conditions.
(B1) If θ �= θ′, then fθ(λ) �= fθ′(λ) on a set of positive Lebesgue measure.
(B2) The spectral density fθ(λ) ∈ D is bounded away from zero and four times

continuously differentiable with respect to θ, and the derivatives f (i)
θ (λ),

i = 1, 2, 3, 4, belong to D, where f (i)
θ (λ) = (∂/∂θ)ifθ(λ).

(B3) The limit of the averaged Fisher information I∗(θ) is positive for all θ ∈ Θ,
where

I∗(θ) =
1
4π

∫ π

−π

{
f

(1)
θ (λ)
fθ(λ)

}2

dλ .

Define J∗(θ), . . . ,H∗(θ) by

J∗(θ) =
1
4π

∫ π

−π
F1,θ(λ)F2,θ(λ) dλ , K∗(θ) =

1
2π

∫ π

−π
F 3

1,θ(λ) dλ ,

L∗(θ) =
1
4π

∫ π

−π
F1,θ(λ)F3,θ(λ) dλ , M∗(θ) =

1
4π

∫ π

−π
F 2

2,θ(λ) dλ ,

N∗(θ) =
1
2π

∫ π

−π
F 2

1,θ(λ)F2,θ(λ) dλ , H∗(θ) =
3
2π

∫ π

−π
F 4

1,θ(λ) dλ,

with

F1,θ(λ) =
f

(1)
θ (λ)
fθ(λ)

, F2,θ(λ) =
f

(2)
θ (λ)
fθ(λ)

− 2
{
f

(1)
θ (λ)
fθ(λ)

}2

,
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F3,θ(λ) = 6
{
f

(1)
θ (λ)
fθ(λ)

}3

− 6
f

(1)
θ (λ)
fθ(λ)

f
(2)
θ (λ)
fθ(λ)

+
f

(3)
θ (λ)
fθ(λ)

.

Theorem 3. The conclusions in Theorems 1 and 2 hold for a stationary Gaus-
sian process, if I, . . . ,H and K(θ, θ0) are replaced by I∗, . . . ,H∗ and

K∗(θ, θ0) =
1
4π

∫ π

−π

{
log

fθ0(λ)
fθ(λ)

− 1 +
fθ(λ)
fθ0(λ)

}
dλ .

Remark 1. Although Raghavachari (1970) and Bahadur (1971, p.29) estab-
lished inequality (2) for the i.i.d. case, their arguments are applicable to the
non-i.i.d. case if the log-likelihood ratio n−1 log{pn(Xn; θ)/pn(Xn; θ0)} converges
with Pθ probability one to the limit of the averaged Kullback-Leibler information,
where pn(x; θ) is the joint density of Xn = (X1, . . . ,Xn)′. In the time series case
where log pn(Xn; θ) = �n(θ) is given by (8), we can show that with Pθ probability
one,

n−1 log
pn(Xn; θ)
pn(Xn; θ0)

→ lim
n→∞Eθ

[
n−1 log

pn(Xn; θ)
pn(Xn; θ0)

]
= K∗(θ, θ0) .

In fact, this convergence follows from Theorem A.3 in Appendix (see also Hannan
(1973, Lemmas 1 and 4)) and the asymptotic expression of log determinant of
the Toeplitz matrix by Grenander and Szegö (1984, p.65, (12)):

lim
n→∞

1
n

log detTn(h) =
1
2π

∫ π

−π
log 2πh(λ) dλ (9)

if h(λ) is a nonnegative integrable function on [−π, π] and satisfies
∫ π
−π log h(λ) dλ

