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Abstract: In typical binary response models, the information matrix depends both
on the design and the unknown parameters of interest. Thus to obtain optimal
designs, one must have ‘good’ initial parameter estimates. Often this is not the
case. One solution which may be applicable in some settings is to perform the

experiment in two (or more) stages, that is, use an initial design to get parameter
estimates and then treating these as the true parameter values choose a second
stage design so that the combined first and second stage design is optimal in some
sense. In this article, we consider a class of symmetric binary response models which

includes the common logit and probit models, and show that for any of the main
optimality criteria in the literature (eg. A-, D-, E-, F -, G- and c-optimality) the
optimal second stage design will consist of two points symmetrically placed about
the ED50 (the 50% response dose) with possibly different weights at each point.
We go on to give examples where one can further reduce the resulting optimization

to a one variable maximization. In the process some insight is gained into how the
second stage design corrects skewness in the first stage design.

Key words and phrases: Binary data, confidence interval, Fieller’s theorem, logit,
probit.

1. Introduction

In a binary response experiment ni subjects are administered a stimulus at
a dose level xi, possibly on a transformed scale, for i = 1, . . . , k. The outcome
is binary, i.e., response or non-response, with probabilities p(x) = F(x; θ) and
q(x) = 1−p(x), respectively. Suppose the number of responses at dose level xi is
ri, and r1, . . . , rk are independent binomial random variables, ri ∼ Bin(ni, p(xi)).
Then the log-likelihood is

l(θ) ∝
k∑

i=1

[ri log p(xi) + (ni − ri) log q(xi)]. (1.1)

In this article we will restrict attention to

F(x | θ) = Ψ{β(x− µ)}, (1.2)

where Ψ is a known strictly monotone function with limt→−∞ Ψ(t) = 0,
limt→∞ Ψ(t) = 1, and Ψ′ symmetric about zero. The two common models
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fall into this class: the logit, Ψ(t) = (1 + e−t)−1; and the probit, Ψ(t) =∫ t
−∞(2π)−1/2e−u2/2du.

The classical optimal design problem for these models has received attention
in the literature. Within this framework, an “exact” optimal (one stage) design
problem is to choose k, {xi} and {ni} to maximize some measure of the infor-
mation about (µ, β) yielded by the data. This measure is usually a function φ(·)
applied to the Fisher information matrix for the maximum likelihood estimator,
θ̂ = (µ̂, β̂)T , which in this case is

nM(ξ, θ) = n

(
β2S0 −S1

−S1
1
β2S2

)
,

where S0 =
∑k

i=1 λiψ(zi), S1 =
∑k

i=1 λiziψ(zi), S2 =
∑k

i=1 λiz
2
i ψ(zi), zi = β(xi−

µ), λi = ni/n, n =
∑

i ni, ψ(t) = [Ψ′(t)]2/[Ψ(t){1 − Ψ(t)}], and ξ = {(λi, zi) :
i = 1, . . . , k} denotes the design measure. Thus the measure of information,
φ{M(ξ, θ)}, depends on the unknown values of µ and β, and good initial estimates
are needed. For (1.1) and (1.2) this dependence enters through z = β(x−µ) and
the problem reduces to finding optimal k and ξ.

Since this is a difficult and often intractable optimization problem, usually
the “continuous” setting is instead considered. That is, instead of maximizing
φ{M(ξ, θ)} over all finite design measures of the type described above, we maxi-
mize over all design measures ξ ∈ Ξ, where Ξ is the set of all probability measures
on IR. Then

M(ξ, θ) =
∫
I(z, θ)dξ(z),

where I(z, θ) is the Fisher information at a single point. In this context the
solution to this continuous problem is in fact a design with discrete finite support
though the real weights λi may not satisfy the integer restrictions. It is hoped
that this optimal approximate design will be near the optimal discrete solution
(see Silvey (1983)).

