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STRONG GAUSSIAN APPROXIMATIONS

IN THE RANDOM TRUNCATION MODE
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Abstract: In the random left-truncation model, one observes (Xi, Yi) only if Xi ≥
Yi, i = 1, . . . , N . The nonparametric maximum likelihood estimator aims at

reconstructing the distribution function of X from the observed empirical data. In

this paper, strong approximations of the cumulative hazard process and product-

limit process on increasing sets by sequences of copies of corresponding Gaussian

limiting processes are constructed. The convergence rates are N−1/6 log N on fixed

sets. Futhermore, strong approximations with two-parameter Gaussian processes

are obtained with convergence rates N−1/8(log N)3/2 on fixed sets.
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1. Introduction

Let X and Y be independent, positive random variables with distribution
functions F and G respectively, both assumed to be continuous. Let (X1, Y1), . . . ,
(XN , YN ) be i.i.d. as (X,Y ), where the population size N is fixed, but unknown.
Suppose one observes only those pairs (Xi, Yi), i ≤ N for which Yi ≤ Xi and
at least one such pair exists. Let (x1, y1), . . . , (xn, yn) denote these pairs. The
problem is to estimate F , G and N using the observed empirical data. By
convention, X is the variable of interest. Hence, this model is called the left
truncation model.

As a consequence of truncation, the number of observed pairs, n, is a
Bin(N,α) random variable, with α := P (Y ≤ X). By the strong law of large
numbers, n/N → α almost surely as N → ∞. Conditional on the value of n,
(xi, yi), i = 1, . . . , n are still i.i.d. but with conditional joint distribution

H∗(x, y) = P{x1 ≤ x, y1 ≤ y } = P{X ≤ x, Y ≤ y | Y ≤ X }
= α−1

∫ x

0
G(y ∧ z) dF (z)

for x, y > 0. The marginal distribution functions are denoted by

F∗(x) := H∗(x,∞) = α−1
∫ x

0
G(z) dF (z),
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G∗(y) := H∗(∞, y) = α−1
∫ ∞

0
G(y ∧ z) dF (z).

Here and in the following,
∫ b
a =

∫
(a,b] for 0 ≤ a < b ≤ ∞. Empirical counter-

parts of these distribution functions are denoted by H∗
n(x, y), F ∗

n(x) and G∗
n(y),

respectively.
Woodroofe (1985) studied the nonparametric maximum likelihood estimator

(MLE), and reviewed examples where such data may occur. Let aF = inf{ z >

0 : F (z) > 0 } and bF = sup{ z > 0 : F (z) < 1 }, and similarly for aG and bG. It
was shown that F can be reconstructed only when aG ≤ aF . The interesting case
is aG = aF . For the sake of simplicity, we suppose that aG = aF = 0 throughout.
Woodroofe’s analysis makes use of the one-to-one correspondence between F and
its associated cumulative hazard function

Λ(t) :=
∫ t

0

dF (z)
1 − F (z−)

=
∫ t

0

dF∗(z)
C(z)

, 0 ≤ t < ∞,

where, for 0 ≤ z < ∞, C(z) = G∗(z) − F∗(z−) = α−1G(z) [1 − F (z−)]. With
Cn(z) = G∗

n(z) − F ∗
n(z−), a natural estimator of Λ(t) is

Λn(t) :=
∫ t

0

dF ∗
n(z)

Cn(z)
=

1
n

∑
i:xi≤t

1
Cn(xi)

.

The nonparametric MLE of F , originally proposed by Lynden-Bell (1971), is

1 − Fn(t) =
∏

i:xi≤t

[
nCn(xi) − 1

nCn(xi)

]
,

assuming no ties in the data. This is analogous to the Kaplan-Meier product-limit
estimator in the random censorship model. The term nCn(z) can be thought of as
the number of pairs at risk at time z. Note that, in contrast with the censorship
model, nCn(z) is not a monotonic function of z in general.

Woodroofe (1985) proved the weak convergence of the cumulative hazard
process Ẑn(t) =

√
n [ Λn(t)−Λ(t) ] and product-limit process Zn(t) =

√
n [Fn(t)−

F (t) ] to certain Gaussian processes in the Skorohod space D[a, b] for any interval
(a, b) such that aG < a < b < bF . No further assumption on F and G is needed.
However, as a → aG, the variances of the limiting processes diverge to infinity
unless F and G satisfy the condition∫ ∞

aF

dF (z)
G(z)

< ∞. (1.1a)

Chao and Lo (1988) initiated almost sure representations of Ẑn and Zn in terms
of sums of normed i.i.d. random processes with uniformly valid remainder terms
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of order o(1). Stute (1993) provided a rigorous proof and improved the rates of
convergence. By assuming the stronger condition∫ ∞

aF

dF (z)
G2(z)

