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Abstract: Computations with cumulants are becoming easier through the use of

computer algebra but there remains a difficulty with the finiteness of the com-

putations because all distributions except the normal have an infinite number of

non-zero cumulants. One is led therefore to replacing finiteness of computations

by “finitely generated” in the sense of recurrence relationships. In fact it turns

out that there is a natural definition in terms of the exponential model which is

that the first and second derivative of the cumulant generating function, K, lie

on a polynomial variety. This generalises recent polynomial conditions on variance

functions. This is satisfied by many examples and has applications to, for example,

exact expressions for variance functions and saddle-point approximations.
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1. Introduction

It is perhaps best to introduce this paper by describing briefly the route by
which the authors came to the definition of finite generation of cumulants. The
starting point was the recognition that in the understanding of the propagation
of randomness through systems, cumulants may be useful. The cumulants of
the output Y of a system may be computed, for some systems, directly from the
cumulants of the inputX. The theory of McCullagh (1987) allows this to be done
if the function y = f(x) relating the input to the output is polynomial, and where
both X and Y are multivariate. We mention also the survey paper of Gutiérrez-
Peña and Smith (1997), where the relation to conjugate prior distributions is
discussed.

The authors are aware of the widespread use of cumulants as “higher order
statistics” in signal processing. It was these topics which suggested that there
may be a computational theory or, at least with the availability of fast compu-
tational algebra packages, there should be ways of setting up cumulant calcula-
tions in an attractive fashion. This had already been recognized by researchers
in stochastic geometry, see Kendall (1993).

The first difficulty in trying to set up such a methodology is that apart from
the normal distribution all other distributions have an infinite number of non-
zero cumulants (Marcinkievicz Theorem, see Feller (1966)). This means that any
attempt to produce a closed algebraic system with a finite number of operations
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by setting cumulants to zero above a finite order is fallacious. For non-normal
variables one is left with expanding the computations as the order gets higher,
as in the McCullagh theory. And yet there are many cases where the cumulants
are very simple to compute, such as the Poisson distribution where they are
all equal. This points towards using recurrence relationships, replacing the idea
of “finiteness” by “finitely generated”. After considerable exploration even this
does not seem the most appropriate environment, although it is quite close to
the definition finally adopted.

Two other strands of research have had an impact. First the work on the
exponential models, and particularly that of Letac (1992), points to the pivotal
role of the cumulant generating function relationship in the definition of variance
function. The use of the exponential model in areas such as saddle-point approxi-
mation is already established, see the books by Barndorff-Nielsen and Cox (1989,
1994). Second, the authors recent work (Pistone and Wynn (1996)) on the use
of Gröbner bases in identification in experimental design points to elimination
theory as a useful tool for computations.

2. The Exponential Model

The question we address in this section has two parts: the relationship of
the cumulant function K to the exponential family and the consequences for
computations with cumulants.

Provided certain regularity conditions hold, an “exponential model”, or
equivalently a natural exponential family of distributions, can be associated with
any (possibly vector) random variable whose Laplace transform is defined in a
neighborhood of 0. This important idea is due to Khinchin who introduced it in
the context of Statistical Mechanics (Khinchin (1949)), and was developed by a
number of authors (see the papers by Morris (1982, 1983) for the first applica-
tions to characterization and Casalis (1996)), but particularly over a number of
years by Letac (1992). This is somewhat different from saying that the random
variable comes from, or lies in, an exponential family. Relevant references on ex-
ponential models are Barndorff-Nielsen (1978), Johansen (1979), Brown (1986)
and Letac (1992). See also Pistone and Sempi (1995), Pistone and Rogantin
(1998) and Gibilisco and Pistone (1998) for non-parametric generalizations.

2.1. Basic properties

The following definitions and theorems are all well known from the references
already given. We have collected them here for ease of reference. If no confusion
is possible, we denote by ab the scalar product of vectors a and b. Otherwise we
use a · b.
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Definition 1. Let X be a random vector in Rm. Denote by DX the interior
of the convex set {t ∈ Rm : E[etX ] < +∞}. If DX �= ∅ then the moment
(generating) function MX and cumulant (generating) function KX of X are the
functions defined for each t ∈ DX by MX(t) = E[etX ], KX(t) = logMX(t).

Theorem 2. Assume that the random vector X = (X1, . . . ,Xm) has generating
functions MX and KX with domain DX . Then:
1. The moment function MX and the cumulant function KX are convex. If X

is not a constant they are strictly convex;
2. The moment function MX and the cumulant function KX are analytic in DX .

The derivatives of the moment function are given by the equations

∂n1+...+nm

∂tn1
1 . . . ∂tnm

m
MX(t) = E[Xn1

1 . . . Xnm
m etX ];

3. The first derivative of the cumulant function

K ′
X(t) = (

∂

∂t1
KX(t), . . . ,

∂

∂tm
KX(t))

is a 1-to-1 mapping from DX to Rm;
4. If the generating functions are defined in a neighborhood of 0, then the random

vector X has finite moments of all orders and the raw moments are given by

µn1...nm(X) =
∂n1+···+nm

∂tn1
1 . . . ∂tnm

m
MX(t)

∣∣∣∣∣
t=0

.

Definition 3. If the domain DX of the generating functions of the random
vector X contains 0, we will say that X belongs to the class E of exponentially
integrable random vectors; in such a case the coefficients of the Taylor series of
the cumulant function at 0 are called cumulants:

κn1...nm(X) =
∂n1+···+nm

∂tn1
1 . . . ∂tnm

m
KX(t)

∣∣∣∣∣
t=0

.

