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Abstract: If there are datasets, too large to fit into a single computer or too expen-

sive for a computationally intensive data analysis, what should we do? We propose

a split-and-conquer approach and illustrate it using several computationally inten-

sive penalized regression methods, along with a theoretical support. We show that

the split-and-conquer approach can substantially reduce computing time and com-

puter memory requirements. The proposed methodology is illustrated numerically

using both simulation and data examples.
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1. Introduction

Consider the generalized linear model

E(yi) = g(xT
i β), i = 1, . . . , n,

where yi is a response variable and xi is a p× 1 vector of explanatory variables,

β is a p× 1 vector of unknown parameters, and g is a link function. The sample

size n and the number of parameters p are potentially very large. We assume

that, given X = (x1, . . . ,xn)
T , the conditional distribution of y = (y1, . . . , yn)

T

is the canonical exponential distribution

f(y;X,β) =

n∏
i=1

f0(yi; θi) =

n∏
i=1

{
c(yi)exp

[
yiθi − b(θi)

ϕ

]}
, (1.1)

where θi = xT
i β, i = 1, . . . , n, and ϕ is a nuisance dispersion parameter. The

log-likelihood function log f(y;X,β) is then

ℓ(β;y,X) =
yTXβ − 1Tb(Xβ)

n
, (1.2)

where b(θ) = (b(θ1), . . . , b(θn))
T for θ = (θ1, . . . , θn)

T , and the function b(·) has
a second derivative. If p is large (or grows with n) and β is sparse, a penalized
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likelihood estimator is often used in the general form

β̂(a) = argmax
β

{
ℓ(β;y,X)

n
− ρ(β;λa)

}
. (1.3)

Here, ρ is the penalty function with tuning parameter λa. To distinguish the

estimator obtained from our approach, we use the superscript (a) to indicate

the estimator is obtained by analyzing the entire data (y,X). Depending on

the choice of ρ(β;λa), we have the LASSO estimator (Tibshirani (1996); Chen,

Donoho, and Saunders (2001)), the LARS algorithm (Efron et al. (2004)), the

SCAD estimator (Fan and Li (2001)) and the MCP estimators (Zhang (2010)),

among others.

We consider datasets extraordinarily large, too large to fit into a single com-

puter or be analyzed with available computing resources. We propose a split-and-

conquer approach to solve the problem and illustrate it using the aforementioned

penalized regression methods. Specifically, we split the dataset into K subsets;

each subset is then to be analyzed separately. A set of K results are obtained,

to be combined to obtain a final result. Our task is to investigate whether the

combined overall result can be as good as the result obtained from analyzing the

entire dataset and, if conditions are needed, what they are. We assume that the

same method (including software) is used to analyze each subset data as well as

the entire data, if we would have enough computing power to do so.

We focus our developments on a general penalized regression setting consid-

ered in the review article of Fan and Lv (2011), that covers almost all commonly

used penalty functions in penalized regression practice, the LASSO, SCAD, MCP,

and others. In their setting, Fan and Lv (2011) show that penalized estimators

under (1.3) have such good asymptotic properties as model selection consistency

and asymptotic normality. We investigate here whether the combined result from

our method retains these desired properties and, if so, under what conditions.

We assume that each subset contains enough data to provide a meaningful in-

ference for the unknown model parameters. This requirement of large enough

subset data might be relaxed under some special situations yet often requires

extra effort.

For the penalized estimators (1.3) and model (1.1), we prove that, under

some mild conditions and with a suitable choice of K, our combined estimator

using the split-and-conquer approach is asymptotically equivalent to the penal-

ized estimator obtained from analyzing the entire data. The combined estimator

is model selection consistent as long as the penalized estimators are model selec-

tion consistent. When asymptotic normality is attainable, the combined estima-

tor has the same asymptotic variance as the penalized estimator using the entire
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data. The price that we need to pay is to require to have a slightly stronger as-

sumption on the design matrix, a little larger coefficient signals and/or a slower

growth rate of p.

Improvements over the regular penalized estimators in model selection are

reported through a majority voting and averaging operation when results from

a finite number of random split subsets are combined; see, e.g., Meinshausen

and Buhlmann (2010). With our approach, we can establish an upper bound

for the expected number of falsely selected variables and a lower bound for the

expected number of truly selected variables, that are consistent with those re-

ported in the literature. Note that, Fan, Guo, and Hao (2010) propose refitted

cross-validation to attenuate serious correlations among the random errors and

explanatory variables; Meinshausen and Buhlmann (2010) introduce a stability

selection and an exact error control bound through a combination of subsampling

and model selection algorithms; Shah and Samworth (2013) propose a variant of

stability selection with improved error control property. Similarly, the split-and-

conquer approach provides a resistance to selection errors caused by spurious

correlations and it keeps a large number of variables that are in the true model

at the same time. This control on the selected variables is not typically available

for conventional penalized estimators on analyzing the entire data.

The split-and-conquer approach can substantially reduce computing time

and memory requirements. For instance, in linear regression with L1 norm

penalty function, where the LARS (Efron et al. (2004)) algorithm has been con-

sidered by many (e.g., Yuan and Lin (2006); Zou and Hastie (2005)) as a fast

and efficient algorithm to solve the LASSO problem, Efron et al. (2004) report

that the LARS algorithm requires O(na) with a > 1 computations when p ≥ n.

The computing time can be costly when both n and p are large. We show,

mathematically and numerically, that our approach with LARS can save up to

(1 − 1/K(a−1))% computing time, where K is the number of splits. This result

holds under a general setting. We provide several numerical examples across a

number of different models and penalized methods, and demonstrate that the

proposed split-and-conquer approach can save substantial computing time while

producing comparable estimators.

The split and conquer approach is intuitive, and a similar practice can be

found in the computer sciences community under the name of parallel and dis-

tributed computing (see, e.g., Andrews (2000)). Most of this research focuses

on such aspects as accessing a shared memory, exchanging information between

processors, or identifying parallel components within an algorithm, e.g., Ahmed

et al. (2012). More recently, there is research on the performance of combined

results. Mackey, Talwalkar, and Jordan (2011) propose a divide-and-conquer

method for matrix factorization, that partitions a large-scale matrix into sub-

matrices. Zhang, Duchi, and Wainwright (2013) provide a divide-and-combine
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method for kernel ridge regression, that divides a dataset into several subsets. See

also Zhang, Duchi, and Wainwright (2012), Agarwal and Duchi (2012); Ahmed

et al. (2012); Duchi, Agarwal, and Wainwright (2012). Here we use a weighted

combination method and study the statistical performance and computing issues

of the proposed method, alongside the results from our method and the cor-

responding results using the entire dataset. We treat statistical issues such as

convergence and efficient estimation, and we provided discussions on computing

time when computationally intensive approaches are involved.

The rest of this article is organized as follows. Section 2 takes a split-and-

conquer approach to a combined estimator under the generalized linear models.

Section 3 studies theoretical properties of the combined estimator and also in-

vestigate issues related to error bound controls and computing time. Section 4

demonstrates the utility of the methodology using both simulation studies and

a data application in cargo screening at U.S. Port-of-Entries (POEs). Section 5

provides further comments.

2. Split-and-Conquer for Penalized Regressions

Suppose the number of parameters p is large and the true parameter, β0 =

(β0
1 , . . . , β

0
p)

T , is sparse. Suppose the dataset of size n is divided into K subsets,

and that the kth subset has nk observations (xk,i, yk,i), i = 1, . . . , nk. Write

yk = (yk,1, . . . , yk,nk
)T and Xk = (xT

k,1, . . . , x
T
k,nk

)T . The log-likelihood function

for the kth subset, for k = 1, . . . ,K, is

ℓ(β;yk,Xk) =
yT
k Xkβ − 1Tb(Xkβ)

nk
.

Corresponding to (1.3), the penalized estimator for the kth subset is

β̂k = argmax
β

{
ℓ(β;yk,Xk)

nk
− ρ(β;λk)

}
,

where ρ(β;λk) is the penalty function with tuning parameter λk. For simplicity,

and following Fan and Lv (2011), we write ρ(β;λk) =
∑p

j=1 ρ(βj ;λk) and assume

that the penalty function ρ(βj ;λk) satisfy the following condition:

(PC) ρ(t;λ) is increasing and concave in t ∈ [0,∞), and has a continuous

derivative ρ′(t;λ) with ρ′(0+;λ) > 0. In addition, ρ′(t;λ)/λ is increasing in

λ ∈ [0,∞) and ρ′(0+;λ)/λ is independent of λ.

As noted by Fan and Lv (2011), (PC) covers most commonly used penalty

functions, including the L1 penalty, SCAD, and MCP, among others.

Under the setup, the penalized estimator β̂k has the sparsity property; see,

e.g., Fan and Lv (2011). Denote by Âk = {j : β̂k,j ̸= 0} the set of non-zero
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elements of β̂k. For any indices set S, denote by β̂k,S a |S| × 1 vector formed by

the elements of β̂k whose indices are in S, so β̂k,Âk
is the sub-vector that contains

only the non-zero elements of β̂k. Since each β̂k is estimated from a different

subset of data, the Âk can differ, and the K vectors β̂k,Âk
, k = 1, . . . ,K, may

have different lengths.

To obtain a combined estimator of β from β̂k’s we use a majority voting

method. There are two considerations in this. The combined estimator, say β̂(c),

is based on β̂k’s, and a variable not in any of Âk = {j : β̂k,j ̸= 0} is not included
in Â(c) = {j : β̂

(c)
j ̸= 0} for the combined estimator. As the Âk are subject to

errors, there may be mismatches between the set Âk and the true nonzero set

A d
= {j : β0

j ̸= 0}. We take

Â(c) d
=

{
j :

K∑
k=1

I(β̂k,j ̸= 0) > w

}
(2.1)

as the set of selected variables of the combined estimator, where w ∈ [0,K) is a

prespecified threshold and I is the indicator function. From (2.1), it is clear that

Â(c) ⊂
∪K

k=1 Âk. Also, when the number of elements in Âk (denoted by |Âk|)
is small and the K sets Âk’s have many common elements, the number |Â(c)| of
Â(c) is much smaller than p. At the extremes, Â(c) contains only the variables

that are selected by all subset analyses, and Â(c) contains the variables that are

selected by one or more subset analyses. The theoretical development suggests

that the choice of a fixed threshold, does not affect the asymptotic results, though

in practice it can impact the numerical performance of the proposed approach.