The choice of design criterion depends on the goal of the experiment. Some-
times the η-percentile of Ψ, µη, is of particular interest. In the parametrization
of (1.1) and (1.2) µ50 = µ. If so, a natural design criterion called c-optimality is
to minimize the asymptotic variance of the percentile estimate, AV (µ̂η), which
turns out to be a one-dimensional linear function of the inverse of the information
matrix. Note that ‘minimizing’ can be replaced by ‘maximizing the negative’. An
alternative criterion in this case suggested by Finney (1971) for µ (see also Ab-
delbasit and Plackett (1983)) is to minimize the squared half-length of a Fieller
interval. If estimation of µ and β are of equal interest, various optimality criteria
have been suggested. Some examples are A-, D- and E-optimality which entail
minimizing by choice of design, the trace, the determinant and the maximum
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eigenvalue of the inverse of the information matrix, respectively. In this setting,
the optimal design usually has 1-3 design points (see Wu (1988); Ford, Torsney
and Wu (1992); Sitter and Wu (1993); Sitter and Fainaru (1997)).

There are a number of major concerns with this approach to designing ex-
periments: (1) often “good” initial estimates of µ and β are not available and
these 1-3 point designs are not robust to poor initial values, that is, if the initial
values are incorrect, we may get very poor or even no estimates of µ and β; (2)
1-3 point designs may not allow adequate model checking; and (3) the choice
of optimal design depends on the assumed model, which may be incorrect. For
these reasons, usually the optimal design is used only as a benchmark to which to
compare more heuristically chosen designs which suffer less from these difficulties.
There have been some attempts to incorporate the initial lack of knowledge about
the parameters into the design framework in a more automatic way (Chaloner
and Larntz (1989); Sitter (1992)). These techniques, whether heuristic or more
formal, generally produce designs which have more support points and are more
spread out than the optimal designs, since they attempt to protect against in-
correct initial values for µ and β. Though these designs protect against lack of
knowledge about µ and β, they, in some sense, cannot make up for it. Sitter and
Wu (1995) illustrate that often only a few of the design points lie in the central
range of the response curve and thus give any information. Also, it may be that
Ψ was incorrect. Thus the design may be very bad for this reason as well.

To address these difficulties, we must go back to the basic methodology of
scientific enquiry. Postulate a hypothesis, collect observations, question or revise
the hypothesis, collect more observations,. . . repeat until satisfied that the final
hypothesis is correct. This procedure, or some variant of it, underlies almost
any scientific investigation. In our context, this translates into the need to use
more than one stage of experimentation. If the response can be observed in a
short time, a fully sequential design is possible, where the next dose level, xn+1,
is chosen based on (xi, ri), i = 1, . . . , n (see Wu (1985); Young and Easterling
(1994)). In many cases the time to response is too great to adopt such procedures.
Sitter and Wu (1995), motivated by practical issues in drug development within
the pharmaceutical industry, adopt the basic philosophy that one should use
two-stages (or possibly three) of experimentation in many experiments of this
type. Of course this philosophy may not apply in some cases. They give one
possible general procedure for performing such a two-stage experiment and give
some numerical results to illustrate the gains under various scenarios. Their
basic strategy is to use a robust design with 3-5 dose levels for the first stage,
using some portion of the affordable observations. Then analyze the data to get
parameter estimates. Now treat these first stage estimates as the true values
and choose a second stage design so that the combined design is “good”. Note
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that if the first stage data indicates a different model than was first assumed is
more appropriate, the second stage can be designed using this new model. In this
paper, we assume that the first stage design has been obtained, run and analyzed,
and the question under consideration is how to optimally choose a second stage
design. Note that the first stage design itself could consist of a number of stages
so the results apply to multi-stage designs as well.

The notion of two-stage or multi-stage designs is not new, especially in linear
models (see Box, Hunter and Hunter (1978), Ch. 1 for discussion). For example,
it is a fundamental aspect of response surface methodology (Box, Hunter and
Hunter (1978), Ch. 15) and is often advocated as a means of breaking confounding
in fractional factorials (Box, Hunter and Hunter (1978), p. 389-390). In non-linear
models the situation is more complex since, unlike linear models, the information
matrix involves the unknown parameters. For this reason less is known (see
Minkin (1987)). However, it is this reason which makes the potential gains
much greater, since a one-stage design must assume “good” initial values of
these unknown parameters before data is collected.

