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Abstract: We address the problem of finding robust sampling designs for the esti-

mation of a discrete time second-order stationary process when its autocorrelation

function is only approximately specified and has a spectral density belonging to a

neighbourhood of a specified ‘base’ density. The value of the stochastic process is

predicted by the best – for the assumed autocorrelation function – linear unbiased

predictor on the basis of a finite sample of observations. Following the approach of

minimax robustness, we find the least favourable – in the sense of maximizing the

average mean squared error (amspe) of these predictions – spectral density. We

then obtain, through a genetic algorithm, robust sampling designs which minimize

this maximum amspe. Several examples are discussed and assessed, on the basis of

which we conclude that the robust designs can offer substantial protection against

model errors, at a minimal cost in efficiency at the base model. The techniques are

illustrated in a case study, using a series of interest in statistical climatology.

Key words and phrases: Average mean squared error, best linear unbiased predic-

tor, climatology, genetic algorithm, glacial varves, least favourable spectral density,

minimax robustness.

1. Introduction

Consider the problem of interpolating or forecasting the values X (t) of a

stochastic process, evolving over time, at discrete time points t = 0,±1,±2, . . ..

Suppose that attention is restricted to a finite interval [1, N ] of time points, and

that the investigator is able to sample the data at n distinct times

{t1 < · · · < tn} ⊂ [1, N0]. Here n,N0, and N are fixed, n ≤ N0 ≤ N . The

goal is accurate prediction of {X (t) |t = 1, . . . , N}. A complicating factor mo-

tivating this study is that, in such a situation, the experimenter must typically

operate with at best only approximate knowledge of the mechanisms generating

the evolution of the process.

We assume that {X (t)} is second-order stationary, with mean zero. The

experimenter takes the ‘working’ autocovariance function

R0 (s) = cov [X (t± s) , X (t)] =

∫ π

−π
cos(s ω) f0(ω) dω,
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for a particular ‘base’ spectral density f0 (·). If R0 (·) is correctly specified then,

given a sample xn = (X(t1), . . . , X(tn))
′, the best linear unbiased predictor

(blup), minimizing the mean squared prediction error (mspe), is, in the notation

of (1.2),

X̂(t) = x′
nA

−1
n an(t). (1.1)

Other methods of signal estimation have recently been investigated by Wein and

Srinivasan (2013).

Here vectors and matrices with a single index n have dimension n, and

depend on the sampling design. We take

An = (R0(|tj − tk|))1≤j,k≤n , (1.2a)

an(t) = (R0(|t− tj |))1≤j≤n , (1.2b)

so that An = [an(t1), · · ·,an(tn)].

Mukherjee (2003) studied problems of a form close to ours, and details a

number of possible applications in geostatistics (Matheron (1963), Journel and

Huijbregts (1978)), Bayesian numerical analysis (Diaconis (1988)) and environ-

mental monitoring (Christakos (1992)). She assumes a known covariance function

R0 (·) of a particularly tractable ‘product’ form, allowing her to obtain explicit

solutions and designs. Here we seek robustness against a possibly misspecified

covariance function, and so entertain the possibility that the true covariances

may be of the form

R (s) =

∫ π

−π
cos(s ω) f(ω) dω, (1.3)

with f different from, but ‘close to’, f0.

Hosoya (1978) considered problems of a similar nature, in which optimal

one-step ahead predictions were sought, with the mspe first maximized over an

ε-contamination neighbourhood of the spectral distribution corresponding to f0:

F (ω) = (1− ε) F0 (ω) + εG (ω). He found that the maximizing G has a density

which is uniform on its support. Here we are concerned instead with the average

mspe (amspe) – averaged over all of [1, N ] – and first maximize this over an L2

neighbourhood

Fε =

{
f

∣∣∣∣∣ f ≥ 0,
∫ π
−π (f(ω)− f0(ω)) dω = 0 and

∥f − f0∥2L2
=

∫ π
−π (f(ω)− f0(ω))

2 dω ≤ ε 2

}

of f0. The second condition in the definition of Fε fixes the process variance,

which we take as
∫ π
−π f0(ω)dω = 1 without loss of generality.