It is possible to extend the simple majority voting method in (2.1) to a

weighted majority voting method to accommodate possible discrepancies among

the K subsets of data (e.g., sample size or other non-random patterns). For sim-

plicity, we use the simple majority voting to determine the estimated number of

selected variables and use a weighted scheme to combine the penalized estimators

from the K subset data.

For an n× 1 vector of parameters θ = (θ1, . . . , θn)
T , let

µ(θ) = (µ(θ1), . . . , µ(θn))
T and Σ(θ) = diag(σ(θ1), . . . , σ(θn)),

where µ(θ) = ∂b(θ)/∂θ and σ(θ) = ∂2b(θ)/∂2θ. Also, let S be a subset of

{1, . . . , n} with |S| elements, S = {i1, . . . , i|S|}. For any |S| × 1 subvector of θ,

say θS = (θi1 , . . . , θi|S|)
T , we write

µ(θS) = (µ(θi1), . . . , µ(θi|S|))
T and Σ(θS) = diag(σ(θi1), . . . , σ(θi|S|)).

Let β̂k,Â(c) be the sub-vector of β̂k confined by the majority voting set Â(c)

of (2.1). Take E = diag(v1, . . . , vp) to be the p × p voting matrix with vj = 1
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if
∑K

k=1 I(β̂k,j ̸= 0) > w and 0 otherwise, and let A = EÂ(c) be the p × |Â(c)|
selection matrix. Here, for any index subset S of {1, . . . , p}, ES stands for an

p×|S| submatrix of E formed by columns whose indices are in S. Our combined

estimator, as a weighted average of β̂k,Â(c) , k = 1, . . . ,K, is

β̂(c) d
= A

( K∑
k=1

AT {XT
k Σ(θ̂k)Xk}A

)−1
K∑
k=1

AT {XT
k Σ(θ̂k)Xk}Aβ̂k,Â(c) , (2.2)

where θ̂k = Xkβ̂k. The summation over the K terms in (2.2) and the set of

weights used in the combining can boost estimation power and efficiency. As a

result, we can show that β̂(c) is asymptotically equivalent to the corresponding

estimator using the full dataset, and more.

The majority voting idea discussed is closely connected with the develop-

ments in Meinshausen and Buhlmann (2010) and Shah and Samworth (2013) on

stability selection. Their goal is to develop stable penalized estimators, while

ours is to investigate whether we can analyze extremely large data by splitting

the task. Here, computational feasibility is in the forefront of our development.

Unlike Meinshausen and Buhlmann (2010) and Shah and Samworth (2013) in

which the same tuning parameter λ is used for all subsets, our λk’s are chosen

independently. This allows us to defer our task of coordinating the analyses from

subset data to the last combination step. Our development allows K → ∞, as

n → ∞, whereas Meinshausen and Buhlmann (2010) and Shah and Samworth

(2013) have K finite, e.g., K = 2.

A solution path is obtained for every subset in the proposed split and conquer

approach. If a solution path is needed for the combined estimator, we can fix

the tuning parameter at a grid and compute the combined estimator at each grid

value to form a regularization path for the combined estimator.

3. Theoretical Results

In this section, we investigate the asymptotic properties of the combined

estimator β̂(c) of (2.2), and compare it with the penalized estimator β̂(a) of (1.3).

3.1. Sign consistency

We show that the combined estimator is sign consistent in that each compo-

nent of the combined estimator has the same sign as its true value.

Let θ0 = Xβ0, θ0
k = Xkβ

0, and β∗ = min{|β0
j | : β0

j ̸= 0}. Let A be the

complement of the true nonzero set A = {j : β0
j ̸= 0}. For any index set S,

let XS be the n× |S| submatrix of X formed by the columns whose indices are

in S, and Xk,S be the nk × |S| submatrix of Xk formed by the columns whose

indices are in S. We need some regularity conditions on the design matrix. Let
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{bs,K} be a diverging sequence of positive numbers that depends on s and K.

We extend the regularity conditions in Fan and Lv (2011) on the entire dataset

to each subset:

A1



∥{XT
AΣ(θ0)XA}−1∥∞ = O(bs,Kn−1),

∥{XT
k,AΣ(θ0

k)Xk,A}−1∥∞ = O(bs,Kn−1
k ),

∥XT
k,AΣ(θ0

k)Xk,A{XT
k,AΣ(θ0

k)Xk,A}−1∥∞ = O(nα
k ),

maxδ∈N0,1≤j≤s λmax[∇2{xT
k,jµ(Xk,Aδ)}] = O(nk),

where α ∈ [0, 1/2], N0 = {δ ∈ ℜs : ∥δ − β0
A∥∞ ≤ β∗/2}, and the operation ∇2 is

defined as ∇2γ(δ) = ∂2

∂δ∂δT
γ(δ) for any scalar function γ(δ) of an s× 1 vector δ.

The constraint A1 is minor. For instance, in the linear regression model, we

have Σ(θ0) = In and µ(Xk,Aδ) = Xk,Aδ. Then A1 is implied by

A1(G)


∥{XT

k,AXk,A}−1∥∞ = Op(n
−1
k ),

∥{XT
AXA}−1∥∞ = Op(n

−1),

∥XT
k,AXk,A{XT

k,AXk,A}−1∥∞ = O(nα
k ).

Since {bs,K} is a diverging sequence, the first two constraints in A1 are weaker

than the first two in A1(G). Condition A1(G) match with those discussed in the

literature under both the settings of fixed matrix design (Fan and Lv (2011))

and of Gaussian random matrix design (Wainwright (2009)). In non-Gaussian

generalized linear models, the variance matrices Σ(θ0) and Σ(θ0
k) typically in-

volve the covariates through the linear predictors θ0 and θ0
k. If we take the

smallest diagonal element of Σ(θ0), say hn = min1≤i≤n σ(θ
0
i ), as bounded be-

low by a small constant or h−1
n = O(bs,K), then Condition A1 is implied by

A1(G). For example, consider a Poisson model, where Σ(θ0) = diag{exp(θ0i )}
with θ

(0)
i = xT

i β
(0) = xT

i,Aβ
(0)
A . In the fixed design matrix case, we only need to

impose that θ
(0)
i = xT

i,Aβ
(0)
A is bounded below away from −∞ or is a sequence

tending to −∞ slower than O(log(bs,K)). In the random design matrix case with

xi,A being i.i.d Gaussian vectors with mean 0 and variance I|A|, if the divergence

sequence bs,K in A1 is such that
[
1 − Φ{log(bs,K)

/
∥β0

A∥2}
]n → 1, then by a

direct calculation we have h−1
n = Op(bs,K), and thus A1(G) implies A1. See the

discussions in Zhang and Huang (2008) and Wainwright (2009).

Following Zhang and Huang (2008), to obtain a slightly stronger sign con-

sistency result than that of Fan and Lv (2011) (when K = 1), we introduce

diverging sequences vn,K and un,K that depend on the total sample size n and

the number of subsets K, and assume that

A2 vn,K = o(min{nkKb−1
s,Kβ∗, n

1−αKα}) and un,K = o(n).
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These sequences are related to the error tolerance level under the design of A1;

the probability of obtaining the correct signs of nonzero variables increases with

vn,k and the probability of excluding variables with zero coefficients increases

with un,k.

We require that the tuning parameter λk satisfies:

A3


bs,Kρ′(β∗

2 ;λk) = o(β∗),

max
δ∈N0

κ(ρ(·;λk); δ) = o(τ0,k),

∥XT
k,AΣ(θ0

k)Xk,A{XT
k,AΣ(θ0

k)Xk,A}−1∥∞ ≤
Cρ′(0+;λk)

ρ′(β∗/2;λk)
,

where κ(ρ(·;λk); δ) = limϵ→0+max1≤j≤s supt1<t2∈(δj−ϵ,|δj |+ϵ)−[ρ′(t2;λk) − ρ′(t1;

λk)]/(t2 − t1), τ0,k = minδ∈N0 λmin[n
−1
k XT

k,AΣ(Xk,Aδ)Xk,A], and C is a positive

constant with C ∈ (0, 1). The proof of the following is in the Appendix.

Theorem 1. Suppose the sample size of the kth subset is nk = O(n/K), k =

1, . . . ,K, and that max1≤k≤K nk/min1≤k≤K nk = O(1). If A1−A3 are satisfied

and s = o(min{(β∗bs,K)−1, β−2
∗ (K/n)α}), then with probability at least

1− 2Ks exp
{
−

v2n,K
nK

}
− 2K(p− s) exp

{
−

u2n,K
nK

}
, (3.1)

the combined estimator is sign consistent with ∥β̂(c)
A −β0

A∥∞ ≤ β∗/2 and β̂
(c)

A = 0.

Theorem 1 suggests that the combined estimator β̂(c) is sign consistent un-

der some regularity conditions and when (3.1) goes to 1. To ensure later, we

require log(Ks) = o(min{nb−2
s,Kβ2

∗/K, n1−2αK2α}) and log(Kp) = o(n/K). The

latter requirement suggests that the growth rate of p needs to be controlled by

en/K−log(K). This rate decreases in K and it is en when K = 1. Thus, when we

increase the number of splits, we impose a stronger constraint on the growth rate

of p to ensure that each subset contain enough data to provide a sign consistent

estimator for the unknown model parameters.