< ∞, (1.2)

Stute showed that the respective remainder terms are o(n−1/2(log n)(3+η)/2) for
any η > 0, and O(n−1/2(log n)3) uniformly over [aF , b], aF < b < bF . The use-
fulness of the representations is thus greatly enhanced. In applications, these are
used by invoking asymptotic results for sums of i.i.d. random processes. While
the representations are illuminating, the summands are complicated. In con-
trast, the limiting Gaussian processes are easily characterized by their respective
covariance functions. The question then arises: can the sums of i.i.d. processes
themselves be approximated in the almost sure sense by their respective Gaus-
sian limits? And if so, at what rates? A positive answer to these questions will
provide a neat representation of the processes and eliminate the need to invoke
asymptotic results for sums of i.i.d. processes. Also, with good approximation
rates, almost sure statements like the functional law of the iterated logarithm
are directly inherited from the same for the limiting processes.

In this paper, we construct strong Gaussian approximations for the cumula-
tive hazard process and product-limit process. The results are meant as large-
sample Gaussian approximations for a large finite population of partially hidden
objects. The basis of our work is Borisov’s (1982) extension of Komlós, Major
and Tusnády’s (KMT) approximation theorem for the univariate empirical pro-
cess to higher dimensions. In our case, the appropriate dimension is two. In
applying Borisov’s theorem, we bring forth the known two-dimensional nature of
the estimation process involved in a form which is more explicit than before. In
contrast, Burke, S. Csörgő and Horváth (1981, 1988) used the KMT theorem to
obtain strong Gaussian approximations of the estimation processes in the random
censorship model, thus revealing the true one-dimensional nature of the problem
there. While the KMT approximation rate is known to be the best possible,
the status of Borisov’s rate is much less certain. Any improvement on that rate
implies the same here.

Woodroofe (1985) suggested using
∫

GndFn as an estimator for α. In that
case, both X and Y are of interest simultaneously. The interesting case is bG = bF

which we also assume. Thus, even though we follow the literature in presenting
the results for the random variable X only, analogs for the random variable Y

hold jointly under the same condition. The counterpart of Woodroofe’s condition
(1.1a) is ∫ bG

0

dG

1 − F
< ∞, (1.1b)
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when Y is the variable of interest. Both conditions will be assumed in this paper.

2. Notation and Basic Auxiliary Results

In contrast to the usual practice in current literature, we formulate the results
in terms of the non-random population size N rather than the random number
of observed items n. Define

NF ∗
N (x) =:

N∑
i=1

I{Xi ≤ x, Yi ≤ Xi},

NG∗
N (y) =:

N∑
i=1

I{Yi ≤ y, Yi ≤ Xi}

in terms of the possibly unobserved (Xi, Yi), i ≤ N . Note that NF ∗
N = nF ∗

n and
NG∗

N = nG∗
n. Also, letting C∗(z) = αC(z) and CN (z) = G∗

N (z) − F ∗
N (z−), we

have NCN = nCn. Correspondingly, Λn and Fn are now rewritten as

ΛN (t) : =
∫ t

0

dF ∗
N (z)

CN (z)
=

1
N

∑
i:xi≤t

1
CN (xi)

,

1 − FN (t) =
∏

i:xi≤t

[
NCN (xi) − 1

NCN (xi)

]
,

with associated processes ẐN (t) =
√

N [ ΛN (t)−Λ(t) ] and ZN (t) =
√

N [FN (t)−
F (t) ], respectively. Note that ΛN = Λn, FN = Fn, ẐN =

√
N/n Ẑn and ZN =√

N/n Zn. Keeping α fixed, the observed sample size n increases as N increases.
Our aim is to construct strong Gaussian approximations for ẐN and ZN . For

that purpose, we first recall the following version of Borisov’s result as specialized
to R2 random variables. Let U1, U2, . . . , be i.i.d. random variables in R2, with
distribution function denoted by J(s), s = (s1, s2) ∈ R2, and set αN (s) :=√

N [JN (s) − J(s) ], where JN (s) is the empirical distribution function of U1,
. . . , UN . Also, let WJ(·) be the weak limit of αN (·), which is a random Gaussian
field with zero mean and covariance E[WJ (t)WJ(s) ] = J(min(t, s)) − J(t)J(s),
for t = (t1, t2), s = (s1, s2) ∈ R2, where min(t, s) := ( min (t1, s1), min (t2, s2) ).