Definition 4. Let X be a random vector of class E and let DX be the domain
of the generating functions. Then the equation

p(x; θ) = eθx−KX(θ), θ ∈ DX , (1)

defines an exponential model with respect to the distribution FX of the random
vector X. Such a model is called the natural exponential model associated to
X. Such a model can be parameterized by the mean parameter η = K ′

X(θ) (see
Theorem 2, Part 3).
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Notice that all exponential models are exactly of this form when parame-
terised by the natural exponential parameter. Moreover the random variable X
is the sufficient statistics of the exponential model and U = X−E[X] is the score
statistic at θ = 0. The exponential model associated to the random variable X
can be sought as an exponential model of probability distributions, starting at
the distribution FX of X, in the “direction” U .

The results on the generating functions take an extended form when consid-
ered with respect to the exponential model. We denote by Eθ the expectation
with respect to the θ-distribution in the natural exponential model of the random
vector X.

Again we try to avoid long notation in the multivariate case, by writing for
a multi-index (n1, . . . , nm):

n! = n1! · · ·nm!,

tn = tn1
1 · · · tnm

m ,

dn

dtn
f(t) or f (n)(t) =

∂n1+···+nm

∂tn1
1 . . . ∂tnm

m
f(t1, . . . , tm).

Theorem 5. The random vector X is exponentially integrable with respect to all
Eθ, θ ∈ DX , and
1. The random vector X = (X1, . . . ,Xm) has finite θ-moments of all orders and

the raw moments are given by

Eθ[Xn] = MX(θ)−1 d
n

dθn
MX(θ);

2. The coefficients of the Taylor series of KX at θ are the cumulants of X with
respect to θ:

KX(θ + t) −KX(θ) =
∑
n≥1

K
(n)
X (θ)

tn

n!
.

Proof. The generating functions of X with respect to θ are

MX,θ(t) = Eθ[etX ] =
∫
eθx−KX(θ)etx dFX(x) =

MX(t+ θ)
MX(θ)

,

KX,θ(t) = logMX,θ(t) = KX(t+ θ) −KX(θ).

The moment function MX and the cumulant function KX are connected by the
relation MX = eKX . By successive derivation and substitution it is easy to prove
the following proposition. We do not consider the (straightforward) derivation
of the analogous multivariate formulae.

Proposition 6. For a real random variable X of the class E and in a suitable
neighborhood of 0:
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1. For all n ≥ 0,

M
(n+1)
X (t) =

n∑
h=0

(
n

h

)
K

(h+1)
X (t)M (n−h)

X (t);

2. For all n ≥ 1,

M
(n)
X (t) = MX(t)Gn(K ′

X(t), . . . ,K(n)
X (t)),

where the polynomials Gn(κ1, . . . , κn) are defined by

G1(κ1) = κ1,

Gn+1(κ1, . . . , κn+1) = κ1Gn(κ1, . . . , κn)

+
n∑

i=1

∂

∂κi
Gn(κ1, . . . , κn)κi+1;

3. For all n ≥ 1

M
(n)
X (t)K(n)

X (t) = Hn(MX(t),M ′
X (t), . . . ,M (n)

X (t)),

where the homogeneous polynomials Hn(µ0, . . . , µn) are defined by

H1(µ0, µ1) = µ1,

Hn+1(µ0, . . . , µn+1) = µ0

n∑
i=0

∂

∂µi
Hn(µ0, . . . , µn)µi+1

−nµ1Hn(µ0, , . . . , µn). (2)

Proof. Use the basic relation M ′
X = MXK

′
X . 1. is Leibnitz’s formula; 2. and 3.

are verified by recurrence.

2.2. Variance function

The construction of the natural exponential family allows a clean definition
of the variance function related to the original random variable X.

Definition 7. Let ΨX be the inverse of the gradient of the cumulant function
KX , see Theorem 2, Part 3. The variance function of the exponential model (1)
is defined by

VX(η) = K ′′
X [ΨX(η)], (3)

where K ′′
X denotes the Hessian matrix of the cumulant function.

The value of the variance function VX(η) is the variance of the random vector
X with respect to the unique distribution of the exponential model of X such
that the expectation of X is η.
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A number of authors have classified distributions for which the variance func-
tion VX(·) has a particular form. For example the class when VX(·) is quadratic
was classified by Morris (1982) into six types: normal, Poisson, binomial, nega-
tive binomial, gamma and hyperbolic cosine. The cubic case has been studied by
Mora (1986) and by Letac and Mora (1990). In the next section we propose and
develop a new definition which is particularly suited to computational algebra.

Another place where cumulant generating functions are used is in classical re-
sults on the large deviation theory for exponential families. IfKX is the cumulant
function of the random vector X, with domain DX , then its conjugate function
is the convex function HX(η) = supθ {θη −KX(θ)}. The value of the conjugate
function at θ can be computed by solving the likelihood equations η = K ′

X(θ),
with θ = ΨX(η), and substituting to get HX(η) = ηΨX(η) − KX [ΨX(η)]. It
follows that H ′

X = ΨX , and

K ′
X

[
H ′

X(η)
]
= η, (4)

K ′′
X

[
H ′

X(η)
]
H ′′

X(η) = 1. (5)

3. Finitely Generated Cumulants

If the variance function VX(·) in (3) is polynomial in each component, then
differentiation of K ′′

X(t) = V (K ′
X(t)) with respect to the i-component of t =

(t1, . . . , tn), followed by substituting t = t0, will give all the coefficients of the
Taylor development of KX(t) at t0, that is all the cumulants of X with respect to
the natural exponential model of X at t0, by means of algebraic computations.

Another possibility is to follow Morris (1982) and observe that the cumulants
can be expressed as a function Cr(η) of the mean parameters η, so that

Cr+1
[
K ′(t)

]
=

d

dt
Cr
[
K ′(t)

]
= C ′

r

[
K ′(t)

]
K ′′(t) = C ′

r

[
K ′(t)

]
V
[
K ′(t)

]
and

Cr+1(η) = C ′
r(η)V (η), r > 1.

This, together with C1(η) = η , implies, in the case of a polynomial variance
function, that the cumulants as functions of the mean parameters are polynomi-
als.

The main contribution of this paper is to allow an implicit polynomial de-
pendence.

