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Abstract: A general approach to constructing confidence intervals by subsampling

was presented in Politis and Romano (1994). The crux of the method is recom-

puting a statistic over subsamples of the data, and these recomputed values are

used to build up an estimated sampling distribution. The method works under

extremely weak conditions, it applies to independent, identically distributed (i.i.d.)

observations as well as to dependent data situations, such as time series (possi-

bly nonstationary), random fields, and marked point processes. In this article, we

present some theorems showing: a new construction for confidence intervals that

removes a previous condition, a general theorem showing the validity of subsam-

pling for data-dependent choices of the block size, and a general theorem for the

construction of hypothesis tests (not necessarily derived from a confidence interval

construction). The arguments apply to both the i.i.d. setting and the dependent

data case.

Key words and phrases: Confidence intervals, data-dependent block size choice,

hypothesis tests, large sample theory, resampling.

1. Introduction

A general theory for the construction of confidence intervals or regions was
presented in Politis and Romano (1992, 1994). The basic idea is to approximate
the sampling distribution of a statistic based on the values of the statistic com-
puted over smaller subsets of the data. For example, in the case where the data
are n observations which are independent and identically distributed, a statistic
is computed based on the entire data set and is recomputed over all

(n
b

)
data sets

of size b. Implicit is the notion of a statistic sequence, so that the statistic is
defined for samples of size n and b. These recomputed values of the statistic are
suitably normalized to approximate the true sampling distribution.

This approach based on subsampling is perhaps the most general theory for
the construction of first order asymptotically valid confidence regions. Other
methods, such as the bootstrap, require that the distribution of the statistic is
somehow locally smooth as a function of the unknown model. In fact, many
papers have been devoted to showing the convergence of a suitably normalized
statistic to its limiting distribution is appropriately uniform as a function of
the unknown model in specific situations. In contrast, no such assumption or
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verification of such smoothness is required in the theory for subsampling. Indeed,
the method here is applicable even in the several known situations which represent
counterexamples to the bootstrap. To appreciate why subsampling behaves well
under such weak assumptions, note that each subset of size b (taken without
replacement from the original data) is indeed a sample of size b from the true
model. Hence, it should be intuitively clear that one can at least approximate
the sampling distribution of the (normalized) statistic based on a sample of size
b. But, under the weak convergence hypothesis, the sampling distributions based
on samples of size b and n should be close. The bootstrap, on the other hand,
is based on recomputing a statistic over a sample of size n from some estimated
model which is hopefully close to the true model.

The method has a clear extension to the context of a stationary time series
or, more generally, a homogeneous random field. The only difference is that the
statistic is computed over a smaller number of subsets of the data that retain the
dependence structure of the observations. For example, if X1, . . . ,Xn represent
n observations from some stationary time series, the statistic is recomputed only
over the n − b + 1 subsets of size b of the {Xi,Xi+1, . . . ,Xi+b−1}. The ideas
extend to random fields and marked point processes as well.

The use of subsample values to approximate the variance of a statistic is well-
known. The Quenouille-Tukey jackknife estimates of bias and variance based on
computing a statistic over all subsamples of size n − 1 has been well-studied
and is closely related to the mean and variance of our estimated sampling dis-
tribution with b = n − 1. Mahalanobis (1946) suggested the use of subsamples
to estimate variability in studying crop yields, though he used the name in-
terpenetrating samples. Half sampling methods have been well-studied in the
context of sampling theory; see McCarthy (1969). Hartigan (1969) introduced
what Efron (1982) calls a random subsampling method, based on the computa-
tion of a statistic over all 2n − 1 nonempty subsets of the data. His method is
seen to produce exact confidence limits in the special context of the symmetric
location problem. Hartigan (1975) adapted his finite sample results to a more
general context of certain classes of estimators which have asymptotic normal
distributions. But, even in this context, his asymptotic results assume the num-
ber of subsamples used to recompute the statistic remains fixed as n → ∞, which
results in a loss of efficiency.