Franke (1985) worked with Fε (without its second condition) and found

a member f∗ which satisfied an information-theoretic property of being most
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indeterministic; he went on to study the robustness properties of the blup, for

one-step ahead prediction, computed assuming that the autocovariances were

generated by f∗. In a regression framework a somewhat analogous approach is

that of Samarov (1987). Our interest is in seeking robustness through the choice

of the sampling design, should the model be misspecified. The robustness is to be

realized through an optimal bound on the increased amspe, in a neighbourhood

of f0(·). The often quoted analogy (Anscombe (1960)) of robustness methods

with insurance risks and premiums is apt – the investigator pays a premium, in

terms of lost efficiency at f0(·), through the use of a design not quite optimal

for f0(·). In return he receives the protection of reduced losses when f0(·) is not
quite correct.

In §2 we develop the amspe and then exhibit the least favourable spectral

density, maximizing the amspe, in Fε. This maximized amspe depends on the

sampled points; we go on to build and implement an algorithm developed to min-

imize the maximum amspe over samples {t1, . . . , tn} ⊂ [1, N0]. Some particular

examples are discussed in §3, where they are assessed with respect to a variety

of criteria. In §4 we illustrate our methods on a climatological series of ‘glacial

varve’ records, and consider a scenario in which the analyst seeks to predict part

of a series from an incomplete sample, using the initial, fully observed portion of

the series as ‘training data’. Here the analyst assumes that the model fitted to

the training series continues to hold, but wishes to build the protection afforded

by robustness into his sampling mechanism, should this assumption fail.

2. Minimax Spectra and Designs

2.1. Least favourable spectral density

In this section we exhibit the least favourable spectral density f∗ that max-

imizes the amspe for a fixed sampling design over the set Fε. With the true

autocovariance function given by (1.3), the mspe of the blup X̂(t) at (1.1), after

X (t) has been sampled at times {t1 < · · · < tn}, is

mspe(t) = E
[(
X̂(t)−X(t)

)2]
= 1 + b′n(t)Rnbn(t)− 2 b′n(t)rn(t).

Here we write bn(t) = A−1
n an(t), Rn = (R(|tj − tk|))1≤j,k≤n, rn(t) = (R(|t

−tj |))1≤j≤n. Using Mn(ω) = (cos(ω|tj − tk|))1≤j,k≤n : n × n and mn(ω, t) =

(cos(ω|t− tj |))1≤j≤n : n × 1, we express the autocorrelations in terms of the

spectrum, obtaining

Rn =

∫ π

−π
Mn(ω) f(ω)dω,

rn(t) =

∫ π

−π
mn(ω, t) f(ω) dω.
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Then the average mspe is

amspe (f) =
1

N

N∑
t=1

mspe(t) =

∫ π

−π
Hn(ω) f(ω) dω,

with

Hn(ω) = 1 +
1

N

N∑
t=1

b′n(t)Mn(ω)bn(t)−
2

N

N∑
t=1

b′n(t)mn(ω, t). (2.1)

We assume that Hn(ω) is non-constant, since otherwise amspe(f) does not de-

pend upon f and no spectral density is worse – or better – with respect to amspe

than is f0(·). The following theorem is proven in the Appendix.

Theorem 1. For 0 ≤ ε ≤ ∥f0∥L2
≤ ∞ let

f∗ (ω; ε) = [f0(ω) + a (Hn(ω)− b)]+ ,

where f+ = max (f, 0). Then:

(i) there exist constants a > 0 and b ∈
[
minω∈[−π,π]Hn(ω),maxω∈[−π,π]Hn(ω)

]
satisfying ∫ π

−π
f∗ (ω; ε) dω = 1, (2.2a)

∥f∗ (·; ε)− f0 (·)∥L2
= ε; (2.2b)

(ii) with (a, b) determined by (2.2), the function f∗ (·; ε) maximizes amspe(f) in

Fε:

max
f∈Fε

amspe (f) = amspe (f∗) =

∫ π

−π
Hn(ω) f∗ (ω; ε) dω.

Our algorithm, described in §2.2, to compute the minimax designs requires

a huge number of evaluations of the loss, hence of f∗, and so is very slow if each

evaluation requires several separate numerical integrations and optimizations as

called for by Theorem 1. Under a condition on the designs – one which is satisfied

by all designs we have encountered – a much more explicit solution is possible.