Consider the special case with β∗ = O(n−γ log n), γ ∈ (0, 1/2], the sig-

nal strength imposed in Fan and Lv (2011), and assume s = O(nα0) with

α0 ∈ (0,min(γ, 2γ − α)). Let bs,K = o(min{K−1/2n1/2−γ
√
log n, s−1nγ/ log n})

and K = o{min(n1−2γ log n, nα1)}. If we choose vn,K =
√
Kn logn and un,k =

K1/2n1−α1(log n)1/2 with α1 = min(1/2, 2γ − α0) − α, then we can show that

A2 holds and s = o(min{(β∗bs,K)−1, β−2
∗ (K/n)α}); A proof is provided in the

Appendix. When K = 1, these are the conditions imposed in Fan and Lv (2011).

A basic calculation in this special case leads us to require the growth rate of p be

controlled by en
1−2α1/K , which becomes en

1−2α1 when K = 1. This rate en
1−2α1
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is also reported in Fan and Lv (2011). Since the upper bound rate for p that is

implied by Theorem 1 is en when K = 1, Theorem 1 is a slightly stronger result

than that reported in Fan and Lv (2011) for the K = 1 case.

3.2. Oracle property

We show here that, after we strengthen some of the regularity conditions,

our combined estimator has an oracle property under the L2 norm, that the

combined estimator converges at rate of O(
√

s/n) under the L2 norm. We also

show that it is asymptotically normal with the same variance as the penalized

estimator using all the data.

We impose regularity conditions on the design matrices that are the same as

Condition 4 of Fan and Lv (2011), when K = 1.

A4



min
δ∈Nτ

λmin(X
T
k,AΣ(Xk,Aδ)Xk,A) ≥ cnk,

tr(XT
k,AΣ(θ0

k)Xk,A) = O(snk),

∥XT
k,AΣ(θ0

k)Xk,A∥2,∞ = O(nk),

max
δ∈N0,1≤j≤s

λmax[∇2{xT
k,jµ(Xk,AδA)}] = O(nk),

where c is some positive constant, ∥A∥2,∞ = max∥v∥2=1 ∥Av∥∞, and δ ∈ Nτ =

{δ ∈ ℜs : ∥δ − β0
A∥2 ≤ τ

√
Ks/n} for any given positive constant τ .

Again A4 is minor, implied by

A4(G)


min
δ∈Nτ

λmin(X
T
k,AXk,A) ≥ Op(nk),

tr(XT
k,AXk,A) = Op(snk),

∥XT
k,AXk,A∥2,∞ = Op(nk).

The first part of A4(G) matches conditions discussed in the literature under

the settings of fixed matrix design ( Fan and Lv (2011)) and Gaussian random

matrix design (Marcenko and Pastur (1967); Takemura and Sheena (2005)). The

third part of A4(G) is minor, since ∥XT
k,AXk,A∥2,∞ ≤ ∥XT

k,AXk,A∥∞ and we

can approximate the order of the L∞ norm. More generally, we can bound the

smallest eigenvalue of Σ(θ0) by hn > 0, similar to A1(G). If hn = O(1), we

have λmin(X
T
k,AΣ(Xk,Aδ)Xk,A) ≥ hnλmin(X

T
k,AXk,A). In addition, by direct

calculation, tr(XT
k,AΣ(θ0

k)Xk,A) =
∑s

j=1

∑nk
i=1 x

2
ijb

′′(θ0i ). It follows that, when

xij is fixed or a random variable such that such that xij = Op(1), A4(G) and

thus also Condition A4 are satisfied.

Similar to A3, we impose a condition on the tuning parameter λk:

A5 max
δ∈Nτ

κ(ρ(·;λk); δ) = o(τ1,k), ρ
′(
β∗
2
;λk) = O(n−1/2),
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where τ1,k = minδ∈Nτ λmin[n
−1
k XT

k,AΣ(Xk,Aδ)Xk,A].

To ensure asymptotic normality, we impose a Lindeberg-type condition:

A6


max

i=1,...,n
E|yi − b′(θ0i )|3 = O(1),

n∑
i=1

(zT
i B

−1zi)
3/2 → 0 as n→∞,

where B = XT
AΣ(θ0)XA and XA = (z1, . . . , zn)

T .

A proof of the following can be found in the Appendix.

Theorem 2. Suppose the sample size of the kth subset nk = O(n/K), k =

1, . . . ,K, and max1≤k≤K nk/min1≤k≤K nk = O(1). Assume that A4−A5 are

satisfied and that b∗/
√

Ks/n→∞.

(i) If Ks = o(
√
n), with probability approaching 1, β̂

(c)

A = 0 as n → ∞ and

∥β̂(c)
A − β0

A∥2 = O(
√

s/n).

(ii) If further, A6 holds. K2/3s = o(n1/3) and ρ′(β∗/2;λk) = o(s−1/2n−1/2). For

D, a q × s matrix such that DDT → G, G q × q positive definite, we have

D[XT
AΣ(θ0)XA]

1/2(β̂
(c)
A − β0

A)
D−→ N(0, ϕG). (3.2)

The limiting distribution of β̂
(c)
A in (3.2) is that of β̂

(a)
A in Fan and Lv (2011),

where the entire dataset is analyzed. Thus, the combined estimator β̂
(c)
A is asymp-

totically as efficient as β̂
(a)
A . Together with the fact that both estimators are

model selection consistent, the combined estimator β̂
(c)
A is asymptotically equiv-

alent to β̂
(a)
A .

The signal strength and sparsity assumptions in Theorem 2 depend on the

number of splits. When K = O(1), asymptotic equivalence holds without any

additional requirements on either, but with K going to infinity, we pay the price

that stronger conditions are needed. If stronger signal strength is a concern in a

specific problem, the two-stage estimation approach of Zhang and Zhang (2014)

can perhaps be used to weaken the requirement. The strengthened conditions

ensure that each subset contains enough data to provide a meaningful inference

for the unknown model parameters.

3.3. Error control

We provide an upper bound of the expected number of falsely selected vari-

ables and a lower bound of the expected number of truly selected variables. In

Theorem 3 below, s∗ = supk s̄k and s∗ = infk s̄k, where s̄k = E(|Âk|) be the aver-
age number of selected variables of the penalized estimator from the kth subset.
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A similar result is provided by Fan, Samworth, and Wu (2009) and Meinshausen
and Buhlmann (2010), both of which only considered the special case of K = 2.

Theorem 3. Assume the distributions of {1j∈Âk
: j ∈ A} and {1j∈Âk

: j ∈ A}
are exchangeable for all k = 1, . . . ,K, and that E(|A ∩ Âk|)/E(|A ∩ Âk|) ≥
|A|/|A|, for the set of selected variables Âk of any penalized estimator. If w ≥
s∗K/p− 1, then for the combined estimator β̂(c),

(i) the expected number of falsely selected variables satisfies E(|A ∩ Â(c)|) ≤
|A|{1− F (w|K, s∗/p)},

(ii) the expected number of truly selected variables satisfies E(|A∩Â(c)|) ≥ |A|{1−
F (w|K, s∗/p)},

where F (·|m, q) is the cumulative distribution function of the binomial distribu-
tion with m trials and success probability q.

Here s∗ and s∗ depend on the choice of the threshold w. If w = K −
1, the combined estimator only selects the variables that are selected in all K
subsets, and the expected number of falsely selected variables is bounded above
by (s∗)K/pK−1. If s∗ is bounded by c1/Kp1−1/K for a constant c, the expected
number of falsely selected variables is bounded by the constant c. In sparse
models, s∗ is usually small and so is c. If w = 0 the combined estimator selects
any variables that are selected in one or more subsets. Then the lower bound
for the expected number of truly selected variables achieves the true number of
non-zero set |A|, but the upper bound for the expected number of false selected
variables can be very loose, up to |A|.

There is a trade-off between the upper and lower bounds in Theorem 3 for
the choice of w. In Section 4, we use w = K/2, which appears to provide a good
balance when s∗ is smaller than p/2.

3.4. Computing issues

We study in detail the computing steps of LASSO estimators using the LARS
algorithm (Efron et al., 2004) when p ≥ n, and provide conditions under which
the split-and-conquer approach is always computationally faster. We use in this
subsection the LARS algorithm as an illustrative example since it has trackable
computing steps and it is a well-known method. We then provide a calculation of
average computing orders under general settings, which covers computationally
intensive algorithms at a computing order of O(napb), a > 1 and b ≥ 0.

The following provides some detail.

Lemma 1. Suppose a LARS algorithm is applied to a data set with n obser-
vations and p variables where p ≥ n. Then, the number of computing steps in
the algorithm is greater than 5n3/3 + 23n/6 + 4n2(p − 7/8) + 6np but less than
23n3/3 + 71n/6 + 8n2(p− 31/16) + 12np.
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The following result specifies mild conditions under which the number of

computing steps needed in our approach is always less than that of a direct use

of the LARS algorithm on the entire data.

Theorem 4. In the setting of Lemma 1, suppose p ≥ 2 and the dataset is split

into K subsets of size nk = O(n/K), for k = 1, . . . ,K, with

max1≤k≤K nk/min1≤k≤K nk = O(1) . If K ≥ 3, n ≥ 4(4 + 3p)/{1 + 8p(1 −
2/K)+ 31/K − 7}, and the computing effort of the combination is ignorable, the

split-and-conquer approach has fewer computing steps than that of a direct use

of a LARS algorithm on the full dataset.

The statement in Theorem 4 is a conservative one and our numerical study in

Section 4.1 suggests that on average the computing time saved by the split-and-

conquer approach is quite significant. Figure 1 demonstrates how the average

computing time changes for different n, p, and K using the LARS algorithm.

Calculations of computing savings by average computing steps can be ob-

tained for any statistical procedure that requires O(napb) computing steps, for

any a > 1 and b ≥ 0. We have the following statement. A similar finding in a

computational intensive robust multivariate scale estimation (where p is fixed)

was reported in Section 5.3 of Singh, Xie, and Strawderman (2005).