Efron’s (1979) bootstrap, while sharing some similar properties to the afore-
mentioned methods, has corrected some deficiencies in the jackknife, and has
tackled the more ambitious goal of approximating an entire sampling distribu-
tion. Shao and Wu (1989) have shown that, by basing a jackknife estimate of
variance on the statistic computed over subsamples with d observations deleted,
many of the deficiencies of the usual d = 1 jackknife estimate of variance can
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be removed. Later, Wu (1990) used these subsample values to approximate an
entire sampling distribution by what he calls a jackknife histogram, but only in
regular i.i.d. situations where the statistic is appropriately linear so that asymp-
totic normality ensues. In more broad generality, Sherman and Carlstein (1996)
considered the use of subsamples as a diagnostic tool to describe the shape of
the sampling distribution of a general statistic, though formal inference proce-
dures, such as the construction of confidence intervals, are not delivered. Here,
we show how these subsample values can accurately estimate a sampling distri-
bution without any assumptions of asymptotic normality, by only assuming the
existence of a limiting distribution. Moreover, the asymptotic validity of confi-
dence statements follows. In summary, while the method developed in this work
is related to several well-studied techniques, the simplicity of our arguments leads
to asymptotic justification under the most general conditions.

In Section 2, the method is described in the context of i.i.d. observations.
The basic theory is quickly motivated. Theorem 2.1 presents a general theorem
showing the validity of subsampling in the i.i.d. case, acknowledging a data-driven
choice of block size, which inevitably is the situation used in practice. The basic
argument is to show subsampling is consistent uniformly across a broad range of
block sizes. A variation (Corollaries 2.1 and 5.1) of the basic confidence interval is
presented which removes one of the original conditions. Although this condition
is extremely weak, the new interval is more closely related to a construction
presented in the next section on hypothesis testing. The use of subsampling in
the context of hypothesis testing based on i.i.d. samples is described in Section 3.
A basic result giving the behavior of the subsampling null distribution under the
null hypothesis and contiguous alternatives is obtained. Sections 4 and 5 extend
these ideas to the time series case. The same ideas apply, and the proofs only
highlight the differences from the i.i.d. case. Section 6 presents an example and
illustrates the idea of data-driven choice of the block size.

2. The i.i.d. Case with Data-Dependent Block Size

Throughout this section, X1, . . . ,Xn is a sample of n independent and iden-
tically distributed random variables taking values in an arbitrary sample space
S. The common probability measure generating the observations is denoted P .
The goal is to construct a confidence region for some parameter θ(P ). For now,
θ is real-valued, but this can be considerably generalized to allow for the con-
struction of confidence regions for multivariate parameters or confidence bands
for functions.

Let θ̂n = θ̂n(X1, . . . ,Xn) be an estimator of θ(P ). Nothing is assumed
about θ̂n, though it is natural to assume θ̂n is symmetric in its arguments in the
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i.i.d. case. It is desired to estimate or approximate the true sampling distribution
of θ̂n in order to make inferences about θ(P ).

Define Jn(P ) to be the sampling distribution of τn(θ̂n − θ(P )) based on a
sample of size n from P , where τn is a normalizing constant. Also define the
corresponding cumulative distribution function: Jn(x, P ) = ProbP{τn[θ̂n(X1,
. . ., Xn) − θ(P )] ≤ x}.

For asymptotically valid confidence intervals for θ(P ), we need the following.

Assumption 2.1. There exists a limit law J(P ) such that Jn(P ) converges
weakly to J(P ) as n → ∞.

We require this assumption for some sequence τn; it is most useful when
τn is such that the limit law J(P ) is nondegenerate. The assumption is clearly
satisfied in numerous examples, and it is hard to conceive of a theory where it
fails.

To describe the method studied in this section, let Y1, . . . , YNn be equal to
the Nn =

(n
b

)
subsets of size b of {X1, . . . ,Xn}, ordered in any fashion. Of course,

the Yi depend on b and n, but this dependence is supressed. Only a very weak
assumption on b is required. In typical situations, it is assumed that b/n → 0
and b → ∞ as n → ∞. Now, let θ̂n,b,i be equal to the statistic θ̂b evaluated at
the data set Yi. The approximation to Jn(x, P ) we study is defined by

Ln,b(x) = N−1
n

Nn∑
i=1

1{τb(θ̂n,b,i − θ̂n) ≤ x}. (1)