For this, a central role is played by the function

Kn (ω) = Hn(ω)−
1

2π

∫ π

−π
Hn(ω)dω, ω ∈ [−π, π] , (2.3)

which has
∫ π
−πKn(ω)dω = 0 and so assumes both positive and negative values.

Define subsets of [−π, π] by

I+ = {ω ∈ [−π, π] |Kn (ω) ≥ 0} ,
I− = {ω ∈ [−π, π] |Kn (ω) < 0} ,
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and make the restriction to sampling designs for which

inf
ω∈I−

f0 (ω)

|Kn (ω)|
>

ε

∥Kn∥L2

. (2.4)

Then for ε ≤ ∥f0∥L2
the density in Theorem 1 is given by

f∗∗ (ω; ε) = f0 (ω) + ε
Kn (ω)

∥Kn∥L2

, ω ∈ [−π, π] . (2.5)

This function f∗∗ (ω; ε) is the f∗ (ω; ε) of Theorem 1 with a = ε
/
∥Kn∥L2

and

b =
∫ π
−πHn(ω)dω /(2π) , and is nonnegative on [−π, π] by virtue of (2.4). The

amspe arising from f∗∗ (·; ε) is∫ π

−π
Hn(ω) f0(ω) dω + ε

∫ π
−πHn(ω)Kndω

∥Kn∥L2

= amspe (f0) + ε ∥Kn∥L2
.

Theorem 2. In the class of designs satisfying (2.4), the function at (2.5) max-

imizes amspe(f) in Fε. The maximum amspe is

amspe (f∗∗ (·; ε)) = amspe (f0) + ε ∥Kn∥L2
.

Our procedure, implemented numerically, is as follows. Each time we evalu-

ate a candidate design, we first compute f∗∗ (·; ε) and check (2.4). If the condition

holds, then Theorem 2 applies and we move on. Should the condition fail, we

compute instead f∗ (·; ε) of Theorem 1, and the resulting loss. In this manner we

find the maximum loss for any design, not merely one satisfying (2.4). We have

yet to find a design, and ε ≤ ∥f0∥L2
, for which (2.4) fails.

Remark. Franke (1985) also notes the difficulties involved in addressing the

positivity requirement of spectral densities. He deals with it by allowing the

consideration of negative ‘densities’, and then checks that the maximizer is indeed

non-negative.

2.2. Computational issues

The rather lengthy calculations leading to the results of this section are

detailed in an online supplement. For the purposes of the computations, an

expression more convenient than (2.1) is

Hn(ω) = 1 +
1

N
trMn(ω)Bn,NB′

n,N − 2

N
trPn,N (ω)B′

n,N ,

where Bn,N =
(
bn(1) · · · bn(N)

)
: n×N and Pn,N (ω)=

(
mn(ω, 1) · · ·mn(ω,N)

)
: n×N . In this notation the predictions (1.1) are(

X̂ (1) , . . . , X̂ (N)
)
= x′

nBn,N . (2.6)
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We find that

1

2π

∫ π

−π
Hn (ω) dω = 1 +

1

N

(
∥Bn,N∥2E − 2n

)
,

where we use the Euclidean matrix norm ∥P ∥E =
√
trP ′P =

√∑
j,k p

2
jk. Then

in implementing Theorem 2, from (2.3) we obtain

Kn(ω) =
1

N

[(
trMn(ω)Bn,NB′

n,N − ∥Bn,N∥2E
)
− 2

(
trPn,N (ω)B′

n,N − n
)]
.

In terms of the incidence matrices En (s) = (I (|tj − tk| = s))j,k : n × n and

En,N (s) = (I (|k − tj | = s))j,k : n × N , and using (2.5), the least favourable

autocorrelations

R∗∗(s) =

∫ π

−π
cos (sω) f∗∗ (ω; ε) dω = R0 (s) +

ε

∥Kn∥L2

∫ π

−π
Kn (ω) cos (sω) dω

are given by

R∗∗(s) = R0 (s) +
επI (s ̸= 0)

N ∥Kn∥L2

[
trEn (s)Bn,NB′

n,N − 2trEn,N (s)B′
n,N

]
.