The algebraic background of our theory is best described using the commu-
tative ring theory as described for example in Cox, Little and O’Shea (1992). We
refer to it for the notions of number field, polynomial ring, ideal. If k is a numeric
field, and x1, . . . , xd are indeterminates, we denote by k[x1, . . . , xd] the polyno-
mial ring, e.g. the set of all polynomials in the indeterminates x1, . . . , xd, with



FINITELY GENERATED CUMULANTS 1035

coefficients in k, with the usual algebraic operations. If polynomials g1, . . . , gn

are given in the polynomial ring, we denote by Ideal(g1, . . . , gn) the ideal gener-
ated by the given polynomials, e.g. the set of all polynomials of the form

∑
i higi

for arbitrary polynomials h1, . . . , hn in the same polynomial ring. This roughly
coincides with the set of all polynomials which are 0 on the variety in kd defined
by the equations g1 = 0, . . . , gn = 0. Examples of number fields we use are the
rationals Q or fields of the type Q(

√
2) which consists of all numbers of the type

a+ b
√

2 with a, b ∈ Q.

Definition 8. Let k be a number field. A polynomial G ∈ k[η, γ] is a generating
polynomial at the point (η̄, γ̄) ∈ k2 if G(η̄, γ̄) = 0 and ∂

∂γG(η̄, γ̄) �= 0. The
condition in the previous definition implies an implicit function property, but it
is of an algebraic type. In a general way it can be checked as follows. We want to
check that G(η, γ) ∈ Ideal (η − η̄, γ − γ̄) , but ∂

∂γG(η, γ) /∈ Ideal (η − η̄, γ − γ̄) .
This can be done in a generic way by computing all the (η̄, γ̄)’s with respect to
which G(η, γ) is a generating polynomial.

In the following we will avoid explicit mention of the underlying number field,
which will be clear from the specific case. See also Section 4 for more details and
references on polynomial rings theory.

Definition 9. The cumulants of X are called finitely generated if there exist
polynomials

Fhk(ηi : i = 1, . . . ,m; γij : i ≤ j = 1, . . . ,m), h ≤ k = 1, . . . ,m,

such that the corresponding system of equations can be uniquely solved for γ =
(γij)1≤h≤k≤m as a function of η = (ηi)1≤i≤m, around the point η0 = K ′

X(0),
γ0 = K ′′

X(0), and the equations

Fhk(K ′
X(t),K ′′

X (t)) = 0, h ≤ k = 1, . . . ,m, (6)

hold in a neighborhood of 0. The polynomials F = (Fhk)h≤k=1,...,m are called
generating polynomials of X and equation (6), generating equations.

We shall refer to the property in Definition 9 as the FGC (finitely gener-
ated cumulant) property. The existence of the variance function VX(·) together
with the definition will ensure that at most the pair (η, γ) = (η, VX(η)) is a
solution to each Fhk(η, γ) = 0, 1 ≤ h ≤ k ≤ m, in a suitable neighborhood of
(K ′′

X(0),K ′
X (0)).

Moreover differentiation of F (K ′
X(t),K ′′

X(t)) with respect to (t1, . . . , tn) and
putting all ti = t0,i will again give a finite algorithm for generation of the coeffi-
cients of the Taylor development of K(t) at t0.
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The present paper will mostly consider the one-dimensional case. The multi-
dimensional case will be considered only for vectors with independent components
or generated by linear transformations of such a case. For the case of multidi-
mensional variance functions we refer to the work by Letac (1992).

Proposition 10. Let the generating polynomial F (η, γ) of the random variable
X be of degree d in γ. Let HX denote the conjugate of the cumulant function KX .
Then the conjugate function satisfies the polynomial non-autonomous differential
equation G (η,H ′′

X(η)) = 0, where G(η, ψ) = ψdF (η, ψ−1).

Proof. Substitute θ = H ′
X(η) in the generating equation, and use (4) and (5).

Proposition 11. Let the random variable X have finitely generated cumulants
with generating polynomial F (κ1, κ2). The equations obtained by deriving n ≥ 1
times the generating equation F (K ′

X(t),K ′′
X (t)) = 0 are of the form

Ln

(
K ′

X(t),K ′′
X (t), . . . ,K(n+1)(t)

)
+ F2(K ′

X(t),K ′′
X (t))K(n+2)

X (t) = 0, (7)

where

F2(η, γ) =
∂

∂γ
F (η, γ),

and the polynomials Ln(κ1, . . . , κn+1) are defined by

L1(κ1, κ2) =
∂

∂κ1
F (κ1, κ2),

Ln+1(κ1, . . . , κn+2) =
n+1∑
i=1

∂

∂κi
Ln(κ1, . . . , κn+1)κi+1

+
(
∂

∂κ1
F2(κ1, κ2)κ2 +

∂

∂κ2
F2(κ1, κ2)κ3

)
κn+1.

In particular, the equations at (7) are first order and uniquely solvable in the
higher derivative K(n+2)

X around the point
(
K ′

X(0),K ′′
X (0), . . . ,K(n+2)

X (0)
)
.

Proof. Remember that the partial derivative F2(η, γ) is non-zero at the point
(K ′

X(0),K ′′
X (0)) because of the FGC condition. Then all points can be checked

directly on the equations.

For random variables X with finitely generated cumulants successive differ-
entiation of F followed by setting t = t0 will generate a family of polynomial
equations for the cumulants. These can then be added to those arising from
the well known relationship between moments and cumulants and its generaliza-
tion to the multivariate case to establish values of moments and cumulants all
expressed in terms of the vector of mean K ′

X(t).
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The following seems to be an unsolved problem in statistics: find those poly-
nomials F (·, ·) such that F (K ′,K ′′) = 0 for the cumulant distribution function K
of some random variable X. Typically this problem is stated in the more restric-
tive fashion in terms of the quadratic or cubic nature, and so on, of the variance
function. We believe that casting the problem in the implicit form F (K ′,K ′′) = 0
may be preferable.