The paper is organized as follows. Section 2 introduces the general problem
and uses geometrical arguments to show that, for a class of Ψ which contains
the logit and probit models and for a class of optimality criteria, the optimal
second stage design will consist of two points symmetrically placed about the
ED50 with possibly different weights at each point. In Section 3, we show that
many of the design criteria in the literature belong to this class. In Section 4, as
examples, we characterize the resulting D-, c-, E- and A-optimal second stage
designs and reduce the problem further to a one variable maximization. We go
on to give a small numerical example to illustrate the differences in the various
optimality criteria. In Section 5, we discuss various extensions and make a few
closing remarks.

2. Induced Design Space

Considering M(ξ, θ) with θ fixed and known, we can view the optimal-
ity criterion as a function φ(t) depending on ξ ∈ Ξ through t = (u, v,w)′ =
(S0(ξ), S1(ξ), S2(ξ))′, where Sj(ξ) =

∫
zjψ(z)dξ(z). This induces a design space

CH = {t = (u, v,w)′ = (S0(ξ), S1(ξ), S2(ξ))′ : ξ ∈ Ξ}. Consider the curve in IR3,

H = {t = (u, v,w)′ : u = ψ(z), v = zψ(z), w = z2ψ(z),−∞ < z <∞},
and assume z2ψ(z) is bounded. This is true for many common models including
the logit and probit (Wu (1988)). By looking at the form of Sj(ξ), we see that
CH is the convex hull of H. Thus any design point ξ ∈ Ξ implies a point
(u, v,w)′ ∈ CH, while any point in CH can be generated by some design. Viewing
H and CH is a very common geometric approach to optimal design for linear
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models (Silvey (1980)). Figure 1 shows the line H for the logit model. The line
H lies on the upper and lower ridge of the figure and the shaded area represents
what we term the vertical boundary of CH. Such a vertical boundary exists for
any Ψ such that Ψ′ is symmetric about zero, since −{zψ(z)} = {−z}{ψ(−z)}.
Caratheodory’s theorem (see Silvey (1980), p. 72) implies that any point in CH
can be represented by a convex combination of a finite number of points in H.
Thus we need only consider designs with a finite number of support points.

v w

u

Figure 1. The curve H for the logit model.

Let
ξI = {(λIi , zIi) : i = 1, . . . , kI }

be the first stage design, where z
Ii

= β̂
I
(x

Ii
− µ̂

I
) and x

Ii
are the k

I
first stage

design points with weights λ
Ii

= n
Ii
/n

I
in obvious notation, and (β̂

I
, µ̂

I
) are the

maximum likelihood estimates (mle) of the parameters from the first stage data.
The problem now reduces to considering second stage designs of the form

ξII = {(λIIi , zIIi) : i = 1, . . . , kII},
in similar notation, where zIIi = β̂I (xIIi − µ̂I ) and nII is considered fixed. The
combined design matrix can then be written

M(ξ
II

) =


 β̂2

I
S0 −S1

−S1
1
β̂2

I

S2


 ,

where Sj = εS
Ij

+ (1 − ε)S
IIj

, ε = n
I
/n, n = n

I
+ n

II
, S

Ij
=
∑k

I
i=1 λIi

zj
Ii
ψ(z

Ii
),

and SIIj =
∑k

II
i=1 λIIiz

j
IIi
ψ(zIIi) for j = 0, 1, 2.

In this framework, φ(·) depends on x
II

through t = εt
I
+(1− ε)t

II
where 0 <

ε < 1 is fixed, t
I
∈ CH is fixed and t

II
=(u, v,w)′ =(SII0(ξII ), SII1(ξII ), SII2(ξII ))

′
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∈ CH. So we wish to find t
II

∈ CH which maximizes φ(t) and then find a design
ξII which implies the resulting t.