Our motivation is the following. For any i, Yi is a random sample of size b

from P . Hence, the exact distribution of τb(θ̂n,b,i − θ(P )) is Jb(P ). The empirical
distribution of the Nn values of τb(θ̂n,b,i − θ(P )) should then serve as a good
approximation to Jn(P ). Of course θ(P ) is unknown, so we replace θ(P ) by θ̂n,
asymptotically permissible because τb(θ̂n − θ(P )) is of order τb/τn → 0. These
heuristics lead to the following theorem, first proved in the special case of fixed
block size in Politis and Romano (1992). Here, we present a result which shows
subsampling works very generally even with a data-driven choice of block size, as
would happen in practice. The approach is to show subsampling works uniformly
over a broad range of block sizes, and hence to a random choice as well.

Theorem 2.1. Let 1 ≤ jn ≤ kn ≤ n be integers satisfying jn → ∞, kn/n → 0,
τkn/τn → 0, and, for every d > 0, (kn − jn + 1) exp(−d� n

kn
�) → 0 as n → ∞.

Assume {τn} is nondecreasing in n, and adopt Assumption 2.1.
(i) If x is a continuity point of J(·, P ), then supjn≤b≤kn

|Ln,b(x) − J(x, P )| → 0
in probability.
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(ii) If {b̂n} is a data-dependent sequence (that is, a measurable function of
X1, . . . ,Xn), and ProbP {jn ≤ b̂n ≤ kn} → 1, then Ln,b̂n

(x) → J(x, P ) in
probability.

(iii) If J(·, P ) is continuous, then supx |Ln,b̂n
(x)− J(x, P )| → 0 in probability. In

fact, supjn≤b≤kn
supx |Ln,b(x) − J(x, P )| → 0 in probability.

(iv)Let cn,b̂n
(1 − α) = inf{x : Ln,b̂n

(x) ≥ 1 − α}. Then, if J(·, P ) is contin-

uous, ProbP{τn[θ̂n − θ(P )] ≤ cn,b̂n
(1 − α)} → 1 − α as n → ∞. There-

fore, the asymptotic coverage probability under P of the confidence interval
[θ̂n − τ−1

n cn,b̂n
(1 − α),∞) is the nominal level 1 − α.

Proof. Let θ̂n,b,i be the statistic θ̂b evaluated at the ith of the
(n
b

)
data sets of

size b; any ordering of these
(n
b

)
values will do. Define

Un,b(x, P ) ≡ Un,b(x) =

(
n

b

)−1 (n
b)∑

i=1

1{τb[θ̂n,b,i − θ(P )] ≤ x}. (2)

First we claim that, for each continuity point x of J(·, P ),

sup
jn≤b≤kn

|Un,b(x) − J(x, P )| → 0 in probability. (3)

But supjn≤b≤kn
|Jb(x, P )−J(x, P )| → 0, because, if this convergence failed, there

would exist {bn} with bn ∈ [jn, kn] such that Jbn(x, P ) does not converge to
J(x, P ). This is a contradiction since bn ≥ jn → ∞. So, to show (3) it suffices
to show

sup
jn≤b≤kn

|Un,b(x) − Jb(x, P )| → 0 in probability. (4)

But, for any t > 0,

ProbP { sup
jn≤b≤kn

|Un,b(x) − Jb(x, P )| ≥ t}

≤
kn∑

b=jn

ProbP {|Un,b(x) − Jb(x, P )| ≥ t}

≤ (kn − jn + 1) sup
jn≤b≤kn

ProbP{|Un,b(x) − Jb(x, P )| ≥ t}

≤ 2(kn − jn + 1) sup
jn≤b≤kn

exp{−2�n

b
�t2}. (5)

The last inequality makes use of Hoeffding’s inequality for U -statistics, which ap-
plies since Un,b(x) is indeed a bounded U -statistic of degree b; see Serfling (1980),
p.201. But this last expression is bounded above by 2(kn−jn+1) exp{−2� n

kn
�t2},
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which tends to zero by assumption on {kn}. Thus, (4) holds, as does (3). Now,
note that

Ln,b(x) =

(
n

b

)−1 (n
b)∑

i=1

1{τb[θ̂n,b,i − θ(P )] + τb[θ(P ) − θ̂n] ≤ x}.