Further calculations yield

N ∥Kn∥L2
=

√√√√π
N−1∑
t=1

[
trEn (t)Bn,NB′

n,N − 2
(
1′nEn,N (t)B′

n,N1n

)]2
.

The next step is to find the sampling design T = (t1, . . . , tn) that minimizes

the maximum loss

amspe (f∗∗ (·; ε)) = amspe (f0) + ε ∥Kn∥L2

= 1− 1

N
trBn,NB′

n,NAn + ε ∥Kn∥L2
.

For this we use a genetic algorithm similar to that in Welsh and Wiens (2013),

adapted to our case. The optimal design is approached over multiple generations

of designs as explained in the outline below. The matlab code is available from

the authors.

The genetic algorithm proceeds as follows.

Step 1 Generate independently a first generation of Ng designs. Each design can

be identified with a vector of n ones and N0 − n zeros, where t1, . . . , tn
are the locations of the ones in this vector.
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Step 2 Compute the amspe Lk, k = 1, . . . , Ng, for each design of the current

generation, and evaluate the corresponding “fitness levels”

fitnessk =
1√

rank (Lk)
, k = 1, . . . , Ng,

where rank (·) refers to the ranking of the values of L from 1 to Ng,

with the smallest receiving rank 1. Then transform the fitness levels to

a probability distribution

pk =
fitnessk∑Ng
j=1 fitnessj

.

Step 3 Replace the current generation by a new generation of Ng designs in the

following manner:

(1) Include the fittest nelite = Ng ×Pelite members of the current gener-

ation. This group survives, intact, through to the next generation.

The remaining Ng − nelite designs are formed by crossover and mu-

tation as follows.

(2) Crossover:

(a) Select two members Ti1 and Ti2 from the current generation to

be parents with probability proportional to their fitness levels:

i1 = min
{
i :

i∑
j=1

pj ≥ u1

}
and i2 = min

{
i :

i∑
j=1

pj ≥ u2

}
,

where u1, u2 are independent Uniform(0, 1) random variables.

This method, the so-called roulette-wheel selection method, en-

sures that one is most likely to choose as parents the fittest

designs of the current generation.

(b) Add the child of the two members to the new generation. This

child is, with probability 1 − Pcrossover, identical to the fittest

parents. With probability Pcrossover it is the combined contribu-

tion of both parents, formed in the following way. Sum up the

two vectors of ones and zeros that identify the design-parents.

The resulting vector, with elements in {0, 1, 2}, is adjusted to

have n ones and N0 − n zeros: First, choose randomly an ap-

propriate number of ones and replace them by zeros. Second,

convert the twos to ones. A consequence is that points common

to both parents are preserved by the child.
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Figure 1. Progress of the genetic algorithm – the minimax design for an
approximate AR(1) model, as presented in §3, was found after about 6,000
generations.

(3) Possible mutation is applied to the child in the following manner.

Select randomly a one and a zero. With probability Pmutation inter-

change them, and with probability 1−Pmutation do nothing. This is

repeated n times, for each child.

The procedure is repeated until Ng members of the new generation are

formed.

Step 4 Return to Step 2, replace the old generation by the new one and repeat

the process. The inclusion of the elite group ensures that the minimum

loss per generation is nonincreasing. The algorithm is carried out until

the loss of the optimal design has not changed in lg consecutive genera-

tions.

See Figure 1 for an illustration of the progress of the algorithm, as it found

the minimax design for the approximate AR(1) model as discussed in the next sec-

tion. We typically use the tuning parameters Ng = 40, Pelite = 0.1, Pcrossover =

0.9, and decrease the mutation probability linearly, from 0.2 to 0, as the number

of generations, without an improved design being found, runs from 0 to lg. The

value of lg seems to have a much greater influence on the performance of the

algorithm than do any of the other parameters; we use lg = 1, 000.