To do this, we need the following Lemma:

Lemma 1. If t
I
∈ CH is fixed and t

II1
, t

II2
∈ CH are two other distinct points

anywhere in CH, then the line joining

t1 = εt
I
+ (1 − ε)t

II1
∈ CH and t2 = εt

I
+ (1 − ε)t

II2
∈ CH

is parallel to the line joining t
II1

and t
II2

, for any fixed real 0 < ε < 1.

Proof. First t1, t2 ∈ CH by convexity. The rest of the proof follows straightfor-
wardly using similar triangles (see Forbes (1994)).

We can now state the main result:

Result 1. Assume:
(i) φ(t), t = (u, v,w)′, is non-decreasing in w for fixed u and v.
(ii) The curve {(u, v) : u = ψ(z), v = zψ(z), z > 0} in IR2 is concave.
(iii) The curve {(u,w) : u = ψ(z), v = z2ψ(z), z > 0} in IR2 is concave.

For any fixed real 0 < ε < 1, if

φ(εt
I
+ (1 − ε)t∗

II
) = max

t
II

∈CH
φ(εt

I
+ (1 − ε)t

II
),

then t∗
II

∈ VB, where VB = {t = αt1 + (1 − α)t2 : t1 = (u, v,w)′ ∈ H, t2 =
(u,−v,w)′ ∈ H, 0 ≤ α ≤ 1} is the vertical boundary of CH.

Proof. (i) together with Lemma 1 imply that given any t
II

= (u
II
, v

II
, w

II
)′ ∈

CH, we can increase φ(εt
I
+(1−ε)t

II
) by holding uII and vII fixed and increasing

w
II

until t
II

hits the boundary of CH. (ii) and (iii) insure that this resulting
boundary point will always be in VB.

Let us consider Result 1. First, we show in Section 3 that (i) holds for all of
the main optimality criteria in the literature, in particular all of those considered
in Silvey (1980). One can also show that (i) holds for F -optimality provided n is
large. To consider (ii) and (iii), recall that we are restricting to symmetric ψ(·).
Let the slope of the curve in (ii) be

∂

∂z
{zψ(z)}/ ∂

∂z
ψ(z) = z + ψ(z)/ψ′(z) = z/2 + r(z)/2,

where r(z) = z+2ψ(z)/ψ′(z) appears in Wu (1988) equation (9) in his discussion
of c-optimality. Assumption (ii) is implied by r′(z) > 0 for z > 0 and Wu proves
that this holds for a number of ψ(·) including the logit and probit models. Let
the slope of the curve in (iii) be

h(z) =
∂

∂z
{z2ψ(z)}/ ∂

∂z
ψ(z) = zr(z)
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which appears in Sitter and Wu (1993), p. 333 in their discussion of F -, D-, and
A-optimality. Assumption (iii) is implied by h′(z) > 0 for z > 0. Sitter and Wu
(1993) show this holds for the logit model and note that though they have no
rigorous proof, a plot of the curve suggests it also holds for the probit model.

It is easy to see that one could generalize Result 1 by removing assumptions
(ii) and (iii) and stating as the conclusion that the optimal point lies on the
boundary of the convex hull. This however would greatly reduce its usefulness.
The power of Result 1 lies in the fact that by its very definition, any point in
VB can be written as a convex combination of the two points on H which lie
directly above and below it. Thus the search for the optimal second stage design
can be restricted to designs of the form {(λ, z), (1 − λ,−z) : 0 ≤ λ ≤ 1, z ≥ 0}.
This reduces the optimization problem greatly and in many cases allows some
characterization of the designs.

3. Optimality Criteria

Silvey (1980) discusses a large list of optimality criteria which have been
suggested in the literature, all of which share the following property. If we con-
sider the design criterion as a function φ(M), where M is a non-negative definite
matrix (i.e. the Fisher information matrix), then if M1, M2 and M1 −M2 are
non-negative definite, then φ(M1) ≥ φ(M2). This list includes A-, D-, D

A
-, Ds-,

G-, E- and c-optimality.
This relates to assumption (i) of Result 1 in the following way. Take any two

points in CH such that t1 = (u, v,w1) and t2 = (u, v,w2) with w1 ≥ w2. Since
they are in CH there exist two designs with Fisher information matrices

nMi = n

(
β2S0 −S1

−S1
1
β2S2i

)

for i = 1, 2 such that u = S0, v = S1 and wi = S2i. We can then rewrite our
optimality function, φ(ti) as a function φ∗(Mi), for i = 1, 2, since the β is a
constant, so that φ(ti) = φ∗(Mi). Now note that w1 ≥ w2 implies M1 −M2 is
non-negative definite. Thus for any of the optimality criteria in Silvey (1980),
φ(t1) = φ∗(M1) ≥ φ∗(M2) = φ(t2) and thus (i) is satisfied.