�= −∞. (It should be noted that the Fourier coefficients defined by Grenander and
Szegö (1984, p.37, (1)) are divided by 2π.) Then a straightforward extension of
Bahadur (1971, p.29) yields that even in a Gaussian stationary process, inequality
(2) holds ifK(θ, θ0) is replaced byK∗(θ, θ0). Hence, the optimal Bahadur slope in
a Gaussian stationary process is 2K∗(θ, θ0). Further, Kakizawa (1997) mentioned
that the likelihood ratio statistic LR∗

n = n−1 supϑ∈Θ[�n(ϑ) − �n(θ0)] has the
Bahadur slope 2K∗(θ, θ0) at each alternative θ (global optimality of LR∗

n) by
showing that

lim inf
n→∞ LR∗

n ≥ K∗(θ, θ0) with Pθ probability one,

and that, given ε > 0, there exists a positive integer m such that

Pθ0(LR
∗
n ≥ t) ≤ m(1 + ε)ne−nt

for all −∞ ≤ t ≤ ∞ and all n.
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Remark 2. Taniguchi (1996) treats a subject similar to ours. However, he only
shows that the weak Bahadur slopes of Rao and Wald statistics (one-sided case)
are identical up to order ε3, and does not discuss the optimal slope in time series.
He mentions that the third order term of the Bahadur slope is nothing but −1/3
connection coefficient in statistical differential geometry.

3. Proofs of Main Results

Bahadur (1971, p.27) proved that a given test statistic Tn has the slope
c(θ) = 2g{b(θ)} at alternative θ, if there exists an open interval I such that
(C1) limn→∞ n−1 log Pθ0(Tn ≥ n1/2x) = −g(x) for all x ∈ I, where g is a contin-

uous function on I, and
(C2) limn→∞ n−1/2Tn = b(θ) with probability one, or in probability, when θ

obtains, where b(θ) belongs to I.
Therefore we only have to check that Rn and Wn satisfy these conditions.

We need the following basic lemmas.

Lemma 4. Under (A1) and (A2), supt{xt − logm(t)} = x τ(x) − logm{τ(x)}
is C∞ on {m′(t)/m(t) : t ∈ (−u, u)} = Ω (say), where t = τ(x) is the unique
solution of m′(t)/m(t) = x.

Proof. It is easy to see that the second derivative of logm(t) is positive for
t ∈ (−u, u), which implies that the inverse function Λ−1 of m′(t)/m(t) = Λ(t)
(say) is well-defined and τ(x) = Λ−1(x) for x ∈ Ω. Further Λ is C∞, and so is
Λ−1.

Lemma 5. Under (A1) and (A2),

x τ(x) − logm{τ(x)} =
1

2µ2
x2 − µ3

6µ3
2

x3 +
( µ2

3

8µ5
2

− µ4 − 3µ2
2

24µ4
2

)
x4 + o(x4) (10)

as x→ 0.

Proof. By the fundamental theorem of implicit functions we can show that there
exists a unique single-valued function t = τ(x) such that x = m′{τ(x)}/m{τ(x)},
τ(0) = 0 and (d/dx)τ(0) = 1/µ2, which means that τ(x) = x/µ2 +o(x) as x→ 0.
Now, let

τ(x) =
x

µ2
+ bx2 + cx3 + o(x3) .

Since

m′{τ(x)} = µ2τ(x) +
µ3

2
τ(x)2 +

µ4

6
τ(x)3 + o(τ(x)3)

= x+
(
bµ2 +

µ3

2µ2
2

)
x2 +

(
cµ2 +

bµ3

µ2
+

µ4

6µ3
2

)
x3 + o(x3) ,
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xm{τ(x)} = x
[
1 +

µ2

2
τ(x)2 + o(τ(x)2)

]
= x+

1
2µ2

x3 + o(x3) ,

we obtain

b = − µ3

2µ3
2

, c = −µ4 − 3µ2
2

6µ4
2

+
µ2

3

2µ5
2

,

and (10) follows immediately from the Taylor expansion.