Fix any ε > 0 so that x ± ε are continuity points of J(·, P ). Then

Un,b(x − ε)1(En,b) ≤ Ln,b1(En,b) ≤ Un,b(x + ε), (6)

where 1(En,b) is the indicator of the event En,b ≡ {τb|θ(P ) − θ̂n| ≤ ε}. By the
monotonicity of {τn}, 1(En,kn) ≤ 1(En,b) ≤ 1(En,jn) and τkn/τn → 0 implies
ProbP (En,kn) → 1. So Ln,b(x)1(En,kn) ≤ Un,b(x + ε). Thus, on the set En,kn ,

sup
jn≤b≤kn

Ln,b(x) − J(x, P ) ≤ sup
jn≤b≤kn

Un,b(x + ε) − J(x, P )

≤ sup
jn≤b≤kn

|Un,b(x + ε) − J(x + ε, P )| + J(x + ε, P ) − J(x, P ).

But, by (3), it follows that, for every δ > 0, supjn≤b≤kn
Ln,b(x) − J(x, P ) ≤

δ + J(x + ε, P ) − J(x, P ) with probability tending to one. Similarly, replacing
x + ε by x − ε and using the first inequality in (6), we get, for every η > 0,
supjn≤b≤kn

|Ln,b(x) − J(x, P )| ≤ η with probability tending to one, which is
equivalent to statement (i) of the theorem. Part (ii) is obvious. The rest of the
theorem is proved as in the proof of Theorem 2.1 of Politis and Romano (1994).

Remark 2.1. In some cases, one finds that an optimal choice of b = bn should
satisfy bnnp → ξ(P ), for some p ∈ (0, 1), where ξ(P ) is a constant typically
depending on the unknown probability mechanism P . In an ad hoc way, one can
sometimes estimate ξ(P ) consistently by ξ̂n (say by a plug-in approach), which
leads to the choice of block size b̂n = �ξ̂nnp�. Such a construction for b̂n will easily
satisfy the conditions of the theorem. Simply take jn = �εnp� and kn = �np/ε�
for small enough ε. Moreover, the condition τkn/τn → 0 will be satisfied in
the typical case τn is proportional to nβ for some β ∈ (0, 1). In practice, the
parameter ξ(P ) may be difficult to estimate, and even if consistent estimation is
possible, the resulting estimator may have poor finite-sample performance. The
point of this section is to show subsampling has some asymptotic validity across
a broad range of choices for the subsample size.

Remark 2.2. The monotonicity assumption on {τn} can be replaced by the
condition supjn≤b≤kn

[τb/τn] → 0, as the proof essentially shows. Actually, the
assumption can be removed altogether if the interval is modified as in Corol-
lary 2.1, where in fact the condition τkn/τn → 0 is removed altogether.
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Remark 2.3. The convergence in probability statements in the theorem can be
strengthened to be almost sure convergences, provided τkn [θ̂n−θ(P )] → 0 almost
surely, and for every d > 0,

∑∞
n=1 kn exp(−d� n

kn
�) < ∞. The last condition holds

whenever kn can be taken to be O(np) with p < 1.

One can remove the assumption that τkn/τn → 0 if the goal is to construct
an asymptotically valid confidence interval for θ(P ), but at the small expense
of bypassing consistent estimation of Jn(·, P ). To see how, let un,b(1 − α,P ) =
inf{x : Un,b(x, P ) ≥ 1 − α}, where Un,b(·, P ) is defined in (2). Under continuity
assumptions on J(·, P ), the proof of Theorem 2.1 shows Un,b(x, P ) converges
in probability to J(x, P ) uniformly in b ∈ [jn, kn]. It follows that un,b̂n

(1 −
α,P ) converges in probability (under P ) to c(1 − α,P ); to argue why, one can
easily conclude almost sure convergence along a subseqeuence. Moreover, the
assumption τbn/τn → 0 is not used. Note, however, that un,b̂n

(1 − α,P ) is not
an estimator since it depends on P . Nevertheless, with P fixed, the event

{τn(θ̂n − θ(P )) ≤ un,b̂n
(1 − α,P )} (7)

has an asymptotic probability of 1 − α under P (assuming J(·, P ) is continuous
at c(1 − α,P )). But,

un,b̂n
(1 − α,P ) = cn,b(1 − α) + τb̂n

(θ̂n − θ(P )). (8)