3.1. Polynomial transformation

A useful application of the FGC condition is when we take polynomial func-
tions of the random variable X, say Y = h(X), where Y = (Y1, . . . , Ym), see
McCullagh (1984, 1987). Remember that a polynomial function of a random
variable of class E has all moments but it is not in general class E , so that the
cumulant theory does not apply in all cases, but formally as a way to compute
recursively the moments.

Example 12. Consider X2 with X exponentially distributed. In such a case the
cumulants are formally defined as polynomial transformations of the moments
by the equations

κn(Y ) =Hm(1, µ1(Y ), . . . , µn(Y )),

=Hm(1, µ2(X), . . . , µ2n(X)),

where the polynomials Hn are computed using (2). The exponential family gen-
erated by Y does not exist because etY = etX

2
is never integrable for t �= 0.

Since all the moments of Y can be computed from those of X and all those
of X computed in a finite algorithm if X has finitely generated cumulants the
moments of Y can be also computed in a finite algorithm. We can express this
as two steps.

Definition 13. The (formal) cumulants of X are said to be weakly finitely
generated if there is an infinite sequence of polynomials Fn, n = 1, 2, . . . such that
each Fn has n indeterminates Fn(κ1(X), κ2(X), . . . , κn(X)) = 0 for all n ≥ 1,
and each equation is uniquely solvable in the formal cumulant of maximum order.

If the cumulants of X are finitely generated then they are weakly finitely
generated, and the sequence Fn is obtained by derivation from the basic ones.

Proposition 14. If the cumulants of a random variable X are finitely (or the
formal cumulants are weakly finitely) generated then the cumulants of any poly-
nomial function of X, Y = h(X), are weakly finitely generated.

Proof. First use Y = h(X) to derive the moments of Y as polynomial functions
of the moments of X. Then use Proposition 6 to express the formal cumulants
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of Y as functions of the formal cumulants of X. Finally use the FGC property
and its derivatives, as in Proposition 11, or its weak counterpart, to eliminate
the cumulants of X.

3.2. Examples

We pause to give some simple examples of densities with the FGC property.

Example 15. Among the first examples are the distributions with quadratic
variance function, as discussed by Morris in (1982), Table 1, reproduced here as
Table 1 in our notation.

Table 1. Quadratic variance.

Distribution Parameters Generating polynomial
Normal λ, σ2 K ′′ − σ2

Poisson λ K ′′ −K ′

Gamma r, λ rK ′′ − (K ′)2

Binomial r, p rK ′′ −K ′(r −K ′)
Negative Binomial r, p rK ′′ −K ′(r +K ′)

GHS r, λ rK ′′ − (K ′)2 − r2

More elaborate examples are not easily computed by hand and need some
algebraic elimination theory, to be discussed in the next section. We give here
only one example in which the variance function is not a polynomial.

Example 16. The Laplace (double exponential) density with parameter 1 has
cumulant function K(t) = − log(1 − t2). Then the first and second derivatives
are

K ′(t) =
2t

1 − t2
, (8)

K ′′(t) = 2
1 + t2

(1 − t2)2
. (9)

From these equations it follows that

(K ′′)2 − 2(1 + (K ′)2)K ′′ + (K ′)2 + (K ′)4 = 0, (10)

as can be checked by substitution.

3.3. First properties of FGC

The notion of FGC would not be useful without some stability with respect
to the usual statistical transformations. The following proposition gives the first
results. More properties are discussed later.
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Proposition 17. The FGC property is stable for
1. joining independent components, in particular sampling;
2. invertible linear transformations;
3. convolutions and de-convolution of the same distribution.

Proof.
1. Let X1, . . . ,Xn be independent with cumulant functions K1, . . . ,Kn and

generating polynomials F1(η1, γ1), . . . , Fn(ηn, γn). The random vector X =
(X1, . . . ,Xn) has cumulant function K(t1, . . . , tn) = K1(t1) + · · · + Kn(tn),
with derivatives

∂

∂ti
K(t1, . . . , tn) =K ′

1(ti),

∂2

∂t2i
K(t1, . . . , tn) =K ′′

1 (ti),

∂2

∂ti∂tj
K(t1, . . . , tn) = 0, i �= j.

The generating polynomials of X are given by

Fii((ηi)i=1,...,n, (γij)i,j=1,...,n) = Fi(ηi, γii),
Fij((ηi)i=1,...,n, (γij)i,j=1,...,n) = 0, i �= j.

2. Let K(t) be the cumulant function of the random vector X with components
X1, . . . , Xn, and let

F (η, γ) = [Fij((ηi)i=1,...,n, (γij)i,j=1,...,n)]i,j=1,...,n

be the (matrix of the) generating polynomials. If A is a non-degenerate n×n

matrix, then the cumulant function of the random vector Y = AX is KY (t) =
K(Bt), where B = transpose of A. It follows that K ′

Y (t) = BK ′(Bt), K ′′
Y (t) =

BK ′′(Bt)A, and the generating polynomials of Y are F (B−1η,B−1γA−1).
3. The cumulant function of the sum of independent and identically distributed
X1, . . . ,Xn is KX1+···+XN

(t) = nKX1(t). If F (η, γ) is the generating polyno-
mial for X1 then F

(
1
nη,

1
nγ
)

is the generating polynomial for the sum. Con-
versely if the nth-fold convolution has the FGC property so does the original
distribution.
When a class of random variables has the same exponential model then if

one member has the FGC property they all do. This is because the cumulants
are obtained by a shift in θ, KY (θ) = KX(θ + c), and this shift carries over to
F (K ′,K ′′) = 0.

In the next section we give some cases which lie outside the cases mentioned
in the last section. They point to a rich theory connecting distributions with
polynomial ideals.
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4. The Use of Elimination Theory

We first discuss the idea of elimination in a little more detail. Algebraic
elimination can be performed with various computer algebra systems. Here we
present the elimination algorithms based on Gröbner bases included in Maple,
see Char, Geddes, Gonnet, Leong, Monogan and Watt (1991). Other more spe-
cialized algorithms exist, for example in the software CoCoA, see Capani, Niesi
and Robbiano (1995).