Theorem 5. Assume a statistical procedure requires O(napb) computing steps,

a > 1 and b ≥ 0, when sample size is n. Suppose the dataset is split into K

subsets with almost equal sample size nk = O(n/K) and that the computing ef-

fort of the combination is ignorable. Then the split-and-conquer approach needs

O(napb/Ka−1) steps and using the split-and-conquer approach results in a com-

puting saving on the order of Ka−1 times.

That the computing effort in the combination is negligible is often satisfied

in our context. We use majority voting to determine the number of non-zero

coefficients and then use a weighted linear combination formula to combine the

K estimators. There are roughly Ks non-zero coefficients across all K subsets,

and a computing order of O(Ks) is often enough to identify them. Weighing

depends on the number of non-zero coefficients s and K, and the computing

order is O(Ks+Ks2 + s3), where the highest order O(s3) is for the inversion of

the roughly the size s × s matrix (Golub and Van Loan (1983); Trefethen and

Bau III (1997)). As n → ∞, this computation is often negligible compared to

the order O(napb).

For LARS algorithm, a reviewer pointed out an alternative approach that

directly applies a split-and-conquer method to the calculation of the sample co-

variance matrix instead of the LARS estimator. In the LASSO and LARS setting,
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Figure 1. Computing time comparison for differentK using LARS algorithm:
Mean ± 2Standard Deviation (SD) over 100 replications. Figure 1 (a) [left]
is for p = 2n with n = 400, 500, 600, 700, 800, 900, 1, 000. Figure 1 (b) [right]
is for p = 100n with n = 50, 100, 150, 200, 250, 300, 350.

the Gram matrix XTX is the only sufficient statistic; when p < n, it is indepen-

dent of n. We can use a parallel computing approach to obtain the overall Gram

matrix XTX, and then feed it into the LARS solver. This approach can also

effectively handle big data problems involving the LASSO/LARS method when

p < n, but when p > n, the LARS algorithm fits at most n variables. Since the

inversion of the Gram matrix is the most costly computing part in the LARS

algorithm, the alternative approach often does not save significant computing

time, even when p > n.

4. Numerical Studies

We use several numerical studies, using both simulation and real data, to

illustrate the performance of the proposed split-and-conquer approach. We also

compare the combined estimators with their corresponding penalized estimators

obtained using the entire dataset, whenever the computing of the latter approach

does not reach the limits of the computer used in our project (a W35653 20GHz,

2G RAM workstation using R 2.13.1 under Windows 7). We focus on the Gaus-

sian linear regression model and the logistic model, with different choices of

sample size n, number of parameters p, and true model size s. The development

is illustrated using the L1, SCAD and MCP penalty functions.

4.1. Linear regression with L1 norm penalty

Here the response variable y follows a Guassian linear model y = Xβ + ε,

where ε are IID N(0, 1) errors and the explanatory variables X are generated
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from a N(0, I) distribution with I the identity matrix. In our study, four sample

settings of (n, p), with n ≤ p, are considered (see Table 1). The true model

A = {j : β(0)
j ̸= 0} in each setting contained s = ⌊√p⌋ nonzero coefficients whose

true values were around
√

2K log(p)/n. To get the LASSO estimators using the

L1 norm penalty, the LARS algorithm (Efron et al., 2004) was applied and BIC

criterion was used for selecting the tuning parameter.

We repeated our simulation 100 times under each setting of (n, p). For the

final estimators, we recorded the means of computing time and the numbers

of selected nonzero coefficients. To demonstrate the error control property, we

calculated model selection sensitivity (the number of truly selected variables di-

vided by the true model size) and model selection specificity (the number of truly

removed variables divided by the number of noise variables). The simulation re-

sults are shown in Table 1. In Table 1, K = 1 means the entire dataset was

used to get the LASSO estimator. To examine the performance of the combined

estimator, we took K = 2, 4, 6 and w = 1, . . . , ⌊K/2⌋.
According to Table 1, all estimators selected some noise variables in addition

to the true s nonzero variables, consistent with the performance of LASSO-type

estimators. When K = 4 or 6 and w = 2 or 3, the model selection specificities

increase a lot, which indicates that the combined estimator is more efficient

in removing noise and spurious variables from the selected models. At each

given setting of (n, p,K), with the increase of the threshold w, model selection

sensitivity decreases as specificities increases.

Computing time decreases drastically as K increases, as seen in Column

5 of Table 1. The time savings reported are between (1 − 1/K2)100% and

(1−1/K)100%, perhaps because n and p are roughly the same in Table 1. To fur-

ther study computing savings in the LARS algorithm, we performed additional

simulations with p = 2n for n = 400−1, 000, and with p = 100n for n = 50−350,

this under the same linear regression set up. We considered K = 1, 2, 4. The

average computing times (with standard errors) over 100 repetitions are plotted

in Figure 1. Savings appear to be between (1− 1/K2)100% and (1− 1/K)100%

in Figure 1(a), and roughly (1− 1/K)100% in Figure 1(b).

4.2. Generalized linear model with SCAD and MCP penalties

The SCAD and MCP estimators are obtained based on non-concave penal-

ized likelihood functions and compared with the LASSO estimators, they often

select a tighter model and fewer noise variables. We considered the SCAD and

MCP estimators under both the linear regression and logistic models.

For the linear regression case, the response variable y is y = Xβ+ ε, where

ε are IID N(0, 1) errors. For the logistic regression case, the response variable

y follows the Bernoulli distribution with success probability p(Xβ) = eXβ/(1 +
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Table 1. Comparison of the combined estimator and the complete estimator
(with standard deviation in the parenthesis).

Simulation setting Model selection

n p s K
Computing time

w
# selected sensitivity specificity

(in second) variables (in %) (in %)

500 500 22 1 41.55 (5.37) - 36.01 (5.87) 100 (0) 97.07 (1.23)

2 5.77 (0.51) 1 66.56 (9.72) 100 (0) 90.68 (2.03)

4 2.74 (0.46) 1 157.55 (16.05) 100 (0) 71.64 (3.36)

2 37.49 (5.10) 98.68 (2.53) 96.70 (1.06)

6 1.71 (0.22) 1 221.92 (14.25) 99.73 (1.08) 58.16 (2.93)

2 63.96 (7.63) 96.73 (3.66) 91.07 (1.58)

3 24.11 (2.61) 86.73 (7.33) 98.95 (0.42)

500 800 28 1 24.72 (1.77) - 48.32 (6.60) 100 (0) 97.37 (0.86)

2 8.10 (0.60) 1 102.75 (11.84) 99.93 (0.50) 90.31 (1.53)

4 3.60 (0.38) 1 240.06 (14.99) 99.18 (1.89) 72.50 (1.94)

2 50.96 (5.92) 92.29 (5.39) 96.75 (0.74)

6 2.52 (0.27) 1 294.60 (11.50) 97.18 (2.93) 65.36 (1.50)

2 69.31 (6.84) 83.50 (7.28) 94.05 (0.90)

3 20.66 (3.34) 58.46 (9.71) 99.44 (0.27)

500 1,000 31 1 28.06 (1.85) - 59.09 (7.80) 100 (0) 97.20 (0.81)

2 10.04 (0.60) 1 135.72 (16.58) 99.81 (1.32) 89.28 (1.71)

4 4.48 (0.41) 1 284.18 (15.89) 97.03 (2.68) 73.85 (1.64)

2 54.13 (5.80) 83.53 (6.86) 97.17 (0.56)

6 2.92 (0.27) 1 325.83 (10.94) 93.19 (4.34) 69.42 (1.15)

2 64.46 (5.84) 70.31 (7.58) 95.67 (0.63)

3 16.60 (3.16) 41.88 (7.77) 99.67 (0.19)

1,000 1,000 31 1 393.10 (46.82) - 47.86 (6.54) 100 (0) 98.36 (0.68)

2 57.30 ( 2.87) 1 83.51 (12.31) 98.36 (0.68) 94.68 (1.27)

4 20.21 ( 2.24) 1 217.77 (18.11) 100 (0) 80.81 (1.87)

2 46.53 (4.72) 99.87 (0.62) 98.50 (0.49)

6 12.66 ( 1.63) 1 381.51 (21.69) 99.94 (0.44) 63.89 (2.24)

2 94.18 (8.31) 99.81 (0.75) 93.57 (0.86)

3 37.51 (3.13) 97.59 (2.62) 99.35 (0.30)

eXβ). In our simulations, we considered two settings to generate the design

matrix X: a set of p variables were generated as N(0, I); a set of p variables

were generated as N(0,Σ) with Σ(i, j) = 0.6|i−j|.

Sample sizes were n = 10, 000 and n = 100, 000. For the linear regression,

p = 1, 000 and for the logistic model p = 200. In all cases, the true model had

s = 30 nonzero coefficients (with values around 0.4). In order to get the SCAD

and MCP estimators, the NCVREG algorithm (Breheny and Huang (2011)) was

applied and a 10-fold cross-validation was used to select the tuning parameters.

The simulation was repeated 100 times. We recorded the computing time

and the number of selected variables, and calculated model selection sensitivity
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and specificity. In addition, the MSE (mean squared error) was calculated in the

linear regression case, and the misclassification rate with 0.5 as threshold was

reported in the logistic regression case. The results are in Table 2.

Computing times were reduced through the split-and-conquer procedure un-

der all settings. For the SCAD and MCP penalties, the proposed split-and-

conquer approach reduced computing time drastically in the linear regression

setting (with K = 10), using about 1/10 of the time when the explanatory vari-

ables were independent and about 1/3 of when the explanatory variables were

correlated. For the logistic model with K = 5, the average saving was a little

less. When the explanatory variables were independent, the combined estimator

needed about half of the time compared to directly performing the analysis on

the full dataset. When the explanatory variables were correlated, the combined

estimator by the proposed method saved up to 25% time. With n = 100, 000, we

were not able to perform the SCAD or the MCP regression on the full dataset

due to computer memory limitations, but we obtained estimators using the split-

and-conquer procedure with results reported in Table 2.