Theorem 2.A. (Borisov 1982) On a rich enough probability space, there exist
distributionally equivalent copies WJ,N of WJ such that

P

{
sup
s∈R2

| αN (s) − WJ,N (s) |> C1(δ)
log N

N1/6

}
≤ C2 N−δ

for any δ > 0, where C1(δ) and C2 are constants.
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For our case, U = (X,Y ) such that Y ≤ X, so J(s) = αH∗(s) is a sub-
distribution function, JN (s) = H∗

N (s) and αN (s) =
√

N [H∗
N (s) − αH∗(s) ] is a

sub-empirical process. Note also that

α1
N (s1) : =

√
N [F ∗

N (s1) − αF∗(s1) ] = αN (s1,∞),
α2

N (s2) : =
√

N [G∗
N (s2) − αG∗(s2) ] = αN (∞, s2).

Let W 1
N (s1) := WJ,n(s1,∞) and W 2

N (s2) := WJ,N(∞, s2). Then, for all δ > 0,

P
{

sup
si∈R

| αi
N (si) − W i

N (si) |> C1(δ)
log N

N1/6
, i = 1, 2

}

≤ P
{

sup
s∈R2

| αN (s) − WJ,N(s) |> C1(δ)
log N

N1/6

}
≤ C2

N δ
.

This can be arranged on a single rich enough probability space (Ω,A, P ) by
inserting one of the two suitably adjusted proofs of the KMT theorem, given by
Mason and van Zwet (1987) and Bretagnolle and Massart (1989), into Borisov’s
proof. The Borel-Cantelli lemma then gives, almost surely,

sup
si∈R

| αi
N (si) − W i

N (si) |= O

(
log N

N1/6

)
, jointly for i = 1, 2. (2.1)

Note also that the Gaussian processes W 1
N (s1), W 2

N (s2) can be expressed in
terms of Brownian Bridges W̃ 1

N , W̃ 2
N as W 1

N (s1) = W̃ 1
N (αF∗(s1)), and W 2

N (s2) =
W̃ 2

N (αG∗(s2)).
Borisov’s theorem provides strong approximation by a sequence of copies of

the Gaussian limit. The next result, due to Csörgő and Horváth (1988), builds
upon it to give an approximation by a two-parameter Gaussian process.

Theorem 2.B. On a rich enough probability space, one can define a Gaussian
process {Γ(s, u), s ∈ R2, u > 0 }, with E Γ(s,N) = 0 and E Γ(s,N) Γ(t,M) =
(N ∧ M) [J(s ∧ t) − J(s)J(t) ], s, t ∈ R2, N,M = 1, 2, . . ., such that

sup
s∈R2

∣∣∣∣ αN (s) − Γ(s,N)√
N

∣∣∣∣= O

(
(log N)3/2

N1/8

)

almost surely.

We also use Bennett’s inequality, as stated in Pollard (1984, p.192).

Theorem 2.C. Let Z1, . . . , ZN be i.i.d. mean zero random variables with |Zi| ≤
M , where M > 0 is a constant, and V =

∑N
i=1 Var(Zi). Then for η ≥ 0,

P { | Z1 + · · · + ZN |> η } ≤ 2 exp

{
− η2

2V
B

(
Mη

V

)}
,
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where B(λ) = 2λ−2[ (1 + λ) log(1 + λ) − λ ] for λ > 0.

3. Main Results

As mentioned in the introduction, in the presence of left truncation, the
variances of the limiting processes may diverge as a → 0. This reflects the
uncertainty near 0 where an item X is very likely to be unobserved. To help
control possible divergences as a → 0, Stute (1993) assumed condition (1.2)
and simplified the proof a great deal. On the other hand, Woodroofe (1985)
considered the weak convergence of the modified process Ẑa

n(t) := Ẑn(t)− Ẑn(a)
and showed that condition (1.1a) is sufficient to guarantee finite variance of the
limiting process even as a → 0. Here we follow up and develop this line of thought.
Instead of restricting consideration to fixed intervals [a, b], as in all previous work
under (1.1a), our construction will be over increasing sets [aN , bN ], where aN → 0
and bN → bF at appropriate rates. Modification of any function to [aN , bN ] will
be denoted by affixing aN as superscript. Thus, for example,

ẐaN
N (t) :=

√
N [ ΛaN

N (t) − ΛaN (t) ] :=
√

N

∫ t

aN

dF ∗
N

CN
−

√
N

∫ t

aN

dαF∗
C∗

,

and ZaN
N (t) :=

√
N [F aN

N (t) − F aN (t) ], where

1 − F aN (t) :=

{
1−F (t)

1−F (aN ) , if t ≥ aN ;
1, otherwise,

1 − F aN
N (t) =

∏
i:aN<xi≤t

[
NCN (xi) − 1

NCN (xi)

]
.

Here ΛaN
N and F aN

N are non-parametric MLE for ΛaN and F aN , respectively. Our
modifications of ΛN and FN are analogous to those of Gu and Lai (1990).