Proof of Theorem 1. By using the fundamental Chernoff Large Deviation
Theorem and the Strong Law of Large Numbers, it is easily checked that Rn sat-
isfies Bahadur’s conditions with IR = Ω

⋂
(0,∞), gR(x) = x τ(x) − logm{τ(x)}

and bR(θ) = Eθ[�(1)(X; θ0)]. Since Eθ[�(1)(X; θ0)] = I(θ0)(θ− θ0) + o(θ− θ0), see
(11) below, there exists a small δ > 0 such that Eθ[�(1)(X; θ0)] belongs to IR for
θ ∈ (θ0, θ0 + δ). Thus, the Bahadur slope of Rn at such an alternative θ exists
and is given by cR(θ) = 2gR{bR(θ)}. The expansion (6) follows from (4), (10)
and

Eθ[�(1)(X; θ0)] = Eθ0 [�
(1)(X; θ0) exp{�(X; θ0 + ε) − �(X; θ0)}]

= Iε+
1
2

(J +K)ε2 +
1
6

(L+ 3N +H)ε3 + o(ε3) . (11)

Result (ii) is derived from (5) and (6).
The Bahadur slope of Wn is closely related to the exponential rate

of the MLE discussed by Fu (1982). He derived the local expansion of
limn→∞ n−1 log Pθ0(θ̂n,ML > θ0 + x) = log ρ1(x) (x > 0) in terms of Fisher’s
notations

µijk = Eθ0

[(p(1)

p

)i(p(2)

p

)j(p(3)

p

)k
]
,

with p(s) = (∂/∂θ)sp(X; θ)|θ=θ0 , s = 0, 1, 2, 3. For details on ρ1, see Lemma 3.2
in Fu (1982). By noting the relations

µ110 = J +K , µ300 = K , µ400 = H + 3I2

µ210 = N +H + 2I2 , µ101 = L+ 3N +H ,

µ020 =M + 2N +H + 2I2 ,

Fu’s (1982, (3.10)) result is expressed as

−2 log ρ1(x) = Ix2 +
1
3

(3J + 2K)x3

+
1
12

(
3
J2

I
+ 4L+ 12N + 3H

)
x4 + o(x4) . (12)



306 LOCAL COMPARISON OF RAO AND WALD STATISTICS

We know that log ρ1(x) is continuous in x ∈ (0, x0) for some x0 > 0. Further, it is
well-known that the MLE is strongly consistent. In the testing case, −2 log ρ1(ε)
is therefore nothing but the Bahadur slope of Wn at θ = θ0 + ε for sufficiently
small ε > 0, which implies result (iii).

Proof of Theorem 2. Recall the latter part of the proof of Theorem 1 above. Fu
(1982) also derived the local expansion of limn→∞ n−1 logPθ0(θ̂n,ML < θ0 − x) =
log ρ2(x), x > 0, which is similar to (12) with x replaced by −x. Then, we can
see that Wald’s statistic Wn =

√
n|θ̂n,ML−θ0| satisfies Bahadur’s conditions with

b(θ) = |θ − θ0| and g(x) = min{− log ρ1(x),− log ρ1(−x)}. This implies that for
sufficiently small ε �= 0, cW (θ0 + ε) = 2min{− log ρ1(|ε|),− log ρ1(−|ε|)}. On the
other hand, for Rao’s statistic, b(θ) = |bR(θ)| and g(x) = min[gR(x), gR(−x)]
for x sufficiently close to 0, x > 0, where bR and gR are given in the proof of
Theorem 1. After some calculation, we obtain

cR(θ0 + ε) = 2min[ gR{|bR(θ0 + ε)|}, gR{−|bR(θ0 + ε)|} ]

= min
[
Iε2 +

1
3

(3J + 2K)ε3 +
1
12

(
3
J2

I
+ 4L+ 12N + 3H

)
ε4 + o(ε4) ,

Iε2 +
1
3

(3J + 4K)ε3 +
1
12

{
3
(J + 2K)2

I
+ 4L+ 12N + 3H

}
ε4 + o(ε4)

]
.