3. Examples and Comparisons

In this section we illustrate the methodology outlined in §2, and find robust

designs T ∗ = (t1, . . . , tn) for several base models. We considered four base spec-

tral densities, each normalized by
∫ π
−π f0(ω)dω = 1; these densities, together with

the parameter values used here and the resulting L2-norms of f0, are
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AR(1): f0(ω) =
1− ϕ2

2π [1 + ϕ2 − 2ϕ cos(ω)]
, ϕ = −0.5, ∥f0∥L2

= 0.515;

AR(2): f0(ω) =
(1 + ϕ2)

[
(1− ϕ2)

2 − ϕ21

]
2π(1− ϕ2)

[
(1 + ϕ21 + ϕ22)− 2ϕ1(1− ϕ2) cos(ω)− 2ϕ2 cos(2ω)

] ,
(ϕ1, ϕ2) = (1,−0.5), ∥f0∥L2

= 0.592;

MA(1): f0(ω) =
1 + θ2 + 2θ cos(ω)

2π (1 + θ2)
, θ = −0.9, ∥f0∥L2

= 0.488;

MA(2): f0(ω) =
1 + θ21 + θ22 + 2θ1 (1 + θ2) cos(ω) + 2θ2 cos(2ω)

2π
(
1 + θ21 + θ22

) ,

(θ1, θ2) = (−1, 0.6), ∥f0∥L2
= 0.571.

In practice of course these parameter values would be furnished by some

prior knowledge of the process, perhaps garnered from a preliminary study as

envisioned in our case study of §4. Similarly, our assumption of a mean of zero

would in practice be accommodated by the subtraction of any mean or covariate

effects which might be observed or estimated along with X (t).

Figure 2 shows results for an approximate AR(1) model and ε = 0.25. We

used N = 200 and n = 30, on the principle that small sample simulations tend

to be more revealing than their large sample counterparts. Figure 1 illustrates

the progress of the algorithm. Decreases in the amspe are sometimes realized

only after extremely long stretches without any improvement, hence our choice of

lg = 1, 000. As with all such evolutionary algorithms there is still no guarantee

that we have found a global minimum, but our experience has been that any

further improvements are slight. In this example we used N0 = 200; Figure 3

gives similar output for the MA(1) base model, with the change that there we

used N0 = 150.

Figure 4 shows minimax designs for the four base models detailed above, as

ε varies and with N = 100, n = 10. In (a) and (c) we used N0 = 75, whereas (b)

and (d) employed N0 = 100.

In addition to those shown in Figures 2 and 3, we have made several other

comparisons between our minimax designs and others, with respect to their per-

formance in (neighbourhoods of) a variety of base models. The results are given

in Tables 1 and 2, where we consider as well the ARMA(1,1) and independence

models.

For each base model detailed in these tables we assess:

(i) our robust design, minimax in a neighbourhood F0.25 of the given base model;

(ii) the ‘optimal’ design computed under the assumption that the base model is

exactly correct, in our notation ε = 0;
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Table 1. Comparative losses (amspe) for various designs; n = 10, N0 = 100,
N = 100.

Loss in Fε of robust Loss in Fε of optimal Loss in Fε of
Base model (for F0.25) design

1 (for F0) design
2 uniform design3

ε = 0 ε = 0.25 ε = 0 ε = 0.25 ε = 0 ε = 0.25
AR(1)4 0.856 1.084 0.833 1.164 0.833 1.235
MA(1)4 0.859 1.044 0.851 1.110 0.851 1.227

ARMA(1,1)4 0.799 1.087 0.750 1.225 0.750 1.250
White noise4 0.900 1.019 0.900 1.047 0.900 1.199

1Designer computed minimax design using ε = 0.25 and the given base model.
2Designer assumed ε = 0, the given base model is correct, optimized for it alone.
3Equally spaced: {5, 15, . . . , 95}.
4Parameters of the base models were AR(1): ϕ = 0.5, MA(1): θ = 0.9, ARMA(1,1): (ϕ, θ) =

(0.5, 0.9); for white noise f0 (ω) ≡ 1/ (2π).

Table 2. Comparative losses (amspe) for various designs; n = 10, N0 = 75,
N = 100.

Loss in Fε of robust Loss in Fε of optimal Loss in Fε of
Base model (for F0.25) design

1 (for F0) design
2 uniform design3

ε = 0 ε = 0.25 ε = 0 ε = 0.25 ε = 0 ε = 0.25
AR(1)4 0.864 1.106 0.833 1.198 0.833 1.230
MA(1)4 0.863 1.060 0.851 1.103 0.851 1.210

ARMA(1,1)4 0.805 1.110 0.750 1.248 0.751 1.253
White noise4 0.900 1.022 0.900 1.049 0.900 1.154

1,2,4As in Table 3. Equally spaced: {4, 11, 19, 26, 34, 41, 49, 56, 64, 71}.