Define, for t ∈ [aN , bN ], the Gaussian process

HaN
N (t) :=

∫ t

aN

W 1
N

C2∗
dαG∗ −

∫ t

aN

W 2
N

C2∗
dαF∗ +

W 1
N

C∗

∣∣∣∣∣
t

aN

.

Clearly, E HaN
N (t) = 0. A lengthy but otherwise straightforward calculation (see

Tse (1995)) gives the covariance of HaN
N (t): Cov[HaN

N (s), HaN
N (t) ] = laN

(s∧t) =
laN

(s) ∧ laN
(t) for s, t > aN , where la(t) :=

∫ t
a(1/C

2∗ (u))dαF∗(u). Define l−1
a (t)

as the generalized inverse function of la(t) as in Burke, S. Csörgő and Horváth
(1981) for the random censorship model. Then the covariance formula above
implies that WN (·) = HaN

N (l−1
aN

(·)) is a standard Wiener process on [0,∞] for
each N , and hence HaN

N (t) = WN (laN
(t)), for t ≥ aN .
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To parametrize the dependence of the approximation rates on the increasing
sets [aN , bN ], we define dN := [C∗(lN )]−1 = {G(lN )[1 − F (lN−)]}−1 where lN ∈
[ aN , bN ] such that C∗(lN ) = minaN≤t≤bN

C∗(t), and assume that

C∗(lN ) = G(lN )[1 − F (lN )] ≥
(

8δ
log N

N

)1/2

, δ > 1. (3.1)

This condition arises as a technical criterion in Lemma 4.1 below. It prevents dN

from increasing too fast, and thus limits the rate at which aN → 0 and bN → bF .
For instance, suppose that F and G have the expansions F (z) = k1z

2 + O(z3)
and G(z) = k2z + k3z

2 + O(z3) as z ↓ 0, where k1, k2 and k3 are constants with
k1, k2 > 0, so that condition (1.1a) is satisfied (but condition (1.2) is not satisfied
in general), and k3 ≥ 0. Then, for condition (3.1) to be satisfied, it suffices to
choose aN := ( log N/N )−η+1/2 for 1/8 > η > 0. It is also easy to see that under
these conditions F aN can be replaced by F in the process ZaN

N in Theorems 3.2
and 3.4 below; analogous statements may be made for Theorems 3.1 and 3.3.
Similar comments hold for bN with the role of (1.1a) replaced by that of (1.1b).

The statements of the next two theorems hold in the probability space of
(2.A).

Theorem 3.1. If conditions (1.1) and (3.1) are satisfied, then, almost surely,

sup
aN≤t≤bN

| ẐaN
N (t) − WN (laN

(t)) |= O

(
d2N

log N

N1/6

)
.

Next, to approximate the product-limit process, we define the Gaussian pro-
cess KaN

N (t) := [1 − F aN (t)]HaN
N (t) = [1 − F aN (t)]WN (laN

(t)).

Theorem 3.2. If conditions (1.1) and (3.1) are satisfied, then, almost surely,

sup
aN≤t≤bN

| ZaN
N (t) − KaN

N (t) |= O

(
d2N

log N

N1/6

)
.

Of course, these approximations are meaningful only if the rates go to zero as
N → ∞. This further restricts the speed at which aN → 0 and bN → bF even
if Borisov’s bivariate rate log N/ N1/6 is improved. (A lower bound of the latter
improvement is KMT’s rate log N/ N1/2; c.f. Beck (1985)).

Theorems 3.1 and 3.2 approximate ẐN and ZN by sequences of their Gaus-
sian limits. Weak convergence results follow immediately. However, almost
sure statements cannot be obtained from them since the covariances between
members in the sequences are not specified. In the next two theorems, these
sequences are replaced by single two-parameter Gaussian processes. Almost
sure statements, like the law of the iterated logarithm, can be derived from
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the results. Let s = (s1, s2) ∈ R2. Define a two-parameter Gaussian process
{HaN (t, u), t ≥ aN , u ≥ 0 } in terms of Γ(s, u) in Theorem 2.B such that

HaN (t, u) :=
∫ t

aN

Γ((s1,∞), u)√
uC2∗ (s1)

dαG∗(s1)

−
∫ t

aN

Γ((∞, s2), u)√
uC2∗ (s2)

dαF∗(s2) +
Γ((s1,∞), u)√

uC∗(s1)

∣∣∣∣t
aN

.

Also, define KaN (t, u) := [ 1 − F aN (t) ]HaN (t, u). It is straightforward to check
(Tse (1995)) that the covariances of these processes are, for N ≤ M , s ≤ t,

Cov [HaN (s,N), HaM (t,M) ] =

√
N

M
laN

(s),

Cov [KaN (s,N), KaM (t,M) ] = [ 1 − F aN (s) ] [ 1 − F aM (t) ]

√
N

M
laN

(s).