Sitter and Fainaru (1997) discuss optimal design using the squared half-
length of a Fieller interval for the EDη, i.e. F -optimality. They show that this
criterion also satisfies (i), their Condition 3, and thus Result 1 applies.

4. Example Characterizations of Optimal Designs

4.1. D-optimal second stage design

Assuming that Ψ satisfies the conditions (ii) and (iii) of Result 1 and Ψ′ is
symmetric about zero, we need only consider two points, (λ, z) and (1 − λ,−z)
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for the second stage D-optimal design. Thus the problem has been reduced to
maximizing

{εS
I0

+ (1 − ε)ψ(z)}{εS
I2

+ (1 − ε)z2ψ(z)} − {εS
I1

+ (1 − ε)(2λ − 1)zψ(z)}2

over z > 0 and 0 ≤ λ ≤ 1, where ε = n
I
/n. The only term containing λ is the

last one. If z is held fixed, the determinant will be maximized if the last term
is minimized with respect to λ. That is, for a fixed z > 0, choose λ to minimize
{εSI1 +(1−ε)(2λ−1)zψ(z)}2. Taking the derivative with respect to λ and setting
it to zero yields

λ = λ(z) =
1
2

(
1 − εSI1

(1 − ε)zψ(z)

)
.

Since 0 ≤ λ ≤ 1 we have

λ = g(z) =




0, if λ(z) < 0,
λ(z), if 0 ≤ λ(z) ≤ 1,
1, if λ(z) > 1.

(4.1)

Therefore our problem has now been reduced to a one variable non-linear opti-
mization. We need to maximize

D(z) = {εS
I0

+(1−ε)ψ(z)}{εS
I2

+(1−ε)z2ψ(z)}−{εS
I1

+(1−ε)(2g(z)−1)zψ(z)}2

over 0< z <∞. If z∗ is the solution, the D-optimal second stage design is
{(g(z∗), z∗), (1 − g(z∗),−z∗)}.

This characterization also gives us some insight. In the case where the first
stage design was in fact nearly symmetric about µ̂

I
, i.e. S

I1

.= 0, the optimal
second stage design will also be symmetric about µ̂

I
, that is λ .= 1/2. Now

consider the case where the first stage design has S
I1
< 0 (i.e. the first stage

design is skewed left) then λ = g(z∗) > 1/2 which implies a second stage design
which is skewed to the right. Similarly, a first stage design with S

I1
> 0 (i.e.

skewed right) will have λ = g(z∗) < 1/2 which implies a second stage design
which is skewed left. Thus, heuristically, if our original design covered only one
side of the response curve, the second stage design should be weighted more
toward the opposite side of the response curve.

4.2. c-optimal second stage design

For simplicity, we will consider the case where µ = µ50 is of particular inter-
est, and consider minimizing the AV (µ̂). This is a special case of c-optimality.
Assuming that Ψ satisfies the conditions (ii) and (iii) of Result 1 and Ψ′ is sym-
metric about zero, we need only consider two points, (λ, z) and (1 − λ,−z) for
the second stage c-optimal design. In the one-stage c-optimal design problem
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we must worry about the possible singularity of the information matrix when
a one-point design is used, since the c-optimal design in this special case is a
one-point design. However in the two-stage context the first stage already has
some design points and thus this difficulty is usually avoided when considering
the combined design. Thus the problem has been reduced to minimizing