(iii) the uniform (equally-spaced, modulo rounding) design, that requires no model

assumptions.

For each we computed the maximum loss amspe in a neighbourhood Fε of the

given base model, for ε = 0 and for ε = 0.25.

The designs obtained for use in the preparation of Table 1 were:

Base model Minimax Optimal
AR(1) {1, 2, 13, 15, 52, 69, 77, 95, 99, 100} , {9, 21, 32, 42, 51, 60, 69, 78, 86, 94} ,
MA(1) {1, 4, 9, 26, 42, 55, 69, 89, 90, 100} , {8, 26, 31, 34, 43, 57, 62, 66, 69, 71} ,
ARMA(1,1) {1, 3, 28, 30, 49, 84, 86, 91, 99, 100} , {8, 18, 28, 38, 48, 57, 67, 76, 85, 94} ,
White noise {1, 13, 34, 50, 64, 72, 91, 95, 98, 100} , {21, 52, 65, 66, 72, 73, 83, 84, 87, 100} .

The designs used in the preparation of Table 2 were:

Base model Minimax Optimal

AR(1) {1, 2, 5, 15, 16, 47, 53, 54, 74, 7} , {5, 12, 19, 26, 34, 43, 51, 59, 67, 75} ,
MA(1) {1, 7, 8, 20, 21, 37, 47, 70, 71, 74} , {5, 8, 11, 15, 18, 21, 33, 50, 63, 75} ,
ARMA(1,1) {1, 2, 13, 15, 46, 48, 53, 54, 72, 74} , {6, 14, 22, 30, 37, 45, 53, 60, 68, 75} ,
White noise {2, 5, 6, 24, 34, 55, 61, 63, 70, 75} , {10, 21, 31, 33, 38, 40, 43, 64, 65, 70} .
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Figure 2. (a) Sampling designs for an approximate AR(1) model; ε = 0.25,
n = 30, N = N0 = 200. Values of maxFε amspe are shown for ε = 0
(left) and ε = 0.25 (right). (b) Base spectral density f0 and least favourable
spectrum f∗∗.; (c) correponding autocorrelation functions.

From these displays some general features emerge. The robust designs are

only slightly less efficient than the ‘optimal’ designs when the base model holds.

However, the maximum loss in F.25 is much smaller. This insurance against model

misspecification, in return for a small premium at the base model is exactly what

a robust procedure is meant to achieve: when the base model holds, the design

optimal for this model, and the uniform design, while not equal, have almost

identical losses. The optimal designs are typically more robust than the uniform

however, as evidenced by their smaller losses in F0.25.

4. Case Study

Shumway and Verosub (1992) discuss a series of interest in statistical clima-

tology. The data represent the thicknesses of sedimentary deposits (‘varves’) left

behind during spring melts of glaciers, and were reconstructed so as to give an an-

nual record spanning 634 years, beginning about 12, 000 years ago, from a region

in what is now Massachusetts. The rather involved reconstruction process was
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Figure 3. (a) Sampling designs for an approximate MA(1) model; ε = 0.25,
n = 30, N = 200, N0 = 150. Values of maxFε amspe are shown for ε = 0
(left) and ε = 0.25 (right). (b) Base spectral density f0 and least favourable
spectrum f∗∗.; (c) correponding autocorrelation functions.

described by De Geer (1912, 1940) and summarized by Shumway and Verosub

(1992). These varves may be used as proxies for paleoclimatic parameters such

as temperature, since they tend to increase in warm years; hence the prediction

of such a series is of current climatological interest.

The transformed series of interest, referred to here as {X(t)|t = 1, . . . , 633},
is the first differences of the logarithms of the original data; to first order these

represent the relative annual changes in the thicknesses. Here we consider the

question: given complete data on the first 500 values of X(t), could one have

devised a sampling scheme, so as to observe the remaining 133 points only spo-

radically, thus saving the expense and effort of reconstructing the entire record?

We attempt to do so using our robust method, and compare the results with

what could have been attained using other sampling schemes, perhaps tailored

to a particular autocorrelation structure determined from the initial 500 obser-

vations.