According to Table 2, the SCAD estimators performed similarly to the MCP

estimators. In all cases, the combined estimators had good model selection results

with high model selection sensitivity and specificity that were similar to those of

the penalized estimators analyzing the full dataset. This is held for the MSE’s

in linear regression settings, and for misclassification rates in logistic regression

settings.

Figure 2 presents several sets of side-by-side boxplots to compare the esti-

mates β̂(c) with the penalized estimates β̂(a), when both are available in the set-

tings of Table 2. From the boxplots, we can see that the combined estimates had

almost the same mean and spread as the estimates obtained using full dataset.

4.3. Numerical analysis on POEs manifest data

After the 911 terrorist attack, substantial efforts were made to devise strate-

gies for inspecting containers coming through the US POEs to intersect illicit

nuclear and chemical materials. Manifest data, compiled from the custom forms

submitted by merchants or shipping companies, are collected by the US cus-

tom offices and the Department of Homeland Security (DHS). Analysis of the

manifest data to flag potentially illegitimate activities is a small but important

part of layered defenses for national security. In a nuclear detection project

sponsored by the Command, Control, and Interoperability Center for Advanced

Data Analysis (CCICADA), a Department of Homeland Security (DHS) Cen-

ter of Excellence, we obtained a set of manifest data that contain all shipping

records coming through the POEs across the US in February, 2009. The goal
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Table 2. Comparison of the combined estimates and the complete estimates
(with standard deviation in the parenthesis); Here, s = 30 under all settings.

Part I: Linear regression

Simulation setting Model selection

Design
n p K

Computing time # selected sensitivity specificity
MSE

matrix (in second) variables (in %) (in %)

SCAD: Linear regression

Independent 10,000 1,000 1 815.27 (77.98) 34.58 (9.81) 100 (0) 99.53 (1.01) 1.00 (0.01)

10 104.96 (9.55) 30 (0) 100 (0) 100 (0) 1.00 (0.01)

Correlated 10,000 1,000 1 755.4 (157.56) 34.00 (12.22) 96.00 (19.79) 99.46 (1.02) 0.96 (0.20)

10 289.17 (61.03) 28.72 (6.13) 95.87 (19.78) 100 (0) 1.00 (0.01)

Independent 100,000 1,000 1 - (-) - (-) - (-) - (-) - (-)

100 1136.70 (74.65) 30 (0) 100 (0) 100 (0) 1.00 (0.01)

Correlated 100,000 1,000 1 - (-) - (-) - (-) - (-) - (-)

100 3074.53 (25.01) 30 (0) 100 (0) 100 (0) 1.06 (0.01)

MCP: Linear regression

Independent 10,000 1,000 1 2243.45 (155.82) 34.58 (9.81) 100 (0) 99.79 (0.41) 1.00 (0.01)

10 163.72 (12.95) 30 (0) 100 (0) 100 (0) 1.00 (0.01)

Correlated 10,000 1,000 1 1244.73 (80.86) 31.92 (5.69) 100 (0) 99.80 (0.59) 0.99 (0.01)

10 442.14 (42.42) 29.98 (0.14) 99.93 (0.47) 100 (0) 1.01 (0.02)

Independent 100,000 1,000 1 - (-) - (-) - (-) - (-) - (-)

100 1565.54 (132.38) 30 (0) 100 (0) 100 (0) 1.00 (0.01)

Correlated 100,000 1,000 1 - (-) - (-) - (-) - (-) - (-)

100 4256.52 (215.60) 30 (0) 100 (0) 100 (0) 1.02 (0.01)

Part II: Logistic regression

Simulation setting Model selection

Design
n p K

Computing time # selected sensitivity specificity Misclassificaton

matrix (in second) variables (in %) (in %) rate (in %)

SCAD: Logistic regression

Independent 10,000 200 1 198.85 (5.88) 35.54 (5.71) 100 (0) 96.74 (3.36) 17.32 (0.40)

5 116.49 (2.78) 31.70 (1.33) 100 (0) 99.00 (0.78) 17.40 (0.38)

Correlated 10,000 200 1 463.61 (20.16) 38.18 (5.58) 99.33 (1.35) 95.02 (3.15) 9.90 (0.29)

5 359.29 (7.94) 32.38 (2.42) 96.07 (2.75) 97.84 (1.27) 10.10 (0.26)

Independent 100,000 200 1 - (-) - (-) - (-) - (-) - (-)

20 1352.14 (76.2) 30 (0) 100 (0) 100 (0) 17.38 (0.12)

Correlated 100,000 200 1 - (-) - (-) - (-) - (-) - (-)

20 4014.48 (284.69) 29.97 (0.2) 99.87 (0.67) 100 (0) 9.96 (0.09)

MCP: Logistic regression

Independent 10,000 200 1 201.46 (6.74) 31.8 (2.77) 100 (0) 98.94 (1.63) 17.31 (0.34)

5 118.85 (3.17) 30.24 (0.62) 99.87 (0.66) 99.84 (0.34) 17.38 (0.35)

Correlated 10,000 200 1 582.182 (59.02) 35.48 (4.22) 98.73 (1.89) 96.55 (2.27) 9.84 (0.33)

5 557.43 (22.7) 28.7 (1.63) 92.93 (3.85) 99.52 (0.60) 10.17 (0.32)

Independent 100,000 200 1 - (-) - (-) - (-) - (-) - (-)

20 1301.95 (63.27) 30 (0) 100 (0) 100 (0) 17.34 (0.13)

Correlated 100,000 200 1 - (-) - (-) - (-) - (-) - (-)

20 4485.9 (186.29) 29.58 (0.50) 98.60 (1.66) 100 (0) 10.00 (0.09)

is to make quantitative evaluations of the manifest data and to develop an ef-

fective risk scoring approach that can be used to assist the assessment of future
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Table 3. Manifest data: Dictionary of Variables.

Variables Number of Categories Definition
X1 9 Vessel Country Code
X2 69 Voyage Number
X3 9 dp of Unlading
X4 14 Foreign Port Lading
X5 68 Foreign Port
X6 35 Inbond Entry Type
X7 17 Container Cotents

shipments. In the project, a logistic regression model was used to enhance the

effectiveness of the real-time inspection system with binary response variable in-

dicating high-risk shipments. Since not all information collected in the manifest

data are relevant to risk scoring and there is much redundant information, we

used SCAD-penalized regression to evaluate the importance of these variables.

Table 3 provides the definition and a description of some variables contained in

the manifest data; most are categorical and there are p = 213 variables in total.

There are also text fields but we do not consider any semantic analysis or text

mining here.

Due to the amount of traffic and a large number of entry sites, it is a challenge

to analyze the full dataset on a single computer. This has motivated our research

to propose the split-and-conquer approach.

Because of security concerns, the record of high-risk shipments is not pro-

vided in the project, but experts in the field suggest that 1% to 10% of cargo

containers need further inspections. With the assistance of field experts, 22 po-

tentially influential shipment characteristics were selected used in a logistic model

to generate 1% to 10% high-risk shipments. Our task was then to test whether

a penalized regression technique could identify these 22 characteristics among

all shipment features recorded in the manifest data. Our computer could do a

SCAD penalized regression on single-day data, but not week-long data. Thus we

performed the SCAD penalized regression on each day’s data and combined the

daily estimators to obtain combined estimator.

Tables 4 contains the values of model selection sensitivity, model selection

specificity, and misclassification rate, and Table 5 reports the average estimates

of the non-zero parameters from 100 replications, based on the split-and-conquer

approach, as well as the SCAD-penalized regression using the data of a single

day. The true model has s = 22 non-zero parameters, corresponding to a subset

of 22 dummy variables from three categories: Vessel Country Code, Foreign

Port Landing, and Container Contents. From Table 4, the split-and conquer

approach has identified the most influential variables in the manifest data. In

particular, the combined estimates have both high model selection sensitivity and
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Table 4. Comparison of the combined weekly estimator and daily estimators
(standard deviation in the parenthesis).

Model selection
# of selected Sensitivity Specificity Misclassification
variables (in %) (in %) rate (in %)

Week (Combined) 21.06 (0.38) 95.25 (0.09) 99.95 (0.14) 3.97 (0.05)
Mon 32.66 (4.00) 92.53 (0.36) 94.2 (1.78) 3.99 (0.05)
Tues 29.18 (3.07) 95.4 (0.05) 96.14 (1.44) 3.98 (0.05)
Wed 9.22 (4.58) 23.13 (1.2 ) 98.05 (1.18) 3.99 (0.05)
Thur 10.86 (4.6 ) 27.73 (1.08) 97.76 (1.28) 3.98 (0.05)
Fri 25.6 (2.09) 95.45 (0 ) 97.83 (0.98) 4.00 (0.05)
Sat 29.76 (3.47) 95 (0.14) 95.82 (1.61) 3.98 (0.05)
Sun 30.6 (3.31) 95.1 (0.12) 95.44 (1.57) 3.99 (0.05)

Table 5. Manifest data analysis through split-and-conquer approach.