Hence, W (v, u) =
√

u HaN (l−1
aN

(v), u), v,u ≥ 0, is a bivariate Wiener process.
The statements of the next two theorems hold in the probability space of (2.B).

Theorem 3.3. If conditions (1.1) and (3.1) are satisfied, then, almost surely,

sup
aN≤t≤bN

| ẐaN
N (t) − W (laN

(t), N)√
N

|= O

(
d2N

(log N)3/2

N1/8

)
.

Theorem 3.4. If conditions (1.1) and (3.1) are satisfied, then, almost surely,

sup
aN≤t≤bN

| ZaN
N (t) − KaN (t,N) |= O

(
d2N

(log N)3/2

N1/8

)
.

4. Proofs

For the sake of simplicity, we often denote supaN≤t≤bN
|f(t)| by ‖f(·)‖, or

even simpler, ‖f‖. We start with the usual decomposition of ẐaN
N (t):

ẐaN
N (t) =

∫ t

aN

dα1
N

C∗
+
∫ t

aN

√
N (C∗ − CN )

C2∗
dαF∗ + R1N (t) + R2N (t)

=
∫ t

aN

α1
N dαG∗

C2∗
−
∫ t

aN

α2
N dαF∗

C2∗
+

α1
N

C∗

∣∣∣∣t
aN

+R1N (t) + R2N (t), (4.1)

where

R1N (t) =
∫ t

aN

√
N (C∗ − CN )

C2∗
d(F ∗

N − αF∗),
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R2N (t) =
∫ t

aN

√
N (C∗ − CN )2

CN C2∗
dF ∗

N .

Theorem 3.1 is about the order of ‖ẐaN
N − HaN ‖ = ‖R1N + R2N + R3N‖, where

R3N (t) = −
∫ t

aN

α2
N − W 2

N

C2∗
dαF∗ +


∫ t

aN

α1
N − W 1

N

C2∗
dαG∗ +

α1
N − W 1

N

C∗

∣∣∣∣∣
t

aN


 .

For ease of comparison, note that our definitions of R1N and R2N are analogous
to

√
nRn1 and

√
nRn2 in Stute (1993), except that we have N in place of n

and varying aN . The treatment of these two terms differs from Stute’s on two
accounts. First, the approximation rates depend on the increasing sets [aN , bN ]
through dN , which is a constant for fixed intervals strictly contained in (0, bF ).
Second, we assume the weaker condition (1.1). To lower the exponent of the dN

factor in the rate, we invoke Lemmas 4.3 and 4.4 below. For R1N , we adapt
Stute’s results (1994) on U-statistics processes to the present case. The relevant
analysis is in Lemma 4.6. For R2N , we start by using the Dvoretzky-Kiefer-
Wolfowitz (DKW) inequality to obtain, in Lemma 4.1 under (3.1), a bound for
C/CN on {wi : aN ≤ wi ≤ bN}, wi = xi, or yi. The remaining factors in R2N

are dealt with by Lemmas 4.4 and 4.5; the latter is a suitable form of Csáki’s
(1975) asymptotic result for a standardized empirical process. Finally, we use
(2.1) to treat R3N . For a fixed interval [a, b] strictly contained in (0, bF ), dN is
a finite constant and the theorems are valid under condition (1.1) only. If we
are interested in the random variable X only, we can set a = 0 by replacing
Lemma 4.1 with Stute’s Corollary 1.3. The statements of the theorems then
remain valid under condition (1.2), with the supremum taken over (0, b] and the
approximation rates multiplied by a factor of (log N)1/2.

Let wi denote either xi or yi, and note that since F and G are assumed to
be continuous, F∗(t−) = F∗(t) for every t.

Lemma 4.1. If condition (3.1) is satisfied, then for any δ > 0,

P

{
sup

i:aN≤wi≤bN

1
CN (wi)

>
2

C∗(lN )

}
≤ 4N−δ

and supi:aN≤wi≤bN
C∗(wi)/CN (wi) ≤ 2 almost surely.

Proof. By condition (3.1) and the DKW inequality as specified by Massart
(1990), the left-hand side is

P

{
sup

i:aN≤wi≤bN

[F ∗
N (wi−) − G∗

N (wi) ] >
−C∗(lN )

2

}
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≤ P

{
‖F ∗

N − αF∗‖ >
C∗(lN )

4

}
+ P

{
‖G∗

N − αG∗‖ >
C∗(lN )

4

}
≤ 4N−δ .

The Borel-Cantelli lemma then gives the second statement.

Lemma 4.2. For s ≤ t0 ≤ t and k > 1 we have
∫ t

t0

dF

(1 − F )k
≤ 1

(k − 1) [ 1 − F (t) ]k−1
and

∫ t0

s

dG

Gk
≤ 1

(k − 1)Gk−1(s)
.