Let k be a number field. Given the polynomial ideal

I = Ideal (f1(x1, . . . , xm), . . . , fs(x1, . . . , xm)) ,

we attempt to eliminate the indeterminates x1, . . . , xk from the equations of the
corresponding variety 


f1(x1, . . . , xm) = 0,

...
fs(x1, . . . , xm) = 0,

leaving only equations in xk+1, . . . , xn. Formally the elimination ideal is the ideal
of k[xk+1, . . . , xn] defined by

Ik = I ∩ k[xk+1, . . . , xn].

The elimination theorem (see Cox, Little and O’Shea (1992), Chapter 3, The-
orem 2) allows us to work with the Gröbner basis and plex ordering with
x1 > · · · > xn. Thus if G is a plex-Gröbner basis then

Gk = G ∩ k[xk+1, . . . , xn]

is a Gröbner basis for the k-elimination ideal above.
This means that as we move down the members of the Gröbner basis the

remaining n−k equations contain only the remaining n−k variables. They may
not appear in easily solvable form, but at least they are on their own.

We are interested here with the situation in which K ′(θ) and K ′′(θ) are ex-
pressed implicitly in some variable t. We eliminate t to obtain F (K ′(θ),K ′′(θ)) =
0. First it is necessary to understand a little more elimination theory. Write,
with f1, . . . , fn polynomials 


x1 = f1(t1, . . . , tr),

...
xm = fm(t1, . . . , tr).

We first write these in variety form: x1 − f1 = · · · = xn − fn = 0, giving the
ideal of k[x1, . . . , xm, t1, . . . , tr]: Ideal (x1 − f1, . . . , xn − fn). Then using plex
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with t1 > · · · > tr > x1 > · · · > xm we can eliminate t1, . . . , tr using the above
elimination theory. We obtain the smallest variety in k[x1, . . . , xm] containing
the variety projection of the variety


x1 − f1 = 0,

...
xn − fn = 0.

on the coordinates x1, . . . , xm.
A very useful extension of this idea will be used shortly. This is the case

when
xj =

pj(t1, . . . , tm)
qj(t1, . . . , tm)

, j = 1, . . . , n,

where pj, qj are polynomials, that is the xj are rational functions. Now introduce
an additional variable y and write



q1x1 − p1 = 0,
...

qnxn − pn = 0,
q1 · · · qny − 1 = 0.

The last variety prevents qj = 0 for all j = 1, . . . , n. We then eliminate with
plex and the order y > t1 > · · · > tm > x1 > · · · > xn. We obtain the smallest
variety in k[x1, . . . , xn] containing the solutions to the original problem (except
q1 . . . qn = 0).

Example 18. Consider as an example the discrete distribution with mass 1/3
on [0, 1, 2]. Then

M(θ) =
1
3
(1 + eθ + e2θ),

K(θ) = − log 3 + log(1 + eθ + e2θ),

K ′(θ) =
eθ + 2e2θ

(1 + eθ + e2θ)
,

K ′′
X(θ) =

eθ + 4e2θ + e3θ

(1 + eθ + e2θ)2
.

Now replace eθ by t and we have an implicit relation between K ′ and K ′′ con-
sidered now simply as variables:

κ1 =
t+ 2t2

1 + t+ t2
,

κ2 =
t+ 4t2 + t3

(1 + t+ t2)2
.
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Using the Gröbner suite on Maple the command is

gbasis([R1, R2, R3], [t, y, k1, k2], plex),

where

R1 := k1(1 + t+ t2) − t− 2t2,

R2 := k2(1 + t+ t2)2 − t− 4t2 − t3,

R3 := (1 + t+ t2)3y − 1.

Elimination gives the generating polynomial

3(K ′)4 + 2K ′ − 2K ′′ + 11(K ′)2 − 12K ′K ′′

−12(K ′)3 + 6(K ′)2(K ′′) + 3(K ′′)2.

The smaller solution of the generating equation for K ′′ in terms of K ′ gives the
variance function

K ′′ =
1
3

+ 2K ′ − (K ′)2 − 1
3

√
1 + 6K ′ − 3(K ′)2.

This is the solution which has the value K ′′(0) = 2/3 at the point K ′(0) = 1.
Note that for R3 it would have been enough to take (1 + t+ t2)y, since the same
term appears in R2 and R3.

By extending this example to arbitrary distributions on a finite number of
variables we obtain the following:

Proposition 19. Every discrete distribution supported on an equally spaced set
of reals has the FGC property.

Proof. Without loss of generality, we assume X is distributed on the integers
{0, . . . , n − 1} with probabilities {p0, . . . , pn−1}. The moment function and cu-
mulant function of X are

M(t) = p0 + p1e
t + · · · + pn−1e

(n−1)t, (11)

K(t) = log(p0 + p1e
t + · · · + pn−1e

(n−1)t), (12)

and the derivatives of the moment function are

M ′(t) = p1e
t + 2p2e

2t + · · · + (n− 1)pn−1e
(n−1)t, (13)

M ′′(t) = p1e
t + +4p2e

2t + · · · + (n− 1)2pn−1e
(n−1)t. (14)

Form the basic relationships

M(t)K ′(t) =M ′(t),
M2(t)K ′′(t) =M(t)M ′′(t) − (M ′(t)

)2
,
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and introduce the new indeterminates µ = M(t), κ1 = K ′(t), κ2 = K ′′(t), ζ = et.
The previous system of Equations (11, 13, 14) becomes


µ = p1ζ + p2ζ

2 + · · · + pn−1ζ
(n−1),

µκ1 = p1ζ + 2p2ζ
2 + · · · + (n− 1)pn−1ζ

(n−1),

µ2κ2 = µ(p1ζ + 4p2ζ
2 + · · · + (n− 1)2pn−1ζ

(n−1))
−(p1ζ + 2p2ζ

2 + · · · + (n− 1)pn−1ζ
(n−1))2.