Week Daily estimation

Categories (Combined) Mon Tues Wed Thur Fri Sat Sun

Vessel country code

PA 0.33(0.06) 0.2(0.17) 0.36(0.15) 0.07(0.14) 0.14(0.14) 0.46(0.07) 0.41(0.16) 0.4(0.14)

LR 1.78(0.07) 1.7(0.22) 1.75(0.19) 0.8(0.39) 1.64(0.16) 1.78(0.16) 1.75(0.17) 1.73(0.13)

DE 0.26(0.06) 0.22(0.17) 0.39(0.16) 0.01(0.06) 0.02(0.11) 0.47(0.11) 0.32(0.19) 0.31(0.2)

Foreign port lading

570 1.54(0.05) 1.59(0.15) 1.56(0.13) 0.92(0.35) 1.36(0.33) 1.53(0.08) 1.58(0.17) 1.53(0.12)

582 0.9(0.07) 1(0.23) 1.1(0.14) 0.26(0.21) 0.36(0.23) 0.84(0.17) 0.92(0.26) 0.63(0.25)

580 1.13(0.06) 1.39(0.17) 0.85(0.23) 0.03(0.09) 0.45(0.29) 1.33(0.1) 0.72(0.23) 1.27(0.14)

Container contents

Material 1.31(0.1) 1.98(0.24) 2.03(0.18) 0.12(0.27) 0.1(0.22) 2.06(0.17) 2(0.23) 1.97(0.24)

Animals 0.05(0.11) 0.27(0.21) 0.74(0.28) 0(0) 0(0) 0.63(0.21) 0.47(0.24) 0.46(0.25)

Entertainment 1.04(0.15) 1.55(0.36) 1.75(0.32) 0.03(0.12) 0.03(0.14) 1.85(0.23) 1.48(0.31) 1.56(0.33)

Industry 0.76(0.1) 1.39(0.25) 1.5(0.19) 0.03(0.22) 0.01(0.1) 1.55(0.18) 1.43(0.2) 1.44(0.18)

Cloth 0.65(0.08) 1.31(0.17) 1.37(0.12) 0.03(0.19) 0.02(0.13) 1.4(0.1) 1.32(0.17) 1.3(0.15)

Electro 0.44(0.13) 1.02(0.37) 1.09(0.28) 0.01(0.12) 0.01(0.12) 1.38(0.26) 0.91(0.26) 1.02(0.28)

Food 0.7(0.08) 1.41(0.14) 1.4(0.15) 0.02(0.17) 0.05(0.19) 1.46(0.11) 1.36(0.14) 1.34(0.12)

Furniture 1.34(0.11) 2.01(0.25) 2.09(0.22) 0.08(0.24) 0.12(0.23) 2.14(0.18) 2.01(0.26) 1.95(0.22)

Hardware 0.24(0.07) 0.88(0.18) 0.94(0.14) 0.01(0.1) 0(0.03) 0.97(0.1) 0.87(0.17) 0.9(0.15)

Health 0.53(0.09) 1.18(0.15) 1.23(0.13) 0.02(0.14) 0.01(0.12) 1.25(0.1) 1.19(0.15) 1.18(0.13)

Home 1.18(0.1) 1.91(0.24) 1.91(0.19) 0.09(0.26) 0.03(0.16) 1.95(0.15) 1.87(0.2) 1.83(0.2)

Motor 0.28(0.14) 0.89(0.3) 1.01(0.32) 0.03(0.25) 0.01(0.1) 1.19(0.29) 1.18(0.37) 1(0.33)

Media 0.98(0.11) 1.69(0.23) 1.75(0.26) 0.03(0.14) 0.02(0.13) 1.79(0.2) 1.47(0.29) 1.46(0.28)

Office -0.17(0.13) 0.24(0.25) 0.55(0.26) 0.01(0.06) 0(0) 0.55(0.25) 0.4(0.25) 0.54(0.29)

Sporting 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Mature 0.45(0.08) 1.15(0.13) 1.17(0.13) 0.02(0.15) 0.01(0.1) 1.23(0.1) 1.14(0.14) 1.14(0.11)

specificity, while the daily estimates either select more noise variables or exclude

more influential variables. The combined estimates are more stable than the

daily estimates. The combined estimator has a slightly smaller misclassification

rate.
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The Sporting variable in the category of Container Contents is left out in

the model selections of all daily analyses and the split-and-conquer approach. All

other variables with non-zero coefficients are recovered by the split-and-conquer

approach.

5. Discussions

One important step in the split-and-conquer approach is the combination,

it depends on the desired statistical procedure. According to Singh, Xie, and

Strawderman (2005), Xie, Singh, Strawderman (2011), and Liu (2012), equiva-

lent combined statistics or asymptotic efficiency are achievable for many other

models. The proposed split-and-conquer approach can be easily extended to

other problem settings (e.g., any settings where a likelihood or penalized likeli-

hood or estimating equation method applies), as well as to problems of hypothesis

testings and confidence intervals.
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Appendix

Proof of Theorem 1

We state two lemmas without proofs. The first is Proposition 4 of Fan and

Lv (2011), and the second is a restatement of Theorem 1 of Fan and Lv (2011)

but on analysis of a subset of data.

Lemma A.1. Let Y = (Y1, . . . , Yn)
T be an n-dimensional independent random

response vector and a ∈ Rn. Then

(a) If Y1, . . . , Yn are bounded in [c, d] for some c, d ∈ R then, for any ϵ ∈ (0,∞),

P(|aTY − aTµ(θ0)| > ϵ) ≤ 2 exp[− 2ϵ2

∥a∥22(d− c)2
].

(b) If Y1, . . . , Yn are unbounded and there exist some M, v0 ∈ (0,∞) such that

max
i=1,...,n

E{exp[Yi − b′(θ0i )

M
]− 1− |Yi − b′(θ0i )|

M
}M2 ≤ v0

2
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with θ0 = (θ0i , . . . , θ
0
n) then, for any ϵ ∈ (0,∞),

P(|aTY − aTµ(θ0)| > ϵ) ≤ 2 exp[− ϵ2

2∥a∥22v0 + ∥a∥∞Mϵ
].

Lemma A.2. A vector (β̂k,A, 0) is a strict local maximizer if

XT
k,Ayk −XT

k,Aµ(θ̂k)− nkρ̄(β̂k,A;λk) = 0, (A.1)

n−1
k ∥X

T
k,A[yk − µ(θ̂k)]∥∞ < ρ′(0+;λk), (A.2)

λmin[X
T
k,AΣ(θ̂k)Xk,A] > nkκ(ρ; β̂k,A), (A.3)

where ρ̄(β̂k,A;λk) = (ρ′(β̂k,j ;λk), (k, j) ∈ A).

Proof of Theorem 1. For k = 1, . . . ,K, let events E1k = {∥XT
k,A{yk −

µ(θ0
k)}∥∞ ≤ c

−1/2
1 vn,K/K} and E2k = {∥XT

k,A{yk−µ(θ0
k)}∥∞ ≤ c

−1/2
1 un,K/K},

where c1 = 2/(d− c)2 for the case of bounded responses and c1 = 1/(2v0 + 2M)

for the case of unbounded responses. From Lemma A1,

P{∩Kk=1(E1k ∩ E2k)} ≥ 1−
K∑
k=1

P(Ec
1k)−

K∑
k=1

P(Ec
2k)

≥ 1−
K∑
k=1

s∑
j=1

P(|xT
k,jyk − xT

k,jµ(θ
0
k)| > c

−1/2
1

vn,K
K

)

−
K∑
k=1

p∑
j=s+1

P(|xT
k,jyk − xT

k,jµ(θ
0
k)| > c

−1/2
1

un,K
K

)

≥ 1− 2Ks exp{−
v2n,K
nK
} − 2K(p− s) exp{−

u2n,K
nK
}.

Thus, the event E = ∩Kk=1(E1k ∩ E2k) holds with probability 1, provided

Ks exp{−v2n,K/(nK)} → 0 and K(p− s) exp{−u2n,K/(nK)} → 0, as n→∞.

For any β̂k = (β̂T
k,A, 0)

T with β̂k,A ∈ N0 = {δ ∈ ℜs : ∥δ − β0
A∥∞ ≤ β∗/2},

(A.1) can be re-written as

XT
k,A{yk − µ(θ0

k)} −XT
k,AΣ(θ

0
k)Xk,A(β̂k,A − β0

A)− nkρ̄(β̂k,A;λk)− rk,A = 0,

where rk,A = (rk1, . . . , rks)
T with rkj = (β̂k,A − β0

A)
T∇2γk,j(δ̃j)(β̂k,A − β0

A),

γk,j(δ) = xT
k,jµ(Xk,Aδ) and δ̃j being an s-dimensional vector on the segment

between β̂k,A and β0
A, for j = 1, . . . , s. It follows that

β̂k,A−β0
A={XT

k,AΣ(θ
0
k)Xk,A}−1

[
XT

k,A{yk−µ(θ0
k)}−nkρ̄(β̂k,A;λk)−rk,A

]
. (A.4)
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Thus,

∥β̂k,A − β0
A∥∞ ≤ ∥{XT

k,AΣ(θ
0
k)Xk,A}−1∥∞

{
∥ξk,A∥∞ + ∥ηk,A∥∞ + ∥rk,A∥∞

}
≤ O(bs,Kn−1

k )
{
c
−1/2
1

vn,K
K

+ nkρ
′(
β∗
2
;λk) +O(nk)× β2

∗s
}

= O(c
−1/2
1 bs,K

vn,K
nkK

+ bs,Kρ′(
β∗
2
;λk) + bs,Kβ2

∗s) = o(β∗),

where ξk,A = XT
k,A{yk−µ(θ0

k)} and ηk,A = nkρ̄(β̂k,A;λk). The second inequality

holds by the definition of E1k, A1, and that the concavity of ρ. The last line

holds by A2 and A3.

By Miranda’s existence theorem (e.g., Vrahatis (1989)), there exists a solu-

tion β̂k = (β̂T
k,A, 0)

T , with β̂k,A ∈ N0, to (A.1).