Proof. The statements follow from monotonicity and the assumed continuity of
F and G respectively.

Lemma 4.3. If F and G satisfy the conditions in (1.1), then for k > 1, we have∥∥∥∥
∫ ·

aN

dF

Ck∗

∥∥∥∥= O(dk−1
N ) and

∥∥∥∥
∫ ·

aN

dG

Ck∗

∥∥∥∥= O(dk−1
N ).

Proof. Recall that C∗ = G(1 − F ). For the first statement, write
∫ t

aN

dF

Ck∗
=
(∫ t0

aN

+
∫ t

t0

)
dF

Ck∗
, aN < t0 < t ≤ bN ,

with a t0 to be specified. Now, using Lemma 4.2,
∫ t

t0

dF

Ck∗
≤ 1

Gk(t0)

∫ t

t0

dF

( 1 − F )k
<

1
(k − 1)Gk(t0)Ck−1∗ (t)

.

Also, ∫ t0

aN

dF

Ck∗
≤
(

1
[ 1 − F (t0) ]k

∫ t0

aN

dF

G

)
1

Ck−1∗ (aN )
.

By assumption,
∫ t0
aN

dF
G < ∞, and t0 can be chosen so that 1/G(t0) and 1/[1 −

F (t0)] are finite. For example, take t0 to be the average of the medians of F and
G. This is possible since aF = aG = 0 and bG ≤ bF . The first statement follows.
The proof for the second statement is analogous.

Lemma 4.4. If conditions (1.1) and (3.1) are satisfied, then, almost surely,
∥∥∥∥
∫ ·

aN

dF ∗
N

C2∗

∥∥∥∥= O ( dN ) .

Proof. Write∥∥∥∥
∫ ·

aN

dF ∗
N

C2∗

∥∥∥∥≤
∥∥∥∥
∫ ·

aN

d(F ∗
N − αF∗)
C2∗

∥∥∥∥ +
∥∥∥∥
∫ ·

aN

dαF∗
C2∗

∥∥∥∥ .



STRONG GAUSSIAN APPROXIMATIONS 291

The second term is O(dN ) by Lemma 4.3. With a later application in mind, we
prove a more general statement for the first term. For k = 1, 2, let

Zk
i (t) =

I(aN ≤ Xi ≤ t, Yi ≤ Xi)
Ck∗ (Xi)

,

so that |Zk
i (t)| ≤ dk

N and, by Lemma 4.3, Var Zk
i (t) = K d2k−1

N where K is a
finite constant. Now

∥∥∥∥
∫ ·

aN

dα1
N

Ck∗

∥∥∥∥=
∥∥∥∥ 1√

N

N∑
i=1

[Zk
i (·) − E Zk

i (·) ]
∥∥∥∥ .

Bennett’s inequality gives, for any γ > 0,

P

(∣∣∣∣
∫ t

aN

dα1
N

Ck∗

∣∣∣∣>
√

γd2k−1
N log N

)
≤ 2 exp

{
−γ log N

2K
B

(√
γdN log N

N

1
K

)}
.

Since dN log N/N = o(1) by condition (3.1), and 1 > B(λ) > 0 for any finite
λ > 0, we can choose γ > 0 such that the last expression is O(N−γ). The
Borel-Cantelli lemma then gives, almost surely,

max
t∈AN

∣∣∣∣
∫ t

aN

dα1
N

Ck∗

∣∣∣∣= O

(√
d2k−1

N log N

)

for every finite set AN of t′s with aN ≤ t ≤ bN . Since F∗ is continuous and

∫ ·

aN

√
N dαF∗

Ck∗
= O(1)

√
d2k−1

N log N ,

we may choose AN = {tNj : 1 ≤ j ≤ M} such that aN = tN1 < · · · < tNM = bN

and ∫ tj+1

tj

√
N dαF∗

Ck∗
≤
√

d2k−1
N log N

for j = 1, . . . ,M − 1. Monotonicity of ΛaN and ΛaN
N then gives

∥∥∥∥
∫ ·

aN

dα1
N

Ck∗

∥∥∥∥≤ sup
t∈AN

∣∣∣∣
∫ t

aN

dα1
N

Ck∗

∣∣∣∣ + O
(√

d2k−1
N log N

)
= O

(√
d2k−1

N log N
)
.

(4.2)
With condition (3.1), the k = 2 case gives the first term of the lemma.