This shows that κ1, κ2 describes an algebraic curve with a rational parametric
representation, see Cox, Little and O’Shea (1992).

Proposition 20. The uniform distribution on {0, . . . , n− 1} has the FGC prop-
erty, with generating polynomial

F (η, γ) = A(B + C)n − (A+ C)Bn,

where A = 1
n (γ − η(1 + η)) , B = γ − η(n− η), C = 1 − n+ 2η.

Proof. The moment function is

M(t) =
1
n

1 − ent

1 − et

and the first two derivatives of the cumulant function are

K ′(t) =
−nent

1 − ent
+

et

1 − et
,

K ′′(t) =
−n2ent

(1 − ent)2
+

et

(1 − et)2
.

Put

u(t) =
ent

1 − ent
, v(t) =

et

1 − et
.

Then
ent =

u(t)
1 + u(t)

, et =
v(t)

1 + v(t)
,

so
u(t) (1 + v(t))n = (1 + u(t)) vn(t) (15)

and

K ′(t) = −nu(t) + v(t), (16)

K ′′(t) = −n2u(t) (1 + u(t)) + v(t) (1 + v(t)) . (17)

Solving (16) and (17) with respect to K ′(t), K ′′(t) by substitution, we get

u(t)(1 − n+ 2K ′(t)) =
1
n

(
K ′′(t) −K ′(t)(1 +K ′(t))

)
,

v(t)(1 − n+ 2K ′(t)) =K ′′(t) −K ′(t)(n −K ′(t)).
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Now substitution in (15) gives the result.

Example 21. Let X have the mixed exponential distributions

X ∼ (1 − α)λ1e
λ1x + αλ2e

λ2x, 0 < α < 1,

for which
MX(θ) = (1 − α)

λ1

θ − λ1
+ α

λ2

θ − λ2
.

For λ1 = 1 and λ2 = 2 and α = 1/3 we have the generating polynomial

16K ′′ − 16K ′2 − 44K ′4 − 8K ′′2 +K ′6

+44K ′2K ′′ −K ′2K ′′2 −K ′′K ′4 +K ′′3.

This is easily extended to the following result.

Proposition 22. Every finite mixture of exponential random variables has the
FGC property.

Proof. As the moment function is a rational function of θ, the derivatives of the
cumulant function are rational functions of θ.

The FGC property is preserved under multiplication of the density by a
polynomial. We prove the one-dimensional case.

Theorem 23. Let pX(x) be the density function of a random variable with the
FGC property. Then if Y is a random variable with density g(y)pX (y) where g(y)
is polynomial, Y also has the FGC property.

Proof. Let g(y) =
∑m

r=0 ary
r. Then the moment generating function for Y is

MY (t) =
∑m

r=0 arM
(r)
X (t), where M (r)

X (t) = dr

dtrMX(t). Write M
(r)
X

MX
= Ur. Then

K ′
Y =

∑m
r=0 arUr+1

a0 +
∑m

r=1 Ur

andK ′′
y is similarly a rational function involving U0, . . . , Ur+2. The FGC property

for X can be written as F (K ′
X ,K

′′
X) = 0 which becomes FX(U1, U2 − U2

1 ) = 0.
Since F is polynomial and dUs

dt = Us+1−UsU1, by successive differentiation we can
express U3, . . . , Um+1 in terms of U1 and U2. This in turn means that K ′

Y and K ′′
Y

can be expressed in terms of rational functions of U1 and U2. These, combined
with the original polynomial equation and elimination, lead to a polynomial
equation FY (K ′

Y ,K
′′
Y ) = 0 for Y and hence the FGC property.

The final example in this section is devoted to the discussion of a currently
unsolved problem: how to formally check that a given distribution has the FGC
property, especially in the case it is known that its cumulant function satisfies
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a polynomial differential equation of order strictly greater than 2. In such a
case the distribution does not have the FGC property involving only K ′ and K ′′,
but also needs K ′′′ and possibly higher derivatives. This points to extending the
definition to a polynomial equation in the first r derivatives of K and to checking
in a constructive way which is the minimal order. We have concentrated on the
K ′ , K ′′ definition here because of its central relationship to the variance function
and the fact it is satisfied in most common cases.

Example 24. For the uniform distribution on [0, 1] the moment generating
function is

M(θ) =
eθ − 1
θ

.

Noticing that this involves θ and eθ, if we set z = 1/(eθ − 1) and t = 1/θ, we have
the polynomial differential equations z′ = −(1 + z)z, t′ = −t2, and we obtain
again polynomial differential equations

K ′ = 1 + z − t,

K ′′ = −z − z2 + t2,

K ′′′ = z + 3z2 + 2z3 − 2t3.

We eliminate t and z to obtain the generating polynomial

(K ′)6 − 5(K ′)5 − 3(K ′)4K ′′ + 17/2(K ′)4 + 2(K ′)3K ′′ − 4(K ′)3K ′′′

− 6(K ′)3 + 3(K ′)2(K ′′)2 + (K ′)2K ′′ + 6(K ′)2K ′′′ + 3/2(K ′)2

− 5K ′(K ′′)2 − 3K ′K ′′′ − (K ′′)3 + 5/2(K ′′)2 − 1/2K ′′ + 1/2K ′′′

Notice that this derivation does not constitute a proof that a lower order equation
is not satisfied.

5. The Multivariate Case

The elimination methods of the last section can be used to build systems
of random variables related in an algebraic way. As an example consider the
the mean function K ′(θ) for the Binomial(1, 1/2) (Bernoulli) and the Poisson(1).
Their mean functions are respectively

K ′
1(θ) =

eθ

1 + eθ
, K ′

2(θ) = eθ,

giving after elimination of eθ:

K ′
1K

′
2 +K ′

1 −K ′
2 = 0,

a polynomial relation between K ′
1 and K ′

2.
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Definition 25. Two random variables X1 and X2 each with their own expo-
nential models and cumulant generating function K1(θ) and K2(θ) are called
polynomially related if their differentials lie on a polynomial variety

G(K ′
1(θ),K

′
2(θ)) = 0,

for all θ in a neighborhood of zero.