By a Taylor expansion,

XT
k,A{µ(θ̂k,A)− µ(θ0

k)} = XT
k,AΣ(θ

0
k)Xk,A(β̂k,A − β0

A) +wk,A

=XT
k,AΣ(θ

0
k)Xk,A{XT

k,AΣ(θ
0
k)Xk,A}−1(ξk,A − ηk,A − rk,A) +wk,A, (A.5)

where wk,A = (wk,s+1, . . . , wkp) and wkj = (β̂k,A − β0
A)

T∇2γkj(δj)(β̂k,A − β0
A)

with γkj(δ) = xT
k,jµ(Xk,Aδ) for j ∈ A and some s× 1 vector δ̃j on the segment

β̂k,A and β0
A. Similar to rk,A, ∥wk,A∥∞ = O(nksβ

2
∗). Thus, under E1k ∩E2k, by

the last condition in A3 and A1 and A2,

n−1
k ∥X

T
k,A[yk − µ(θ̂k)]∥∞ ≤ n−1

k ∥ξk,A∥∞ + ∥XT
k,A{µ(θ̂k,A)− µ(θ0

k)}∥∞
≤ n−1

k ∥ξk,A∥∞ + n−1
k ∥X

T
k,AΣ(θ

0
k)Xk,A{XT

k,AΣ(θ
0
k)Xk,A}−1∥∞

×
{
∥ξk,A∥∞ + ∥ηk,A∥∞ + ∥rk,A∥∞

}
+ n−1

k ∥wk,A∥∞

= c
−1/2
1

un,K
nkK

+O(nα−1
k

vn,K
K

) +O(nα
ksβ

2
∗) + Cρ′(0+;λk) +O(sβ2

∗)

= o(1) + Cρ′(0+;λk) < ρ′(0+;λk).

Here, ξk,A = XT
k,A[yk − µ(θ0

k)]. So (A.1) and (A.2) hold for β̂k = (β̂T
k,A, 0)

T .

Since β̂k,A ∈ N0, by A3 (A.3) is satisfied. Thus, by Lemma A2, β̂k = (β̂T
k,A, 0)

T

is the solution in the kth subset, for k = 1, . . . ,K.

Here β̂k is evaluated under the event E = ∩Kk=1(E1k ∩ E2k)} which is an

intersection over all k = 1, 2, . . . ,K, and the event E holds with probability 1 as

n→∞. When n is large enough, we have Âk = A for all subsets and Â(c) = A.
In this case, β̂

(c)

A = 0, and XkA = Xk,A where A = EÂ(c) is the selection

matrix defined in (2.2). It follows from (2.2), (A.4), and also XT
k,AΣ(θ̂k)Xk,A =

XT
k,AΣ(θ

0
k)Xk,A + op(1), that, uniformlly
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β̂
(c)
A = β0

A +

( K∑
k=1

XT
k,AΣ(θ̂k)Xk,A

)−1

×
[ K∑
k=1

{XT
k,AΣ(θ̂k)Xk,A}{XT

k,AΣ(θ
0
k)Xk,A}−1{ξk,A − ηk,A + rk,A}

]
= β0

A +
{
XT

AΣ(θ
0)XA + op(1)

}−1

×
{ K∑

k=1

[
I + op(1){Xk,AΣ(θ

0
k)Xk,A}−1

]
(ξk,A − ηk,A − rk,A)

}
.

Based on A1 and A2,

∥β̂(c)
A − β0

A∥∞ ≤ O(1)
∥∥∥(XT

AΣ(θ0)XA)
−1

∥∥∥
∞

∥∥∥ K∑
k=1

(ξk,A − ηk,A − rk,A)
∥∥∥
∞

= O
(bs,Kvn,K

n

)
+O

(
bs,K

K∑
k=1

nkρ
′(β∗/2;λk)

n

)
+O

(
bs,Kβ2

∗s
)

= o(β∗).

Thus, β̂
(c)
A ∈ N0.

A.2. Proof of Theorem 2

To achieve the convergence rate of
√
s/n for the β estimators under the L2

norm and also to show the property of asymptotic normality, we first show that
β̂k = (β̂T

k,A, 0)
T is a consistent estimator of β for each k and obtain an asymptotic

expansion of β̂k,A. We then use the asymptotic expansions of β̂k,A and also the

fact that β̂
(c)
A is weighted sum of β̂k to obtain the desired results.

Proof of Theorem 2 (i) Let un,K be a divergent sequence depending on the
total sample size n and the number of subsets K such that un,K = o(n) and
pK exp{−u2n,k/(nK)} = o(1). Consider events E2k = {∥XT

k,A{yk − µ(θ0
k)}∥∞ ≤

c
−1/2
1 un,K/K}, for k = 1, . . . ,K. From Lemma A1, we have that P{∩Kk=1E2k} ≥
1−2K(p−s) exp{−u2n,K/(nK)}. So, the event Ea = ∩Kk=1E2k holds in probability
1.

First, let us constrain the parameter space to the subspace {β : βA = 0} and
also define Nτ = {δ ∈ ℜs : ∥δ−β0

A∥2 ≤
√

Ks/nτ} for any given constant τ > 0.
Since β∗ ≫

√
Ks/n, we have that, when n is large enough, β∗/2 >

√
Ks/nτ ,

and thus sgn(δ) = sgn(β0
A) for any δ ∈ Nτ .

For each k, let Fk = {Qk(β
0
A) > maxδ∈∂Nτ Qk(δ)}, where Qk(δ) = ℓ(δ;

yk,Xk,A)− ρ(δ;λk) is the penalized likelihood. By a Taylor expansion, we have

Qk(δ)−Qk(β
0
A) = (δ − β0

A)
Tvk − (δ − β0

A)
TVk(δ − β0

A),
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where vk = n−1
k XT

k,A[yk − µ(θ0
k)] − ρ̄(β0

A;λk) and Vk = n−1
k XT

k,AΣ(θ
∗
k)Xk,A +

diag(κ(ρ(·;λk); δ
∗
k)) with θ∗

k = Xk,Aδ
∗
k, and δ∗k an s × 1 vector on the segment

joining δ and β0
A.

By A4 and A5, we have E∥vk∥22 ≤ n−2
k ϕtr(XT

k,AΣ(θ
0
k)Xk,A)+∥ρ̄(β0

A;λk)∥22 ≤
n−2
k ϕtr(XT

k,AΣ(θ
0
k)Xk,A)+sρ′(β∗/2;λk)

2 = O(sn−1
k ) = O(Ks/n) and λmin(Vk) ≥

τ1,k{1− o(1)} ≥ c/2. Therefore,

max
δ∈∂Nτ

Qk(δ)−Qk(β
0
A) ≤

√
Ks

n
τ(∥vk∥2 − c

√
Ks

n

τ

4
),

P(Fk) ≥ P(∥vk∥22 <
c2Ksτ2

16n
) ≥ 1− 16n

E∥vk∥22
c2Ksτ2

≥ 1−O(τ−2).

Since this holds for any (arbitrarily large) constant τ > 0 and Qk(δ) is a con-

tinuous injective function, there exists a β̂k,A ∈ Nτ that maximizes Qk(δ) for

δ ∈ Nτ and ∥β̂k,A − β0
A∥2 = Op(

√
Ks/n), in probability.

Constrain the parameter β to the subspace {β : βA = 0}. We can show

that, under Condition A4 and A5 and also nk = O(n/K),

∥XT
k,A{µ(θ̂k)− µ(θ0

k)}∥∞ ≤ ∥XT
k,AΣ(θ

0
k)Xk,A(β̂k,A − β0

A)∥∞ + ∥wk,A∥∞

≤ O(nk)∥β̂k,A − β0
A∥2 +O(nk)∥β̂k,A − β0

A∥2 = Op(

√
ns

K
).

Thus, under E2k = {∥XT
k,A{yk − µ(θ0

k)}∥∞ ≤ c
−1/2
1 un,K/K}, we have

∥n−1
k XT

k,A{yk − {µ(θ̂k)}∥∞

= ∥n−1
k

[
XT

k,A{yk − µ(θ0
k)} −XT

k,A{µ(θ̂k)− µ(θ0
k)}

]
∥∞

≤ n−1
k [∥XT

k,A{yk − µ(θ0
k)}∥∞ + ∥XT

k,A{µ(θ̂k)− µ(θ0
k)}∥∞]

≤ c
−1/2
1

un,K
nkK

+Op(

√
sK

n
) = o(1).

Thus, when n is large enough, (A.2) holds. Since A5 also implies (A.3), we con-

clude based on Lemma A2 that β̂k = (β̂T
k,A, 0)

T with ∥β̂k,A−β0
A∥2 = Op(

√
Ks/n)

is a local maximizer in the analysis of the kth subset data, for k = 1, . . . ,K.

All statements about β̂k are evaluated under the event ∩Kk=1E2k and ∩Kk=1E2k

holds with probability 1, as n → ∞. When n is large enough, we have Âk = A
for all subsets, and Â(c) = A. In this case, XkA = Xk,A where A = EÂ(c) is the

selection matrix defined in (2.2). Since β̂k,A = 0 for all k, we immediately have

β̂
(c)

A = 0.
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For any β̂k = (β̂T
k,A, 0)

T with β̂k,A ∈ Nτ = {δ ∈ ℜs : ∥δ − β0
A∥2 ≤√

Ks/nτ}, we can obtain by Taylor expansion the same expression of β̂k,A as

in (A.4). Since ∥nkρ̄(β
0
A;λk)∥2 ≤ nk

√
sρ′(β∗/2;λk) = O(

√
ns/K) and ∥rkA∥2 =√

sO(nk)Op(Ks/n) = Op(s
3/2), it follows that

β̂k,A = β0
A + {XT

k,AΣ(θ0
k)Xk,A}−1

[
XT

k,A{yk − µ(θ0
k)}+Op(max{s3/2,

√
ns

K
})
]
.

Therefore, by the definition of β̂(c), and noting that Ks = O(n1/2) and

XT
k,AΣ(θ̂k)Xk,A = XT

k,AΣ(θ
0
k)Xk,A + op(1), uniformly, we have

β̂
(c)
A = β0

A +
[ K∑
k=1

XT
k,AΣ(θ̂k)Xk,A

]−1

×
{ K∑

k=1

{1 + op(1)}
[
XT

k,A{yk − µ(θ0
k)}+Op(

√
ns

K
)

]}
. (A.6)

Since λmin

(∑K
k=1X

T
k,AΣ(θ̂k)Xk,A

)
≥

∑K
k=1 λmin

(
XT

k,AΣ(θ̂k)Xk,A
)
, by A4

we have that λmax

(
[
∑K

k=1X
T
k,AΣ(θ̂k)Xk,A]

−1
)
= Op(n

−1). In addition,

E∥XT
A[y−µ(θ0

k)]∥22 ≤ ϕtr(XT
AΣ(θ

0)XA) = ϕ
∑K

k=1 tr(X
T
k,AΣ(θ

0
k)Xk,A) = O(sn)

by A4. It follows ∥XT
A[y − µ(θ0)]∥22 = Op(ns). Thus, by (A.6),

∥β̂(c)
A − β0

A∥2 ≤ Op(n
−1)

[
∥XT

A{y − µ(θ0)}∥2 +Op(
√
ns)

]
= Op(

√
s

n
).