{εS
I2

+ (1 − ε)z2ψ(z)}
[{εS

I0
+ (1 − ε)ψ(z)}{εS

I2
+ (1 − ε)z2ψ(z)} − {εS

I1
+ (1 − ε)(2λ − 1)zψ(z)}2]

over z > 0 and 0 ≤ λ ≤ 1, where ε = n
I
/n. Using the results of the previous

section, minimizing this with respect to 0 ≤ λ ≤ 1 yields (4.1), since λ only
appears in the last term of the denominator. Therefore our problem has now
been reduced to a one variable non-linear optimization. We need to minimize

C(z)=
{εS

I2
+(1−0ε)z2ψ(z)}

[{εS
I0
+(1−ε)ψ(z)}{εS

I2
+(1−ε)z2ψ(z)}−{εS

I1
+(1−ε)(2g(z)−1)zψ(z)}2 ]

over 0 < z < ∞. If z∗ is the solution, the c-optimal second stage design is
{(g(z∗), z∗), (1−g(z∗),−z∗)}. As with D-optimality, if our original design was
skewed to one side of the response curve, the second stage design will be skewed
toward the opposite side.

4.3. E-optimal second stage design

Using Result 1, we need only consider two points, (λ, z) and (1 − λ,−z) for
the second stage E-optimal design; the design which maximizes the minimum
eigenvalue of M(ξ, θ). Using det[M(ξ, θ) − αI] = 0, we obtain the eigenvalues

α = (β̂2
I
S0 + S2/β̂

2
I
)/2 ± {(β̂2

I
S0 − S2/β̂

2
I
)2 + 4S2

1}1/2/2,

where S0 = εS
I0

+ (1 − ε)ψ(z), S1 = εS
I1

+ (1 − ε)(2λ − 1)zψ(z), and S2 =
εS

I2
+ (1 − ε)z2ψ(z). Since each term is positive, the minimum is

α = (β̂2
I
S0 + S2/β̂

2
I
)/2 − {(β̂2

I
S0 − S2/β̂

2
I
)2 + 4S2

1}1/2/2

and finding the E-optimal design reduces to maximizing

f(λ, z) = (1 − ε)ψ(z)(1 + z2/β̂4
I
) −

[
{ε(S

I0
− S

I2
/β̂4

I
)

+(1−ε)ψ(z)(1−z2/β̂4
I
)}2 + 4{εS

I1
+ (1−ε)(2λ−1)zψ(z)}2/β̂4

I

]1/2

over 0 ≤ λ ≤ 1 and z > 0. Clearly, this is maximized over 0 ≤ λ ≤ 1 for fixed z
by choosing λ to minimize the last term under the square root. This again yields
(4.1) and the problem reduces to finding z > 0 to maximize E(z) = f(g(z), z),
where g(z) is defined in (4.1). If z∗ is the solution, the optimal design will then be
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{(g(z∗), z∗), (1−g(z∗),−z∗)}. So the the E-optimal second stage design problem
is reduced to a one variable maximization.

4.4. A-optimal second stage design

Using Result 1, we need only consider two points (λ, z) and (1 − λ,−z)
for the second stage A-optimal design the design which minimizes the trace of
M−1(η, θ). The problem reduces to minimizing

β̂2
I
{εS

I0
+ (1 − ε)ψ(z)} + {εS

I2
+ (1 − ε)z2ψ(z)}/β̂2

I

[{εS
I0

+ (1 − ε)ψ(z)}{εS
I2

+ (1 − ε)z2ψ(z)} − {εS
I1

+ (1 − ε)(2λ − 1)zψ(z)}2]

over z > 0 and 0 ≤ λ ≤ 1. Using the same argument as in the previous three
sections, minimizing this with respect to λ yields (4.1), since λ only appears in
the last term of the denominator. Therefore our problem reduces to minimizing

A(z)=
β̂2

I
{εS

I0
+(1−ε)ψ(z)}+{εS

I2
+(1−ε)z2ψ(z)}/β̂2

I

[{εS
I0
+(1−ε)ψ(z)}{εS

I2
+(1−ε)z2ψ(z)}−{εS

I1
+(1−ε)(2g(z)−1)zψ(z)}2 ]

over z > 0, where g(z) is defined in (4.1). If z∗ is the solution, the optimal design
will then be {(g(z∗), z∗), (1 − g(z∗),−z∗)}. So the the A-optimal second stage
design problem is reduced to a one variable maximization.