Hence, the event (7) is exactly the same as

{τn(θ̂n − θ(P )) ≤ cn,b̂n
(1 − α) + τb̂n

(θ̂n − θ(P ))}, (9)

or equivalently,
{(τn − τb̂n

)(θ̂n − θ(P ) ≤ cn,b̂n
(1 − α)} (10)

By solving for θ(P ), the following nominal level 1 − α confidence interval is
obtained:

[θ̂n − (τn − τb̂n
)−1cn,b̂n

(1 − α),∞). (11)

The interval (11) can be computed without knowledge of P , it has asymptotic
coverage probability under P of 1 − α, and the assumption τkn/τn → 0 was not
needed. Clearly, the only difference between (11) and the interval presented in
Theorem 2.1 is that the factor (τn − τb̂n

)−1 here replaces the factor τ−1
n there.

Corollary 2.1. Under Assumption 2.1, let 1 ≤ jn ≤ kn ≤ n be integers such
that jn → ∞ and kn/n → 0 as n → ∞. Also assume, for every d > 0,
kn exp(−d� n

kn
�) → 0 as n → ∞. If J(·, P ) is continuous at c(1 − α,P ), then

the interval (11) contains θ(P ) with asymptotic probability 1 − α under P .

Remark 2.4. The interval I1 defined in (iii) of Theorem 2.1 corresponds to a
one-sided hybrid percentile interval in the bootstrap literature (e.g., Hall (1992)).
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A two-sided equal-tailed confidence interval can be obtained by forming the in-
tersection of two one-sided intervals. The two-sided analogue of I1 is I2 =
[θ̂n−τ−1

n cn,b̂n
(1−α/2), θ̂n−τ−1

n cn,b̂n
(α/2)]. I2 is called equal-tailed because it has

approximately equal probability in each tail: ProbP{θ(P ) < θ̂n − τ−1
n cn,b̂n

(1 −
α/2)} 	 α/2 and ProbP{θ(P ) > θ̂n − τ−1

n cn,b̂n
(α/2)} 	 α/2.

As an alternative approach, two-sided symmetric confidence intervals can be
constructed. A two-sided symmetric confidence interval is given by [θ̂n−ĉ, θ̂n+ĉ],
where ĉ is chosen so that ProbP{|θ̂n − θ(P )| > ĉ} 	 α. Hall (1988) showed that
symmetric bootstrap confidence intervals may enjoy enhanced coverage and, even
in asymmetric circumstances, can be shorter than equal-tailed confidence inter-
vals. To construct two-sided symmetric subsampling intervals in practice, we
follow the traditional approach and estimate the two-sided distribution func-
tion Jn,|·|(x, P ) = ProbP{τn|θ̂n − θ(P )| ≤ x}. The subsampling approxima-

tion to Jn,|·|(x, P ) is defined by Ln,b,|·|(x) = N−1
n

∑Nn
i=1 1{τb

∣∣∣θ̂n,b,i − θ̂n

∣∣∣} ≤ x}.
An approximate 1 − α symmetric confidence interval is then given by ISY M =
[θ̂n−τ−1

n cn,b̂n,|·|(1−α), θ̂n+τ−1
n cn,b̂n,|·|(1−α)], where cn,b̂n,|·|(1−α) is a 1−α quan-

tile of Ln,b̂n,|·|(·). By Theorem 2.1 and the Continuous Mapping Theorem, the
asymptotic validity of two-sided symmetric subsampling intervals easily follows.

3. Hypothesis Testing in the i.i.d. Case

In this section, we consider the use of subsampling for the construction of
hypothesis tests. As before, X1, . . . ,Xn is a sample of n independent and iden-
tically distributed observations taking values in a sample space S. The common
unknown distribution generating the data is denoted by P . This unknown law
P is assumed to belong to a certain class of laws P. The null hypothesis H0

asserts P ∈ P0, and the alternative hypothesis H1 is P ∈ P1, where Pi ⊂ P and
P0
⋃