Lemma 4.5. If conditions (1.1) are satisfied, then, almost surely, for every
ε > 0, we have ∥∥∥∥

√
N (C∗ − CN )√

C∗

∥∥∥∥= O

(√
(log N)1+ε

)
.
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Proof. Recalling that
√

N (C∗ − CN ) = α1
N − α2

N and C∗ = G(1 − F ), we have∥∥∥∥
√

N (C∗ − CN )√
C∗

∥∥∥∥≤
∥∥∥∥ α1

N√
G(1 − F )

∥∥∥∥ +
∥∥∥∥ α2

N√
G(1 − F )

∥∥∥∥ .

The first term is bounded by∥∥∥∥∥
√

F

G

∥∥∥∥∥
∥∥∥∥∥
√

αF∗ (1 − αF∗)
F (1 − F )

∥∥∥∥∥
∥∥∥∥∥ α1

N√
αF∗ (1 − αF∗)

∥∥∥∥∥ .

By (1.1a) and the definition of F∗, the first two factors are bounded. The last
factor is, almost surely, O( (log N)(1+ε)/2 ) for each ε > 0 by Csáki’s (1975) result.
The treatment of the second term is analogous.

Proof of Theorem 3.1. Recall ẐaN
N (t)−HaN (t) = R1N (t)+R2N (t)+R3N (t). By

(2.1) and Lemma 4.3, ‖R3N‖ = O( dN log N/N1/6 ) almost surely. By Lemmas
4.1, 4.5 and 4.4, we also have, almost surely,

‖R2N‖ ≤ 1√
N

∥∥∥∥
√

N (C∗ − CN )√
C∗

∥∥∥∥2 ∥∥∥∥
∫ ·

aN

2 dF ∗
N

C2∗

∥∥∥∥= O

(
dN

(log N)1+ε

√
N

)

for any ε > 0. Lastly, Stute (1993) noted that there is a double sum of the form

1
N

∑
i

∑
j

hN (Xi, Yi;Xj , Yj)

in R1N (t) which may be decomposed into its diagonal and off-diagonal parts.
Thus,
√

N R1N (t) =
∫ t

aN

dF ∗
N

C∗
−
∫ t

aN

dF ∗
N

C2∗
+
∫ t

aN

CN − C∗
C2∗

dαF∗ +
1
N

[D1
N (t) − D2

N (t)],

where Di
N (t), i = 1, 2, is a degenerate U-statistic for each t. The first three

terms and the last term correspond to the diagonal and the off-diagonal part of
the double sum respectively. By Lemmas 4.3 to 4.5, the sup norm of the first three
terms over [aN , bN ] are O(dN ) almost surely. The last term is o(d2N (log N)ε+1/2)
by Lemma 4.6 below. This completes the proof.

Lemma 4.6. If conditions (1.1) and (3.1) are satisfied, then, almost surely,∥∥∥∥ Di
N

N

∥∥∥∥= o ( d2N (log N)ε+1/2 ), i = 1, 2.

Proof. By Theorem 5 of Stute (1994), with p = 2, we have E [ ‖Di
N ‖2 ] ≤

(Ki
N N )2 for i = 1, 2, with

K1
N ≤ A

[∫ bN

aN

∫ bN

aN

I(z ≥ y)
C4∗ (y)

dαF∗(y)dαF∗(z)
]1/2

≤ M dN ,
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K2
N ≤ A

[∫ bN

aN

∫ bN

aN

I(z ≥ y)
C4∗ (y)

dαF∗(y)dαG∗(z)
]1/2

≤ M dN ,

where A and M are finite constants. Consider the blocks 2k ≤ N ≤ 2k+1 for
k ≥ 1. For each fixed t, Di

N (t)/N (N −1) is a reverse time martingale in N (Berk
(1966)). Hence, ‖Di

N‖/N (N −1) is a non-negative submartingale in reverse time
for 2k ≤ N ≤ 2k+1. Setting BN := N/ (log N)β, since dN is non-decreasing, we
obtain

P

{ ‖Di
N‖

N2
≥ M

d2N ε

BN

}
≤ P

{
B2k+1 max

2k≤N≤2k+1

‖Di
N‖

N(N − 1)M d2k+1

≥ ε

}

≤ B2
2k+1

ε2 [ 2k (2k − 1) ]2
E

[
sup

a
2k≤t≤b

2k

∣∣∣∣ Di
2k(t)

M d2k+1

∣∣∣∣2
]

≤ B2
2k+1

ε2

22k

[ 2k (2k − 1) ]2
= O

(
k−2 β

)

for each ε > 0. Hence, if β > 1/2, Borel-Cantelli lemma gives the result.
Note that the rate in Theorem 3.1 is O( d2N log N/N1/6 ), whereas ‖R1N‖ =

o( d2N (log N)1/2/
√

N ) and ‖R2N‖ = O( dN (log N)1+ε/
√

N ). The N−1/6 factor
comes from (2.1). Any improvement in Borisov’s rate will result in the same here.