Proof of Theorem 3. To save space, we consider the one-sided case only. The
Bahadur slope of Wald’s statistic Wn =

√
n(θ̂n,ML−θ0) or qWn =

√
n(θ̂n,qML−θ0)

follows from Kakizawa (1997) and the strong consistency of θ̂n,ML=arg maxθ �n(θ)
and θ̂n,qML = arg maxθ �n(θ), e.g., Hannan (1973). We turn to the Bahadur slope
of Rao’s statistic.

Even in the non-i.i.d. case we only have to check conditions (C1) and (C2),
since the formulation by Bahadur (1971, p.27) is essentially independent of the
i.i.d. assumption. We need, however, a large deviation theorem and almost sure
convergence of quadratic forms in Gaussian stationary processes, which will be
discussed in Appendix. Set Zn = (∂/∂θ)�n(θ)|θ=θ0 or (∂/∂θ)�n(θ)|θ=θ0 . It follows
from Theorems A.1 and A.2 (i) in Appendix that there exists an r > 0 such that
for all t ∈ [−r, r], limn→∞ n−1 logEθ0{exp(tZn)} = φ(t), where

φ(t) = − 1
4π

∫ π

−π
log

{
1 − tfθ0(λ)−1 ∂

∂θ
fθ0(λ)

}
dλ− t

4π

∫ π

−π
fθ0(λ)−1 ∂

∂θ
fθ0(λ) dλ .

(13)
By (B3), {λ | (∂/∂θ)fθ0(λ) �= 0} has positive Lebesgue measure, hence φ(t) is
strictly convex. This means that for x ∈ ( 0, (d/dt)φ(t)|t=r ) = I∗R (say), there
exists a unique 0 < t(x) < r such that

d

dt
φ(t)

∣∣∣∣
t=t(x)

= x
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and
lim

n→∞
1
n

log Pθ0(Zn ≥ nx) = φ{t(x)} − x t(x),

see Theorem A.2 (ii) in Appendix. Therefore, both Rn and qRn satisfy condition
(C1) with g∗R(x) = x t(x)−φ{t(x)}. As in Lemma 5, this function has a four-term
expansion at x = 0 given by

x t(x) − φ{t(x)} =
1

2I∗
x2 − K∗

6(I∗)3
x3 +

{
(K∗)2

8(I∗)5
− H∗

24(I∗)4

}
x4 + o(x4) .

For (C2), use Theorems A.1 and A.3 in the Appendix:

lim
n→∞n−1/2Rn = lim

n→∞n−1/2qRn

=
1
4π

∫ π

−π

[
fθ(λ) fθ0(λ)−2 ∂

∂θ
fθ0(λ) − fθ0(λ)−1 ∂

∂θ
fθ0(λ)

]
dλ

= b∗R(θ) (say) (14)

with Pθ probability one. Let θ = θ0 + ε for sufficiently small ε > 0. Then it is
easy to see

b∗R(θ0 + ε) = I∗ε+
1
2

(J∗ +K∗)ε2 +
1
6

(L∗ + 3N∗ +H∗)ε3 + o(ε3) ,

which has a similar structure as (11) in the proof of Theorem 1. To get the
four-term expansion of K∗(θ0 + ε, θ0), it is useful to note that

fθ(λ)
fθ+ε(λ)

= 1 − F1,θ(λ)ε− 1
2
F2,θ(λ)ε2 − 1

6
F3,θ(λ)ε3 + O(ε4) .

4. Case Studies

The results in Section 2 are true for general models, including Gaussian
stationary processes. To illustrate these results, we present two examples and
consider the one-sided case only.

Example 1. Let (Xi, Yi)′, i = 1, . . . , n, be a sequence of i.i.d. random vectors
with common density function

p(x, y;β) = exp
(
−βx− 1

β
y
)
, x, y > 0 .