P1 = P.
There are several general approaches one can take for the construction of

asymptotically valid tests, depending on the nature of the problem. In the spe-
cial (but usual) case where the null hypothesis translates into a null hypothesis
about a real- or vector-valued parameter θ(P ), one can construct a confidence
region for θ(P )—by subsampling, bootstrapping, asymptotic approximations, or
other methods—and then exploit the usual duality between the construction of
confidence regions for parameters and the construction of hypothesis tests about
those parameters. This is the approach taken in Politis and Romano (1996).
However, not all hypothesis testing problems fit nicely into the aforementioned
framework. An alternative bootstrap approach can be based on bootstrapping
from a distribution obeying the constraints of the null hypothesis; see Beran
(1986) and Romano (1988, 1989). None of the above approaches easily handles
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the following example, taken from Bickel and Ren (1997), but we will see that
an appropriate simple subsampling scheme applies here as well. Bickel and Ren
(1997) consider the related bootstrap with smaller resample size.

Example 3.1. (Goodness of Fit for Censored Data) Suppose that U1, . . .,
Un are i.i.d. random variables with cumulative distribution function F . The null
hypothesis H0 asserts F = F0, where F0 is some specified distribution. In this
problem, however, we do not necessarily observe the full data U1, . . . , Un because
the observations Ui are left and right censored. Specifically, assume (Yi, Zi) are
independent and identically distribution pairs with Zi < Yi (with probability
one), and the (Yi, Zi) pairs are independent of U1, . . . Un. Define

Vi =




Ui, if Zi < Ui ≤ Yi;
Yi, if Ui > Yi;
Zi, if Xi ≤ Zi

δi =




1, if Zi < Ui ≤ Yi;
2, if Ui > Yi;
3, if Xi ≤ Zi.

The actual observations available are Xi = (Vi, δi). Let F̂n be the non-
parametric maximum likelihood estimator of F based on X1, . . . Xn; this can be
computed numerically by the algorithms described in Mykland and Ren (1996).
Now, consider the Cramér-von Mises test statistic given by Tn = n

∫∞
−∞[F̂n(x) −

F0(x)]2dF0(x).
Under suitable conditions and when F is the true distribution for Ui, n1/2

[F̂n(·) − F (·)], viewed as a process on D[−∞,∞], converges weakly to a mean
zero Gaussian process with covariance depending on the joint distribution of
(Zi, Yi); see Giné and Zinn (1990) and Bickel and Ren (1996). Hence, Tn pos-
sesses a limiting distribution as well, both under the null hypothesis and against
a sequence of contiguous alternatives; the notion of contiguity is presented in
Bickel Klassgn, Rnov and Wellnar ((1993), Section A.9). The difficulty the boot-
strap has in approximating this limiting distribution is that Yi and Zi are never
observed together for any i, so that any information on the joint distribution is
not available. Note, however, in the right censoring case (with Zi = −∞), F̂n is
the Kaplan-Meier estimator, and the distribution of the censoring variables can
be estimated and the bootstrap offers a viable approach.

We now return to the general setup of testing the null hypothesis H0 that P ∈
P0 versus the alternative hypothesis H1 that P ∈ P1. The goal is to construct an
asymptotically valid test based on a given test statistic Tn = τntn(X1, . . . ,Xn),
where, as before, τn is a fixed nonrandom normalizing sequence (though even
this assumption can be weakened; see Bertail, Politis and Romano (1999)). Let
Gn(x, P ) = ProbP {τntn(X1, . . . ,Xn) ≤ x}.
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At this point, not too much is assumed about Tn, though it is certainly
natural in the i.i.d. case that tn(X1, . . . ,Xn) be symmetric in its arguments.
As before, we assume Gn(·, P ) converges in distribution, at least for P ∈ P0.
Of course, this would imply (as long as τn → ∞) that tn(X1, . . . ,Xn) → 0 in
probability for P ∈ P0. Naturally, tn should somehow be designed to distinguish
between the competing hypotheses. Our next theorem assumes tn is constructed
to satisfy the following: tn(X1, . . . ,Xn) → t(P ) in probability, where t(P ) is a
constant which satisfies t(P ) = 0 if P ∈ P0 and t(P ) > 0 if P ∈ P1. This
assumption can be made to hold in every conceivable example.