(ii) Under the assumption that K2/3s=o(n1/3) and ρ′(β∗/2;λk)=o(s−1/2n−1/2),

the remaining term Op(
√
ns/K) in (A.6) is in fact op(

√
n/K). By (A.6) with

this modification, we have

D[XT
AΣ(θ0)XA]

1/2(β̂
(c)
A − β0

A) = D[XT
AΣ(θ0)XA]

1/2
{
XT

AΣ(θ0)XA

+op(1)
}−1

XA
{
y − µ(θ0)

}{
1 + op(1)

}
+ op(1).

From Condition A6,

D[XAΣ(θ0)XA]
−1/2XA[y − µ(θ0)]

D−→ N(0, ϕG).

Thus, the asymptotic normality result in (ii) holds.

A.3. Proof of Theorem 3

Proof of Theorem 3. We show that P(j ∈ Âk) ≤ s̄k/p, j ∈ A, and P(j ∈
Âk) ≥ s̄k/p for j ∈ A and k = 1, . . . ,K.
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Because E(|A ∩ Âk|) = E(|Âk|) − E(|A ∩ Âk|) = s̄k − E(|A ∩ Âk|) and

E(|A ∩ Âk|)/E(|A ∩ Âk|) ≥ |A|/|A|, we have E(|A ∩ Âk|) ≤ s̄k/(1 + |A|/|A|)
and E(|A ∩ Âk|) ≥ s̄k/(1 + |A|/|A|). Therefore, E(|A ∩ Âk|) ≤ s̄k|A|/p and

E(|A ∩ Âk|) ≥ s̄k|A|/p.
Using the exchangeability assumption, P(j ∈ Âk) = E(|A ∩ Âk|)/|A|, j ∈ A

and P(j ∈ Âk) = E(|A ∩ Âk|)/|A|, j ∈ A. Therefore, P(j ∈ Âk) ≤ s̄k/p ≤ s∗/p,

j ∈ A and P(j ∈ Âk) ≥ s̄k/p ≥ s∗/p, j ∈ A.
Since the observations in each subset are independent and w ≥ s∗K/p − 1,

P(j ∈ Â(c)) ≤ 1−F (w|K, s∗/p), j ∈ A and P(j ∈ Â(c)) ≥ 1−F (w|K, s∗/p), j ∈ A.
Therefore, E(|A ∩ Â(c)|) =

∑
j∈A P(j ∈ Â(c)) ≤ |A|{1 − F (w|K, s∗/p)} and

E(|A ∩ Â(c)|) =
∑

j∈A P(j ∈ Â(c)) ≥ |A|(1− F (w|K, s∗/p)).

A.4. Proof of Lemma 1 and Theorem 4

Proof of Lemma 1. We state the LARS algorithm for LASSO here:

• Initialize, let the active set which contains the variables with nonzero coeffi-

cients A = ∅, current mean estimate µ̂A = 0, current coefficient β̂A = 0 and

step size γ = 0. Let a = 0.

• Repeat the following steps until |A| = n.

[1] Calculate the correlation between variables and the current residual ĉ =

XT
Acy − γa and Ĉ = max{|ĉj |}, where ĉj is the elements of ĉ for j ∈ A.

[2] Let A = {j : |ĉj | = Ĉ} if A = ∅, sj = sgn(ĉj) and XA = (. . . , sjxj , . . .),

j ∈ A. Calculate the next moving direction GA = XT
AXA, QA =

(1TAG
T
A1A)

−1/2 and wA = QAG
−1
A 1A = (. . . , wj , . . .), uA = XAwA. Here

1A is a vector of size |A| with all 1s.

[3] Calculate the size of tuning parameter. Let d̂j = sjwj , j ∈ A and a =

XT
AcuA = (. . . , aj , . . .). Calculate γj = −β̂j/d̂j , γ̃ = minγj>0(γj) and

γ̂ = minj∈Ac
+{(Ĉ − ĉj)/(QA − aj), (Ĉ − ĉj)/(QA + aj)}, where min+

means that the minimum is taken over only positive components.

[4] If γ̃ ≤ γ̂, update µ̂A ← µ̂A + γ̃uA, β̂j ← β̂j + γ̃sjwj A ← A − j̃ where j̃

is the index for which the minimizing index in obtaining γ̃, and γ = γ̃. If

γ̃ > γ̂, update µ̂A ← µ̂A + γ̂uA, β̂j ← β̂j + γ̂sjwj , A← A+ j̃ where j̃ is

the index for which the minimizing index in obtaining γ̂ and γ = γ̂.

Denote by comp[i] the computing steps at step i in each loop, i = 1, 2, 3, 4.

Suppose linear search is used to find the maximum or minimum and schoolbook

matrix multiplication algorithm is applied. We have comp[1] = 2n(p− |A|).
In Step [2], computing QA requires |A|2 computing steps. When compute

G−1
A , Cholesky factorization is applied to update the inverse matrix. Details are

given below. Get the block representation of GA and the Cholesky factor of GA,
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denoted by U ,GA = UTU . Denote the inverse matrix of U by Y = U−1 and write

GA =

(
G11 G12

GT
12 G22

)
, U =

(
U11 U12

UT
12 U22

)
and Y =

(
Y11 Y12
Y T
12 Y22

)
, whereG22 is a number

representing the newly added variable. Thus, G−1
A =

(
Y11Y

T
11 + Y12Y

T
12 Y12Y

T
22

Y22Y
T
12 Y22Y

T
22

)
,

where G−1
11 = Y11Y

T
11.

Since U11 and Y11 are known from the previous loop, we can update G−1
A as

followings: U12 = Y T
11G12, U22 =

√
G22 − UT

12U12, Y22 = U−1
22 , Y12 = −Y11U12Y22,

and compute G−1
11 +Y12Y

T
12, Y12Y

T
22 and Y22Y

T
22. Thus, comp[2] = 8|A|2− 10|A|+

7 + (2|A| − 1)n.

We have comp[3] = |A|+(2n−1)(p−|A|)+2|A|+7(p−|A|), and comp[4] =

2|A|+ 1.

In all, one loop in LARS algorithm requires 8|A|2 − 11|A| + (4n + 6)p −
2n|A|+ 8− n computing steps. Therefore, since p ≥ n, at most n variables will

be fitted and the LARS algorithm requires at least
∑n

|A|=1 8|A|2− 11|A|+ (4n+

6)p− 2n|A|+ 8− n = 5n3/3 + 23n/6 + 4n2(p− 7/8) + 6np computing steps.

Each time dropping variable occurs, it add and additional 8|A|2 − 11|A| +
(4n+ 6)p− 2n|A|+ 8− n computing steps depending on the number of current

active variables. The worst case is 6n2+4n(p− 3)+6p+8 computing steps each

time and the solution path has n times downsize. The computing steps for the

worst case is 23n3/3 + 71n/6 + 8n2(p− 31/16) + 12np.

Proof of Theorem 4. According to Lemma 1, as each sub-sample has nk

observations, for the best case, the computing steps for the combined estimator

is
∑K

k=1 5n
3
k/3 + 23nk/6 + 4n2

k(p − 7/8) + 6nkp. Since
∑K

k=1 nk = n, 5n3/3 +

23n/6 + 4n2(p − 7/8) + 6np ≥
∑K

k=1 5n
3
k/3 + 23nk/6 + 4n2

k(p − 7/8) + 6nkp.

The result follows immediately. Similarly, the combined estimator requires less

computing steps for the worst case.

We only need to show that under the assumptions, the worst case for split-

and-conquer approach requires fewer computing steps than the best case for

the LARS algorithm using the entire dataset. When nk = O(nk), split-and-

conquer approach requires at most 23n3/(3K2)+71n/6+8n2(p−31/16)/K+12np

computing steps and the LARS algorithm using the entire dataset needs at least

5n3/3 + 23n/6 + 4n2(p − 7/8) + 6np computing steps. It is equivalent then to

show that {5n3/3+23n/6+4n2(p−7/8)+6np}−{23n3/(3K2)+71n/6+8n2(p−
31/16)/K +12np} = (5− 23/K2)n3/3+ {4p(1− 2/K)+ (31/K − 7)/2}n2− (8+

6p)n ≥ 0.

When K ≥ 3 and p ≥ 2, we have 5− 23/K2 > 0 and 4p(1− 2/K)+ (31/K−
7)/2 > 0. Thus, when n ≥ 4(4 + 3p)/{1 + 8p(1 − 2/K) + 31/K − 7}, we have
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(5 − 23/K2)n2/3 + {4p(1 − 2/K) + (31/K − 7)/2}n − (8 + 6p) > 0. The result

follows.

A.5. Verification of A2 in the special case described in the last para-

graph of Section 3.1

Proof. The proof is straightforward. We compute the order of each term in A2.

First, β∗sbs,K=O(n−γ log(n)sbs,K)=o(1) and β∗(n
α
ks)

1/2=o(log(n)/nγ−α/2−α0/2)

= o(1) . Then, vn,Kbs,K/(nkKβ∗) = o(
√
Kn log(n)bs,K/(n1−γ log(n))) = o(1)

and vn,K/(n1−α
k K) = o(

√
log(n)K1/2−α/n1/2−α) = o(1). Finally, un,K/(nkK) =

O(
√

K log(n)/nα1) = o(1).
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