This is a curved exponential family with Fisher information I(β) = 2/β2 and
statistical curvature γ(β) = 1/

√
2. We wish to test H : β = β0 against A1 : β >
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β0, where β0 > 0 is given. In this case, the Bahadur slopes of Rao and Wald
statistics at alternative β are obtained explicitly as follows:

cR(β) = −2 + 2
{
1 + u2

(2 + u

1 + u

)2}1/2 − 2 log
1
2

[
1 +

{
1 + u2

(2 + u

1 + u

)2}1/2]
, (15)

cW (β) = 4 log
(
1 + u+

u2

2

)
− 4 log(1 + u) , (16)

where u = (β − β0)/β0. Since the Kullback-Leibler information in this model is
K(β, β0) = u2/(1 + u), it is easy to see that

lim
ε→0

ε−i [2K(β0 + ε, β0) − cR(β0 + ε)] = lim
ε→0

ε−i [2K(β0 + ε, β0) − cW (β0 + ε)]

=

{
0 , i = 1, 2, 3
1/(2β4

0 ) , i = 4 ,

and the RHS for i = 4 is equal to (1/4){I(β0)γ(β0)}2, which agrees with Theorem
1. Interestingly, we find that Rao’s statistic is better than Wald’s statistic in the
sense that

lim
ε→0

ε−i [cR(β0 + ε) − cW (β0 + ε)] =

{
0 , i = 1, 2, 3, 4, 5
2/(3β6

0 ) , i = 6 .

This provides an example in which the Bahadur slope of Rao’s statistic coincides
with that of Wald’s statistic up to order ε5.

Proof of (15). It is easy to see that the MGF of (∂/∂β) log p(X,Y ;β)|β=β0

under β = β0 is given by

m(t) =
β2

0

β2
0 − t2

.

For any z > 0, the equation (d/dt) logm(t̂) = z has a unique solution

t̂ =
1
z
{−1 + (1 + z2β2

0)1/2} .

It follows from Chernoff’s Large Deviation Theorem that

lim
n→∞n−1Pβ0(Rn ≥ n1/2z) = logm(t̂) − t̂z .

On the other hand, the Strong Law of Large Numbers implies

n−1/2Rn
a.s.−→ β2 − β2

0

ββ2
0

> 0

under alternative β > β0. Thus, (C1) and (C2) are checked.
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Proof of (16). It is easy to see that the MLE for β is given by β̂n,ML = (Y /X)1/2

and for z > 0,

lim
n→∞n−1Pβ0(β̂n,ML − β0 ≥ z) = lim

n→∞n−1Pβ0{Y − (β0 + z)2X ≥ 0} . (17)

The MGF of Y − (β0 + z)2X under β = β0 is

m(t) =
β0

β0 + (β0 + z)2t
1

1 − β0t
,

and the equation (d/dt) logm(t̂) = 0 has a unique solution

t̂ =
(β0 + z)2 − β2

0

2β0(β0 + z)2

for any z > 0. Thus, Chernoff’s Large Deviation Theorem implies that the RHS
of (17) is equal to

logm(t̂) = −2 log
(
1 +

z

β0
+

z2

2β2
0

)
+ 2 log

(
1 +

z

β0

)
.

Further, it is easily checked that β̂n,ML converges with Pβ probability one to β.

Example 2. Let Xn = (X1, . . . ,Xn)′ be an observed stretch from a Gaussian
AR(1) process Xt = θXt−1+Ut, t = . . . ,−1, 0, 1, . . ., where Ut is a sequence of in-
dependent N(0, 1) random variables and |θ| < 1. Consider the problem of testing
H : θ = θ0 against A1 : θ > θ0, where θ0 is given. In the context of estimation,
Kakizawa (1998) showed that the exponential rates of upper tail probabilities
of several estimators θ̂n (e.g. MLE, least squares estimator, Daniels’s estimator,
the Yule-Walker estimator, . . .) are identical:

lim
n→∞n−1 log Pθ0(θ̂n ≥ θ0 + ε) =

1
2

logψ(θ0 + ε) with ψ(r) =
1 − r2

1 − 2θ0r + θ2
0

,

when ε > 0 is sufficiently small. In the context of testing, this means that
several Wald type tests based on the estimators θ̂n have Bahadur slope cW (θ) =
− logψ(θ) at an alternative θ close to θ0, θ > θ0. It is easy to see that the
limit of the averaged Kullback-Leibler information in a Gaussian AR(1) model
is K∗(θ, θ0) = (θ − θ0)2/{2(1 − θ2)}, see Kakizawa (1998). Hence

lim
ε→0

ε−i [2K∗(θ0 + ε, θ0) − cW (θ0 + ε)] =

{
0 , i = 1, 2, 3
(1/4){I∗(θ0)γ∗(θ0)}2 , i = 4 ,

where I∗(θ) = 1/(1 − θ2) is the limit of the averaged Fisher information and
γ∗(θ) =

√
2 is a counterpart of the statistical curvature in a Gaussian AR(1)
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model, e.g. Taniguchi (1991, p.95). For Rao’s statistic, by setting

fθ(λ) =
1
2π

1
|1 − θeiλ|2 ,

(13) and (14) in the proof of Theorem 3 become

b(θ) =
θ − θ0
1 − θ2

and
φ(t) = −1

2
log

1
2

[
α(t) + {α2(t) − 4(θ0 + t)2}1/2

]
,

where α(t) = 1 + θ2
0 + 2θ0t. Therefore, the Bahadur slope of Rao’s statistic is

implicitly given by

cR(θ) = 2b(θ) tb + log
1
2

[
α(tb) + {α2(tb) − 4(θ0 + tb)2}1/2

]
,

where tb is the unique solution of (d/dt)φ(t)|t=tb = b(θ). After tedious calculation,
we can show that

lim
ε→0

ε−i [cR(θ0 + ε) − cW (θ0 + ε)] =

{
0 , i = 1, 2, 3, 4
2θ0/(1 − θ2

0)
3 , i = 5 .

This indicates that Rao’s statistic is better than Wald’s statistic if θ0 > 0 and
vice versa. That is, uniform superiority of the ε5-term in the Bahadur slope does
not hold generally in the comparison of Rao and Wald statistics for the one-sided
case. It should be remarked that in the two-sided case, this phenomenon occurs
in the ε3-term, see Theorem 2.

Appendix

In this Appendix we present a large deviation theorem and almost sure con-
vergence of quadratic forms in Gaussian stationary processes. These results have
independent interest.

First we have a result about the trace of Toeplitz matrices.

Theorem A.1. Assume that fj(λ) ∈ D, j = 1, . . . , s, are strictly positive on
[−π, π], and that gj(λ) ∈ D, j = 1, . . . , s. Then

lim
n→∞

1
n

tr
{
Tn(f1)−1Tn(g1)Tn(f2)−1Tn(g2) · · · Tn(fs)−1Tn(gs)

}
=

1
2π

∫ π

−π

g1(λ) · · · gs(λ)
f1(λ) · · · fs(λ)

dλ .
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Proof. Under stronger conditions, Coursol and Dacunha-Castelle (1982) and
Taniguchi (1991, p.16) derived a similar formula with rate O(n−1). The asymp-
totics we consider here do not need the evaluation of the remainder term, so
we only assume the summability condition on the Fourier coefficients a(u) for
h(λ) ∈ D.