To describe the test construction, let Y1, . . . , YNn be equal to the Nn =
(n
b

)
subsets of {X1, . . . ,Xn}, ordered in any fashion. Let tn,b,i be equal to the statis-
tic tb evaluated at the data set Yi. The sampling distribution of Tn is then
approximated by

Ĝn,b(x) = N−1
n

Nn∑
i=1

1{τbtn,b,i ≤ x}. (12)

Using this estimated sampling distribution, the critical value for the test is ob-
tained as the 1 − α quantile of Ĝn,b(·); specifically, define

gn,b(1 − α) = inf{x : Ĝn,b(x) ≥ 1 − α}. (13)

Finally, the nominal level α test rejects H0 if and only if Tn > gn,b(1 − α).
The following theorem gives the consistency of this procedure, under the null

hypothesis, the alternative hypothesis, and a sequence of contiguous alternatives.
For reasons of notational simplicity and fewer assumptions, we just consider a
nonrandom block size b, but the proof can easily generalize by using the ideas of
Theorem 2.1.

Theorem 3.1.
(i) Assume, for P ∈ P0, Gn(P ) converges weakly to a continuous limit law

G(P ), whose corresponding cumulative distribution function is G(·, P ) and
whose 1−α quantile is g(1−α,P ). Assume b/n → 0 and b → ∞ as n → ∞. If
G(·, P ) is continuous at g(1−α,P ) and P ∈ P0, then gn,b(1−α) → g(1−α,P )
in probability and ProbP{Tn > gn,b(1 − α)} → α as n → ∞.

(ii) Assume the test statistic is constructed so that tn(X1, . . . ,Xn) → t(P ) in
probability, where t(P ) is a constant which satisfies t(P ) = 0 if P ∈ P0 and
t(P ) > 0 if P ∈ P1. Assume b/n → 0, b → ∞, and lim infn(τn/τb) > 1.
Then, if P ∈ P1, the rejection probability satisfies ProbP{Tn > gn,b(1 −
α)} → 1 as n → ∞.

(iii)Suppose Pn is a sequence of alternatives such that, for some P0 ∈ P0, {Pn
n } is

contiguous to {Pn
0 }. Assume b/n → 0 and b → ∞ as n → ∞. Then gn,b(1−

α) → g(1 − α,P0) in Pn
n -probability. Hence, if Tn converges in distribution
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to T under Pn and G(·, P0) is continuous at g(1 − α,P0), Pn
n {Tn > gn,b(1 −

α)} → Prob{T > g(1 − α,P0)}.
Proof. To prove (i), note again that Ĝn,b(x) is a U-statistic of degree b, with
expectation under P equal to Gb(x, P ). An argument analogous to the one used
in the proof of Theorem 2.1 (but easier because there is no centering) shows that
Ĝn,b(x) → G(x, P ) in probability. Indeed, the variance of the U-statistic tends to
zero by the same exponential inequality. It follows that gn,b(1−α) → g(1−α,P )
in probability. Thus, by Slutsky’s theorem, the asymptotic rejection probability
of the event Tn > gn,b(1 − α) is exactly α.

To prove (ii), rather than considering Ĝn,b(x), just look at the empirical
distribution of the values of tn,b,i (not scaled by τb). So, define Ĝ0

n,b(x) =
N−1

n

∑Nn
i=1 1{tn,b,i ≤ x} = Ĝn,b(τbx). But, by a now familiar argument, Ĝ0

n,b

is a U-statistic with expectation EP [Ĝ0
n,b(x)] = ProbP{tb(X1, . . . ,Xb) ≤ x}, and

so Ĝ0
n,b(·) converges in distribution to a point mass at t(P ). It also follows that

a 1 − α quantile, say g0
n,b(1 − α), of Ĝ0

n,b(·) converges in probability to t(P ).
But our test rejects when (τn/τb) · tn(X1, . . . ,Xn) exceeds g0

n,b(1 − α). Since
lim infn(τn/τb) > 1 and tn(X1, . . . ,Xn) → t(P ) in probability (with t(P ) > 0), it
follows by Slutsky’s theorem that the asymptotic rejection probability is one.

Finally, to prove (iii), we know that gn,b(1−α) → g(1−α,P0) in probability
under P0; contiguity forces gn,b(1 − α) → g(1 − α,P0) in probability under Pn.