Similar characterizations can be done for various optimality criteria, though
the algebra can be quite tedious. For some guidance, one can look at the charac-
terizations of F -optimal designs in Sitter and Wu (1993) and of F - and G-optimal
designs in Sitter and Fainaru (1997).

4.5. A numerical illustration

To illustrate the presented ideas we consider two hypothetical scenarios. Let
us pretend that an experimenter wishes to consider a two stage experiment in
the stated context. From previous experience, they believe the logit model is
applicable with dose measured on the log scale. It is also believed that µ and
β will be near 5 and 0.5, respectively. At least, if forced to pick only point
estimates, these are the values the experimenter would give. In scenario 1, we
assume the resources available allow n = 60 subjects to be used, while in scenario
2 n = 100 subjects are available. In scenario 1, suppose the experimenter wishes
to do the experiment in two stages using n

I
= 20 subjects in the first stage and

n
II

= 40 in the second, while in scenario 2, n
I

= 20 and n
II

= 80. We also
suppose that after some consideration of how confident they were in the model
and their parameter values, and the need for model checking, they decided to
place ni = 5 subjects at each of

x1 = 2, x2 = 4, x3 = 6, x4 = 8,
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where x =log dose, in both scenarios. For this illustration, it is not important
how this design was reached, however, in fact, a more detailed scenario which
results in this design using the method of robust design in Sitter (1992) is given
in Forbes (1994), Ch. 3 and Sitter and Wu (1995).

Now suppose the true parameter values were actually µ = 3 and β = .5.
That is, the experimenter was incorrect in location, thus the resulting design
is skewed right. To illustrate how the various optimality criteria would pick a
second stage, we suppose that the resulting response vector was the same in each
scenario; r = (2, 3, 4, 5)′ , which implies the mle’s µ̂

I
= 3.015 and β̂

I
= 0.59, and

the logit model fits the data well. Note that it does not matter if the first stage
design was obtained assuming a logit model or not provided the data is well fit
by a logit model. We can now use the theory of the previous section to obtain
the D-, c−, E- and A-optimal second stage designs for each scenario.

g(
z)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
3

1/
A

(z
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
02

0
0.

04
5 •

1/
C

(z
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
06

0.
16

•

D
(z

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
01

0

•

E
(z

)

0.0 0.5 1.0 1.5 2.0 2.5 3.00.
04

0
0.

06
0 •

z

z

z

z

z

Figure 2. Plots of g(z), 1/A(z), 1/C(z), D(z) and E(z) for scenario 1.

First consider scenario 1, where n
I

= 20 and n
II

= 40, which implies ε = 1/3.
In Figure 2, we plot g(z), 1/A(z), 1/C(z), D(z) and E(z) for 0 ≤ z = β̂I (x−µ̂I ) <
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3.0. The maximum, z∗, for each of the optimality criteria is clearly marked, and
if one moves vertically up from the maximum to the plot of g(z) one can ascertain
the value of λ∗ = g(z∗) for the optimal design. We see immediately that the A-
and D-optimal second stage designs have two points, while the c− and E-optimal
second stage designs have only one. Specifically, the (1 − λ∗,−z∗), (λ∗, z∗) are:
A-optimal, (0.63,−0.74), (0.37, 0.74);
D-optimal, (0.59,−1.58), (0.41, 1.58);
c-optimal, (1,−0.07);
E-optimal, (1,−0.08).
Figure 3, depicts the resulting combined first and second stage design for each
criterion. We see that in all cases the second stage design is more heavily weighted
to the left of µ̂I = 3.015 to correct the asymmetry in the first stage design.

Viewing Figure 2 once more we can see that D(z) appears to have only
one local maximum and is well behaved, but 1/A(z), 1/C(z) and E(z) show
the possibility of more than one maximum. Thus one should be careful when
routinely applying a maximization routine. It is much simpler to just plot the
function.
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Figure 3. The resulting A-, c-, D- and E-optimal combined first and second
stage designs for scenario 1.