Define the Euclidean norm and spectral norm of a matrix A by ||A||E =
[tr(A∗A)]1/2 and ||A|| = sup|z|=1[z∗A∗Az]1/2, respectively, where ∗ denotes con-
jugate transpose. Our proof is mainly based on properties of asymptotically
equivalent matrices (e.g. Graybill (1983, Definition 5.6.5)). Along the line of
Davies (1973), it is easy to see that for all h(λ) ∈ D, Toeplitz matrices Tn(h)
commute asymptotically in the sense that

lim
n→∞n−

1
2 ||UnTn(h)U∗

n − 2πDn(h)||E = 0 , (A.1)

where Dn(h) is the n × n diagonal matrix with h(λk) as the kth diagonal ele-
ment (we define λk = 2πk/n), and Un is the n × n Fourier unitary matrix with
n−

1
2 ei2πst/n as the (s, t)th element. Further, we can prove that the spectral norm

||Tn(h)|| of Tn(h) is bounded by maxλ |2πh(λ)|. Thus, from (A.1), UnTn(h)U∗
n is

asymptotically equivalent to 2πDn(h). Since f(λ) > 0 implies the nonsingularity
of Tn(f), and ||Tn(f)−1|| ≤ 1/minλ{2πf(λ)}, e.g. Brockwell and Davis (1991,
Proposition 4.5.3), it follows from Theorem 5.6.11 (2) in Graybill (1983) that
{UnTn(f)U∗

n}−1 is asymptotically equivalent to {2πDn(f)}−1. Therefore, from
Theorem 5.6.12 (1) in Graybill (1983), we can show that UnTn(f1)−1Tn(g1) · · ·
Tn(fs)−1Tn(gs)U∗

n is asymptotically equivalent to Dn(f1)−1Dn(g1) · · ·Dn(fs)−1

Dn(gs) = Dn (say). Noting that

1
n

tr(Dn) =
1
n

n∑
k=1

g1(λk) · · · gs(λk)
f1(λk) · · · fs(λk)

→ 1
2π

∫ π

−π

g1(λ) · · · gs(λ)
f1(λ) · · · fs(λ)

dλ ,

the result is a consequence of Theorem 2.1 in Gray (1972). Note that (9) in sub-
section 2.2 is also shown by the above approach by using asymptotic equivalent
matrices.

Using Theorem A.1, we can evaluate the limits of the averaged cumulant
generating functions of quadratic forms in Gaussian stationary processes, which
plays an important role in the large deviation theorem.

Theorem A.2. Let Xn = (X1, . . . ,Xn)′ be an observed stretch of a zero mean
Gaussian stationary process with spectral density f(λ) ∈ D, strictly positive.
Define the generalized quadratic form

Zn =
1
2

{
X ′

n Tn(g1)−1 Tn(g2)Tn(g1)−1Xn + cn
}
,
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where g1(λ) ∈ D is strictly positive, g2(λ) ∈ D, and {cn} is a sequence such that

lim
n→∞

cn
n

=
1
2π

∫ π

−π
g3(λ) dλ

with an integrable real function g3(λ). Then, (i) there exists r > 0 such that for
all t ∈ [−r, r], limn→∞ n−1 logE{exp(tZn)} = φZ(t), where

φZ(t) = − 1
4π

∫ π

−π
log

{
1 − t

f(λ) g2(λ)
g2
1(λ)

}
dλ+

t

4π

∫ π

−π
g3(λ) dλ .

In addition, (ii) if g3(λ) = −f(λ)g2(λ)/g2
1(λ) and {λ | g2(λ) �= 0} has positive

Lebesgue measure, then

lim
n→∞

1
n

log P (Zn ≥ nx) = φZ{t(x)} − x t(x) < 0 for 0 < x <
d

dt
φZ(t)

∣∣∣∣
t=r

,

(A.2a)
and

lim
n→∞

1
n

logP (Zn ≤ nx) = φZ{t(x)} − x t(x) < 0 for
d

dt
φZ(t)

∣∣∣∣
t=−r

< x < 0,

(A.2b)
where t(x) is the unique solution of

d

dt
φZ(t)

∣∣∣∣
t=t(x)

= x . (A.3)

Proof. It is easy to see that φZ(t), |t| ≤ r, is strictly convex and there exists a
unique solution t(x) of (A.3) if x belongs to the range of (d/dt)φZ (t), |t| ≤ r. Note
that t(x) is continuous and strictly increasing in x. Since (A.2) is a consequence
of a version of a large deviation theorem (e.g. Ihara (1993, p.113)), it suffices to
prove (i).