This leads to the following transfer of the FGC property from X1 to X2.

Theorem 26. Suppose that X1 and X2 are polynomially related and that X1 has
the FGC property. Then so does X2.

Proof. Suppose that X1 and X2 have cumulant generating functions K1 and K2,
respectively, satisfying the polynomial variety G(K ′

1,K
′
2). Differentiating leads

to a polynomial variety in K1,K
′
1,K2,K

′
2. We also have one polynomial variety

from the FGC properties for X1: F1(K ′
1,K

′′
1 ) = 0. This gives the right number

of equations to eliminate K ′
1 and K ′′

1 leaving a single polynomial equation for K ′
2

and K ′′
2 .

The property of being polynomial related is clearly transitive since if X1,X2

and X2,X3 are polynomially related pairs we have two polynomial relations for
K ′

1,K
′
2 and K ′

2,K
′
3 and K ′

2 can be eliminated. Thus the property leads to large
equivalence classes of polynomially related random variables. Moreover, by The-
orem 26, if one member of such an equivalence class has the FGC property then
they all do. The equivalence classes are closed under convolution (see the dis-
cussion in the last section) and, by Theorem 23, closed under multiplication of
densities by polynomials provided the result is a density.

We can begin to see the outline of large equivalence classes and we give a
description of two of them here. We have been unable to completely clarify the
totality of each equivalence class but they do not intersect.

Discrete class. This includes all random variables having distributions with
finite integer support, but it also includes the Poisson with any mean. It includes
all convolutions and polynomially extended distributions. The latter is by the
extension of Theorem 23 to discrete distributions. It also includes all distributions
on finite rational support.

Normal/Gamma class. Since for the normalN(µ, σ2) we haveK ′(θ) = σ2θ+µ,
a distribution which has K ′ a rational function of θ will be polynomially related
to it. This includes the Gamma(α, λ) for which K ′(θ) = αλ/(λ − t). Again we
can extend by convolution and Theorem 23.

In the case that X1,X2, . . . have a properly defined joint distribution then
the above discussion can be interpreted as expressing relations between marginal
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distributions. Convolutions are mentioned in Proposition 17, but even though
we may not necessarily have independence between X1 and X2 we can still make
some headway with the following theorem.

Theorem 27. Let X1, X2 be finitely generated random variables with generating
polynomials Fi(ηi, γi) and cumulant functions Ki, i = 1, 2. Let η̄i denote the
mean value and γ̄i the variance of Xi, i = 1, 2. For given a, b ∈ R, let Ga,b(η1, η2)
be a polynomial in k[η1, η2] such that Ga,b(K ′

1(at),K
′
2(bt)) = 0 in a neighborhood

of 0. Assume that there exists a polynomial Fa,b(η, γ) which is the generator of
the elimination ideal

Ideal (F1(η1, γ1), F2(η2, γ2), Ga,b(η1, η2), f1, f2) ∩ k[η, γ],
f1 = η − aη1 − bη2,

f2 = γ − a2γ1 − b2γ2.

If Fa,b is a generating polynomial at (aη̄1 +bη̄2, a
2γ̄1 +b2γ̄2), then Y = aX1 +bX2

is finitely generated with generating polynomial F .

Remark. All conditions on Fa,b are of an algebraic type, and can be checked in a
generic way, that is for general a, b, ask ifGa,b is a polynomial in the indeterminate
a, b, η, γ. Conditions on G are to be checked directly, for example in case of
algebraic K ′

i, i = 1, 2, or possibly with differential rings methods on the system
of implicit differential equations{

F1(K ′
1,K

′′
1 ) = 0,

F2(K ′
2,K

′′
2 ) = 0.

Notice that Ga,b is a first integral of a system which is a modification of the
previous system, and it will possibly involve η̄1, η̄2, γ̄1, γ̄2 in its coefficients as new
elements of the basic field k.

Proof. The cumulant function of Y = aX1 +X2 is given by KY (t) = K1(at) +
K2(bt), so that

K ′
Y (t) = aK ′

1(at) + bK ′
2(bt),

K ′′
Y (t) = a2K ′′

1 (at) + b2K ′′
2 (bt).

Let us put ηi = K ′
i(at), γi = K ′′

i (bt), i = 1, 2, and η = K ′
Y (t), γ = K ′′

Y (t). Then
the following system of algebraic equations in k[η1, η2, γ1, γ2, η, γ] is satisfied at
least in a neighborhood of (η̄1, η̄2, γ̄1, γ̄2, aη̄1 + bη̄2, a

2γ̄1 + b2γ̄2):


F1(η − 1, γ1) = 0,
F2(η2, γ2) = 0,

Ga,a(η1, η2) = 0,
η − aη1 − bη2γ − a2γ1 − b2γ2 = 0.
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The projection of the algebraic curve defined by the five previous equations onto
the last two coordinates satisfies the equation Fa,b(η, γ) = 0, and in particular
Fa,b(K ′

Y (t),K ′′
Y (t)) = 0 in a suitable neighborhood of 0. As Fa,b is a generating

polynomial at (K ′
Y (0),K ′′

Y (0)), Y is finitely generated by Fa,b.

Example 28. Let X1 ∼ Exp (λ1), X2 ∼ Exp (λ2). The cumulant functions are

Ki(t) = − ln(1 − t

λi
), i = 1, 2.

The first two derivatives are

K ′
i(t) =

1
λi − t

, K ′′
i (t) =

1
(λi − t)2

, i = 1, 2,

and the generating functions are

F1(η1, γi) = η2 − γ, i = 1, 2.