Shumway and Verosub (1992) fit an MA(1) model to {X(t)}, although the
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Figure 4. Minimax designs for varying ε and four base models; n = 10,
N = 100. (a), (c) N0 = 75; (b), (d) N0 = 100.

diagnostic plots suggest ARMA(1,1) as a plausible competitor. This uncertainty

justifies working in a neighbourhood Fε of the MA(1) spectral density. We took

ε = .25 and used the MA parameter θ = −.87, which is the estimate obtained

from the fit to the first 500 data points. We then constructed designs of size

n = 25, used them to sample the N = 133 time points set aside, and then

computed X̂(t) as at (2.6), for t = 501, 502, . . . , 633.

The designs studied were the robust design, minimax in Fε; the ‘optimal’

(for F0) design; the uniform design. The corresponding values of the sample mse,

âmspe =
1

N

N∑
t=1

(
X̂(500 + t)−X(500 + t)

)2
,

were computed, and are displayed along with the designs in Figure 5(a).

We repeated the above procedure, instead predicting the final 233 values

of the series from a sample of n = 30 time points, using parameter estimates

obtained from the first 400 values; the results are plotted in Figure 5(b). Both

procedures were then repeated, with the MA(1) fit replaced by an ARMA(1,1)

fit – Figures 5 (c), (d).

Although minimization of the mse at one particular model is not the goal of

a robust procedure, it is nonetheless encouraging that the robust designs always

outperformed the optimal designs, and usually the uniform designs as well, with
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Figure 5. Designs for the glacial varve study – minimax (bottom), optimal
for the base model (middle) and uniform (top) – together with the sample
amspe values.

respect to mean squared error. In light of the comparisons in §3 we do not

recommend the routine use of uniform sampling when the underlying model is

in doubt.

5. Summary and Conclusions

We have given a method for the construction of sampling designs for a second-

order stationary stochastic process that are robust against possible misspecifi-
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cations of the underlying mechanism – the spectral density, or autocorrelation

function – generating the process. The loss incurred by using a particular design

strategy has been measured through the mean squared prediction error, averaged

over the range of time points of interest to the investigator. Under a condition

on the class of possible designs – a condition which appears to hold universally

– we have obtained an explicit expression for the maximum loss which is real-

ized in the class of departures from the fitted model. Even if the condition fails

this maximum loss can still be computed, albeit with considerably more diffi-

culty. The maximum loss has then been minimized, to obtain the final designs,

via a genetic algorithm. One can see from Figures 2 and 3 – an observation

which has been repeated in all other examples at which we have looked – that

the least favourable spectrum tends to be more uniform than the base spectrum

f0. As well, the least favourable autocorrelations are smaller in absolute value,

sometimes differing in sign from those of the base model. Although the detailed

explanation for this lies within Theorem 1, it is a phenomenon which could as well

arise through a mixing of f0 with the uniform spectral density of white noise – in

line with the findings of Hosoya (1978) discussed in §1, and those of Welsh and

Wiens (2013), who found in a survey sampling context that “the least favourable

distribution for modelling dependence is actually the distribution under indepen-

dence.” Further support for this interpretation is that when the base model is

one of independence, so that f0 (ω) ≡ 1/ (2π), then also f∗∗ (ω) ≡ 1/ (2π).

Through comparisons such as we have detailed in §3 we see that an investiga-

tor who designed with complete faith in his assumed spectrum could be seriously

misled, even under small departures from this assumption. Thus methods as

outlined here should be routinely used, with at least a small but positive value

of ε.
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Appendix: Proof of Theorem 1

Proof of (i). Let

ψa (b) =

∫ π

−π
[f0 (ω) + a (Hn (ω)− b)]+ dω,

and let bL and bU be the minimum and maximum values of the (continuous)

function Hn (ω), ω ∈ [−π, π]. Then for a > 0 and b ∈ [bL, bU ],

f0 (ω) + a (Hn (ω)− bU ) ≤ [f0 (ω) + a (Hn (ω)− b)]+ ≤ f0 (ω) + a (Hn (ω)− bL) ,



1540 YASSIR RABHI AND DOUGLAS P. WIENS

so that ψa (b) ranges monotonically over [ψa (bU ) , ψa (bL)] as b ranges over [bL,

bU ]. Now an integration of the terms in the inequalities

f0 (ω) + a (Hn (ω)− bU ) ≤ f0 (ω) ≤ f0 (ω) + a (Hn (ω)− bL)

shows that 1 ∈ [ψa (bU ) , ψa (bL)]. Thus for each a > 0 there is b = b (a) ∈ [bL, bU ]

for which ψa (b) = 1; this is (2.2a).