Let
An = Tn(f)1/2 Tn(g1)−1 Tn(g2)Tn(g1)−1 Tn(f)1/2 .

If |t| < 1/||An||, then E{exp(tZn)} exists and

φn(t) =
1
n

logE{exp(tZn)} =
t

2n
cn − 1

2n
log det(I − tAn) .

Now, let g2(λ) = g+
2 (λ) − g−2 (λ), where g+

2 (λ) and g−2 (λ) are nonnegative. For
h(λ) = f(λ), g+

2 (λ), g−2 (λ), we have

||Tn(g1)−1/2Tn(h)1/2||2 = ||Tn(h)1/2Tn(g1)−1/2||2

= sup
|z|=1

z′ Tn(h)z
z′ Tn(g1)z
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= sup
|z|=1

∫ π
−π h(λ) |∑n

j=1 zje
−ijλ|2 dλ∫ π

−π g1(λ) |∑n
j=1 zje−ijλ|2 dλ

≤ maxλ h(λ)
minλ g1(λ)

,

hence

||An||≤||Tn(f)1/2Tn(g1)−1/2||2(||Tn(g+
2 )1/2Tn(g1)−1/2||2+||Tn(g−2 )1/2Tn(g1)−1/2||2)

≤1/R (say).

For all |t| ≤ r (0 < r < R), an expansion of φn(t) is

t

2n
cn +

1
2n

∞∑
j=1

tj

j
tr

{
Tn(f)Tn(g1)−1Tn(g2)Tn(g1)−1

}j
.

From Theorem A.1 we obtain

lim
n→∞

1
n

tr
{
Tn(f)Tn(g1)−1Tn(g2)Tn(g1)−1

}j
=

1
2π

∫ π

−π

{
f(λ) g2(λ)
g2
1(λ)

}j

dλ

for all positive integers j. Since
∞∑

j=1

tj

j

∫ π

−π

{
f(λ) g2(λ)
g2
1(λ)

}j

dλ = −
∫ π

−π
log

{
1 − t

f(λ) g2(λ)
g2
1(λ)

}
dλ

for |t| ≤ r, we get the result (i).
We conclude this appendix by proving almost sure convergence of the

quadratic form Qn = 1
2X ′

nTn(g1)−1Tn(g2)Tn(g1)−1Xn.

Theorem A.3. Under the conditions of Theorem A.2,

lim
n→∞n−1Qn =

1
4π

∫ π

−π

f(λ) g2(λ)
g2
1(λ)

dλ

with probability one.

Proof. The result holds trivially if g2(λ) = 0, so we assume {λ | g2(λ) �= 0} has
positive Lebesgue measure. Since Theorem A.1 implies

lim
n→∞

1
n
EQn = lim

n→∞
1
2n

tr
{
Tn(f)Tn(g1)−1Tn(g2)Tn(g1)−1

}
=

1
4π

∫ π

−π

f(λ) g2(λ)
g2
1(λ)

dλ,

it suffices to prove n−1Zn
a.s.−→ 0, where Zn = Qn−EQn. From Theorem A.2 (ii),

it follows that for all sufficiently small ε > 0,

lim
n→∞

1
n

log P (Zn ≥ nε) = φZ{t(ε)} − εt(ε) < 0
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and
lim

n→∞
1
n

log P (Zn ≤ −nε) = φZ{t(−ε)} − (−ε)t(−ε) < 0 .

Hence, there exists a number N = N(ε) > 0 such that P (|n−1Zn| ≥ ε) ≤ e−nN

for all sufficiently large n. It then follows from the Borel-Cantelli Lemma that
n−1Zn

a.s.−→ 0.
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