For a, b ∈ R we eliminate t from the system{
η1 = 1

λ1−at ,

η2 = 1
λ2−bt ,

and obtain
Ga,b(η1, η2) = (λ1b− λ2a)η1η2 + aη1 − bη2.

Now we eliminate all unwanted variables from the system


η1
2 − γ1 = 0,

η2
2 − γ2 = 0,

(λ1b− λ2a)η1η2 + aη1 − bη2 = 0,
η − aη1 − bη2 = 0,

γ − a2γ1 − b2γ2 = 0.

The last polynomial in the Gröbner basis is Fa,b, that is,

Fa,b(η, γ) = 4a2b2(η2 − 2γ) + (λ1b− λ2a)2γ2

+(λ1b− λ2a)2η4 − 2(λ1b− λ2a)2η2γ.

The partial derivative is

∂

∂γ
Fa,b(η, γ) = −8a2b2 + 2(λ1b− λ2a)2γ − 2(λ1b− λ2a)2η2

= −8a2b2 + 2(λ1b− λ2a)2(γ − η2).

The multivariate definition of the FGC property is not completely satis-
factory because we do not know if it implies the FGC property for all linear
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transformations. The following definition is intended to clarify a more restrictive
property.

Definition 29. The random vector X = (X1,X2) is jointly finitely generated if
for all a, b ∈ R such that a2 + b2 = 1 the random variable aX1 + bX2 is finitely
generated.

Proposition 30. Let the random vector X be jointly finitely generated and
let a, b ∈ R with ρ =

√
a2 + b2 �= 0. Then the random variable aX1 + bX2 is

finitely generated with generating polynomial F (ρ−1η, ρ−2γ), where F (η, γ) is the
generating polynomial of a

ρX1 + b
ρX2.

Proof. If Y = a
ρX1 + b

ρX2 and KY is the cumulant function of Y , then KρY (t) =
KY (ρt) and K ′

ρY (t) = ρK ′
Y (ρt), K ′′

ρY (t) = ρ2KY (ρt). Then

F (ρ−1K ′
ρY (t), ρ−2K ′′

ρY (t)) = F (K ′
Y (ρt),K ′′

Y (ρt)) = 0.

Finally the polynomial F (ρ−1η, ρ−2γ) is a generating polynomial for all ρ �= 0.

6. Applications

6.1. Generalised linear models

In the statistical use of the exponential family we assume that Y comes from
an exponential family

Y ∼ p(y, θ) = eθy−KY (θ)p0(y),

where Y0 ∼ p0(y). Then θ is called the natural parameter and is typically used
in modeling. For example when there are covariates z we model θ as a function
of z and the model parameters β, θ = f(z, β). In this framework the mean and
variance of Yθ are given respectively by ηθ = K ′(θ), σ2

θ = K ′′(θ), and the variance
function has its usual interpretation σ2

θ = V (ηθ). This means that the implicit
representation in the FGC property can be interpreted as F (ηθ, σ

2
θ) = 0 and in

the modeling case we have F (K ′(f(z, β)), K ′′(f(z, β))) = 0.
In the sample case we observe Yθ1 , . . . , Yθn where θi = f(zi, β). Assume also

the linear case, namely θi = f(zi, β) =
∑m

j=1 pj(zi)βj for functions pj(z), for
example monomials. In this case the log-likelihood is, up to a constant

l =
n∑

i=1

(θiyi −K(θi))

and the likelihood equations are

∂l

∂βj
=

n∑
i=1

(
yi −K ′(θi)

)
pj(zi).
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The usual information matrix is

∂2l

∂βj∂βk
=

n∑
i=1

pj(zi)pk(zi)K ′′(θi).

These equations are then combined with F (K ′(θi),K ′′(θi)) = 0 to obtain a full
set of equations for much standard statistical inference. This has computational
advantages over explicitly computing θ̂ and substituting to obtain K(n)(θ̂).

Returning to the one-sample case, since development of K(r)(θ) is possible
by successive differentiation of F , we can similarly develop the empirical MLE-
version by differentiation and substituting y = K ′.

6.2. Saddle point approximations

An application of this is to saddle-point approximation. The approximation
is based on the exponential model as described here. The random variable X of
interest has its density embedded in the exponential model as described above.
For an i.i.d. sample X1, . . . ,Xn we define the partial sums Sn = X1 + · · · +Xn.
This has density

pSn(s; θ) = eθs−nKX(θ)pSn(s)

for any θ. The saddle-point approximation to pSn is given by

pSn =
e−θ̂s+nKX(θ̂)

2πnK ′′
X(θ̂)

1
2

{1 +O(n−1)},

where θ̂ is the maximum likelihood estimator given by the solution of K ′(θ̂) =
s/n. Again the approach taken here can give precise relationships for K ′′ by re-
placing K ′ by s/n in the formula F (K ′,K ′′) = 0. The term nK ′′(θ̂) is sometimes
referred to as the observed information. This can be extended to the modeling
case in a straightforward manner.

6.3. Edgeworth expansions

Theorem 23 has application to Edgeworth expansions. A natural place where
we have densities or approximations to densities is in a formal Edgeworth expan-
sion:

ψ(x) =
n∑

r=0

arHr(x)φ(x),

where Hr(x) is the rth Hermite polynomial and φ(x) is the standard Normal
density. Suppose ψ(x) is an actual density and define a polynomial g(θ) =
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∑n
r=0 arθ

r. The moment generating function for the density ψ(x) is

M(t) =
n∑

r=0

∫ +∞

−∞
Hr(x)etxφ(x)dx

=
n∑

r=0

art
re

1
2
t2 = g(t)e

1
2
t2 .

Then for the derivatives of the cumulant function

K(t) = log g(t) +
1
2
t2,

K ′(t) =
g′(t)
g(t)

+ t,

K ′′(t) =
g′′(t)

(g(t))2
− (

g′(t)
g(t)

)2 + 1.

So, elimination will lead to a polynomial in K ′,K ′′, as is expected from Theorem
23.
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