Take Ia (ω) to be the indicator of the event that f0 (ω)+a (Hn (ω)− b (a)) ≥
0. In this notation (2.2a) is∫ π

−π
(1− Ia (ω)) f0 (ω) dω =

∫ π

−π
Ia (ω) {a (Hn (ω)− b (a))} dω. (A.1)

Equation (2.2b) is ϕ (a) = ε2, where

ϕ (a) =

∫ π

−π
(1− Ia (ω)) f

2
0 (ω) + Ia (ω) {a (Hn (ω)− b (a))}2 dω.

We show that any ε2 ≤ ∥f0∥2L2
is in the range of the continuous function ϕ (a).

First observe that as a ↓ 0, both sides of (A.1) must tend to zero; this can only

be the case if (1− Ia (ω)) → 0 for a.e. ω at which f0 (ω) > 0. Thus also ϕ (a) → 0

as a ↓ 0.

Now note that

ϕ (a) ≥
∫ π

−π
min

[
f20 (ω) , {a (Hn (ω)− b (a))}2

]
dω.

For almost every ω, since b (a) is bounded,

a |Hn (ω)− b (a)| ≥ a ||Hn (ω)| − |b (a)|| → ∞,

as a → ∞. We say ‘almost every’ to exclude those ω for which |Hn (ω)| =

lima→∞ |b (a)|; since Hn (ω) is a non-constant linear combination of cosines at

integer multiples of ω such points have measure zero.

If
√∫ π

−π f
2
0 (ω) dω = ∥f0∥L2

<∞ then by the Dominated Convergence The-

orem,

lim
a→∞

ϕ (a) ≥ lim
a→∞

∫ π

−π
min

[
f20 (ω) , {a (Hn (ω)− b (a))}2

]
dω

=

∫ π

−π
lim
a→∞

min
[
f20 (ω) , {a (Hn (ω)− b (a))}2

]
dω

=

∫ π

−π
f20 (ω) dω.

If ∥f0∥L2
= ∞ then Fatou’s Lemma leads to the same conclusion – the existence

of a pair (a, b (a)) satisfying (2.2), as long as 0 ≤ ε ≤ ∥f0∥L2
.
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Proof of (ii): Given the constants in (i), f∗ (·; ε) ∈ Fε. Let f be any other

member of Fε and define, for s ∈ [0, 1],

f(s) (ω) = (1− s) f∗ (ω; ε) + sf (ω) ∈ Fε.

The function

ζ (s) =

∫ π

−π

{
(Hn(ω)− b) f(s)(ω) − 1

2a

(
f(s) (ω)− f0 (ω)

)2}
dω

is concave on [0, 1] – it is quadratic in s with negative leading coefficient – and

has derivative

ζ ′ (0) =

∫ π

−π
(f (ω)− f∗ (ω; ε))

{
(Hn(ω)− b)− 1

a
(f∗ (ω, ε)− f0(ω))

}
dω.

On the set S where f∗ (ω; ε) > 0 we have

(Hn(ω)− b)− 1

a
(f∗ (ω, ε)− f0(ω)) = 0;

on the complement Sc of this set we have f0(ω) + a (Hn(ω)− b) ≤ 0. Thus

ζ ′ (0) =
1

a

∫
Sc

f (ω) {a (Hn(ω)− b) + f0(ω)} dω ≤ 0.

It follows that ζ (0) ≥ ζ (1) for any f ∈ Fε, so

amspe (f∗)− amspe (f) =

∫ π

−π
Hn(ω)f∗ (ω, ε) dω −

∫ π

−π
Hn(ω)f (ω) dω

≥ 1

2a

{
∥f∗ (·; ε)− f0 (·)∥2L2

− ∥f (·)− f0 (·)∥2L2

}
≥ 0.
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