We introduce scenario 2 to illuminate a rather surprising result in scenario
1. In scenario 1, it is not surprising that the c-optimal second stage design has
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only one point, while the A- and D-optimal second stage designs have two points,
since: (i) the A- and D-criterion were derived to measure the accuracy of both
the estimate of µ and β, while the c-criterion is only concerned with µ; and (ii)
the A- and D-optimal one stage designs for this model have two points (see Sitter
and Wu (1993)) while the c-optimal one stage design has only one point (see Wu
(1988)). The surprising result is that the E-optimal second stage design has only
one point and closely resembles the c-optimal second stage design instead of the
A- and D-optimal second stage designs. The E-criterion was derived to measure
the accuracy of both parameters and the E-optimal one stage design for this
model has two points (see Sitter and Fainaru (1997)).
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Figure 4. Plots of g(z), 1/A(z), 1/C(z), D(z) and E(z) for scenario 2.

In scenario 2, n
I

= 20 and n
II

= 80, so that ε = 1/5. In Figure 4 we
again plot g(z), 1/A(z), 1/C(z), D(z) and E(z). From this we see that the
curves 1/C(z), 1/A(z) and D(z) do not change much from scenario 1, but the
E(z) curve is fundamentally different. In Figure 2, E(z) had two local maxima
with the left one dominant, but in Figure 4 the right one has become dominant.
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This implies a switch from a one to a two point E-optimal second stage design.
Specifically, the (1 − λ∗,−z∗), (λ∗, z∗) are:
A-optimal, (0.62,−0.80), (0.38, 0.80);
D-optimal, (0.59,−1.56), (0.41, 1.56);
c-optimal, (1,−0.04);
E-optimal, (0.65,−0.61), (0.35, 0.61)
and the E-optimal second stage design more closely resembles the A- and D-
optimal second stage designs.

Viewing Figure 2 and 4 we might anticipate that 1/C(z) and 1/A(z) might
also display this switching property from one to two point designs, since they
display a potential for two local maxima. We have investigated various scenarios
and have found that the A-criterion does sometimes yield a one or two point
design, while the c-criterion seems to always yield only one point. We should
also note that in all cases considered the second stage design is skewed left,
symmetric and skewed right precisely opposite to the original designs and thus
creates a more symmetric combined design.

5. Conclusion

In this article, we have reduced the problem of obtaining an optimal second
stage design for a class of binary response models to a two variable (in many
useful cases a one variable) maximization problem for almost any optimality
criteria. This class of models includes the two most common models: the logit
and the probit. There are of course many questions one can ask and extensions
one would like to have. We make a few comments in this regard.

Often the experimenter would like to restrict the dose levels within a bounded
range. This amounts to removing a section of VB (see Figure 1). If the bound
on x is symmetric about the µ̂

I
, that is, the bound amounts to z ∈ [−d, d] for

some d > 0, then the problem is no more difficult and a similar result to Result
1 is immediately available. However, if this is not so which will usually be the
case, characterization of CH is more difficult. There has been some work done
on this for one stage designs (see Ford, Torsney and Wu (1992)). It is possible
that such extensions could be done here, though they would be more difficult.

Conditions (i) and (ii) which we place on ψ(·) restrict our model to case
(i) of Sitter and Wu (1993). In their case (ii) they relax Condition (ii). If we
do this, Result 1 still holds except that VB will no longer be vertical. It will
consist of a vertical curved planar piece with a sloped roof on top and a sloped
floor at the bottom. This means that Result 1 would have reduced usefulness
since we could not easily characterize designs which generate points on VB. In
the one stage design problem it is sometimes possible in specific cases to prove
that the resulting point will in fact lie on the vertical part of VB and thus the
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resulting design would consist of 3 points symmetrically placed about the ED50
with possibly unequal weighting (see Sitter and Wu (1993)), however in a two
stage design a bad first stage will effect the resulting second stage point and even
in these special cases may force it outside of the vertical part of VB.
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