Next, we turn to the proof of Theorem 3.2. Noting that log [ 1 − F aN
N (t) ]

may yield log 0, we define a slight modification of F aN
N . Let

1 − F̄ aN
N (t) :=

∏
aN≤xi≤t

NCN (xi)
NCN (xi) + 1

, aN ≤ t ≤ bN .

Lemma 4.7. Suppose conditions (1.1) and (3.1) are satisfied. Then, almost
surely, ‖ F̄ aN

N − F aN
N

∥∥∥= O( dN/N ).

Proof. Using Lemmas 4.1, 4.4 and |∏n
i=1 ai − ∏n

i=1 bi| ≤ ∑n
i=1 |ai − bi| for

|ai|, |bi| ≤ 1, we have,

‖ F̄ aN
N − F aN

N ‖ ≤
∥∥∥∥
∫ ·

aN

dF ∗
N (u)

CN (u) [N CN (u) + 1 ]

∥∥∥∥= O

(
dN

N

)

almost surely.

Lemma 4.8. Suppose conditions (1.1) and (3.1) are satisfied. Then, almost
surely, ‖ − log[ 1 − F̄ aN

N ] − ΛaN
N ‖ = O( dN/N).

Proof. Using the definitions of F̄ aN
N and ΛaN

N , the left hand side is bounded by∥∥∥∥ − log
∏

aN≤xi≤·

[
1 − 1

N CN (xi) + 1

]
−

∑
aN≤xi≤·

1
N CN (xi) + 1

∥∥∥∥
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+
∥∥∥∥ ∑

aN≤xi≤·

[ 1
N CN (xi) + 1

− 1
N CN (xi)

] ∥∥∥∥ .

Applying the algebraic inequality

0 < − log
[
1 − 1

1 + x

]
− 1

1 + x
<

1
x(x + 1)

, for x > 0,

the last expression is bounded by O( dN/N ) almost surely in view of Lemmas
4.1 and 4.4.

Next, for aN ≤ t ≤ dN , let LaN
N (t) =

√
N{− log[ 1 − F̄ aN

N (t) ] − ΛaN (t) }.
Lemma 4.9. Suppose conditions (1.1) and (3.1) are satisfied. Then, almost
surely, ‖LaN

N − WN ( laN
)‖ = O( d2N log N/N1/6 ).

Proof. This follows from Lemma 4.8 and Theorem 3.1.

Proof of Theorem 3.2. Noting that 1 − F aN = exp(−ΛaN ), we have

‖ZaN
N − KaN

N ‖ =
∥∥∥ √

N [ F aN
N − F aN ] − (1 − F aN )WN ( laN

)
∥∥∥

=
∥∥∥ √

N
[
[ 1 − F̄ aN

N ] − exp[−ΛaN ]
]
+ (1 − F aN )LaN

N

∥∥∥
+ O

(
dN√
N

)
+ O

(
d2N

log N

N1/6

)

almost surely by Lemmas 4.7 and 4.9. Now apply a Taylor expansion around
exp(−ΛaN (t)) for the first term, with an intermediate point θN (t):

min
(

log[ 1− F̄ aN
N (t) ], −ΛaN (t)

)
≤ θN (t) ≤ max

(
log[ 1− F̄ aN

N (t) ], −ΛaN (t)
)
,

so that θN(t) ≤ 0. Note that the power one term in the expansion cancels with
(1 − F aN (t))LaN

N (t). Hence the last expression is bounded by∥∥∥∥
√

N

2
[ΛaN

N − ΛaN ]2
∥∥∥∥ + O

(
d2N

log N

N1/6

)
.

Applying Lemma 4.10 below, we get the desired result.

Lemma 4.10. Suppose conditions (1.1) and (3.1) are satisfied. Then, almost
surely, ‖ẐaN

N ‖ = O( dN (log N)(1+ε)/2 ).

Proof. By (4.1),

ẐaN
N (t) =

∫ t

aN

dα1
N

C∗
+
∫ t

aN

√
N (C∗ − CN )

C2∗
dαF∗ + R1N (t) + R2N (t).

The first term corresponds to the k = 1 case of (4.2). Also, by Lemmas 4.5 and
4.3, ∥∥∥∥

∫ ·

aN

√
N (C∗ − CN )

C2∗
dαF∗

∥∥∥∥= O

(√
dN (log N)1+ε

)
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almost surely. Finally, from the proof of Theorem 3.1 and condition (3.1), we
have ‖R1N + R2N ‖ = O( [dN (log N)1+ε]1/2 ) almost surely.

Proofs of Theorems 3.3 and 3.4. These are the same as the proofs of The-
orems 3.1 and 3.2, with the roles of Theorem 2.A and Theorem 3.1 taken by
Theorem 2.B and Theorem 3.3, respectively.
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