Remark 3.1. Consider the special case of testing a real-valued parameter.
Specifically, suppose θ(·) is a real-valued function from P to the real line. The
null hypothesis is specified by P0 = {P : θ(P ) = θ0}. Assume the alternative
hypothesis is one-sided and specified by {P : θ(P ) > θ0}. Suppose we simply
take tn(X1, . . . ,Xn) = θ̂n(X1, . . . ,Xn) − θ0. Then, it can be checked that the
test construction accepts the null hypothesis if and only if the confidence inter-
val (11) (with b̂n ≡ b) contains the value θ0. Thus in this special case, the test
construction presented in this section has an exact duality with the interval pre-
sented in (11). This is not surprising, because the argument leading up to (11)
was based on the relationship (8) and the asymptotic coverage probability of the
event (7). Moreover, in the testing context, θ(P ) = θ0 is fixed and known under
the null hypothesis, in which case un,b(α,P ) in (8) can be computed, at least
under the null hypothesis.

In addition, if θ̂n is a consistent estimator of θ(P ), then the hypothesis on
tn in part (ii) of the theorem is satisfied (just take the absolute value of tn for
a two-sided alternative). Thus the hypothesis on tn in part (ii) of the theorem
boils down to verifying a consistency property and is rather weak, though this
assumption can in fact be weakened further. The convergence hypothesis of
part (i) is satisfied by typical test statistics; in regular situations, τn = n1/2.
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Remark 3.2. In Example 3.1, simply take tn =
∫∞
−∞[F̂n(x) − F0(x)]2dF0(x).

Then, tn (under reasonable conditions) will converge to t(F ) =
∫∞
−∞[F (x) −

F0(x)]2dF0(x), if F is the distribution of Ui. Clearly, t(F ) = 0 if and only if the
null hypothesis is true.

Remark 3.3. The interpretation of part (iii) of the theorem is the following.
Suppose, instead of using the subsampling construction, one could use the test
that rejects when Tn > gn(1−α,P ), where gn(1−α,P ) is the exact 1−α quantile
of the true sampling distribution Gn(·, P ). Of course, this test is not available
in general because P is unknown and so is gn(1 − α,P ). Then, the asymptotic
power of the subsampling test against a sequence of contiguous alternatives {Pn}
to P with P in P0 is the same as the asymptotic power of this fictitious test
against the same sequence of alternatives. Hence, to the order considered, there
is no loss in efficiency in terms of power.

4. The Time Series Case

Suppose {. . . ,X−1,X0,X1, . . .} is a sequence of random variables taking val-
ues in an arbitrary sample space S, and defined on a common probability space.
Denote the joint probability law governing the infinite sequence by P , assumed
stationary. The goal is to construct a confidence interval for some real-valued
parameter θ(P ), on the basis of observing X1, . . . ,Xn. The sequence {Xt} is
assumed to satisfy a certain weak dependence condition. To make this condition
precise, we introduce the concept of strong mixing coefficients following Rosen-
blatt (1956).

Definition 4.1. Given a random sequence {Xt}, let Fm
n be the σ-algebra gen-

erated by {Xt, n ≤ t ≤ m}, and define the corresponding α-mixing sequence
by

αX(k) = sup
n

sup
A,B

|P (A ∩ B) − P (A)P (B)|, (14)

where A and B vary over the σ-fields Fn−∞ and F∞
n+k, respectively. (Note that in

case the sequence {Xt} is strictly stationary, the supn in this definition becomes
redundant.) The sequence {Xt} is called α-mixing or strong mixing if αX(k) → 0
as k → ∞.

Throughout this section, we assume the sequence is strictly stationary, but this
condition can be relaxed somewhat, as in Politis, Romano, and Wolf (1997).

Let θ̂n = θ̂n(X1, . . . ,Xn) be an estimator of θ(P ) ∈ IR, the parameter of
interest.

In the context of independent data, subsamples of size b < n are generated
by sampling b observations without replacement from the original data sequence
of size n. Since this approach does not take the order of the original sequence
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into account, it generally fails for time series data. The key, therefore, is to
only use blocks of size b of consecutive observations as legitimate subsamples, the
first one being {X1,X2, . . . ,Xb}, the last {Xn−b+1,Xn−b+2, . . . ,Xn}. There are
q = n − b + 1 such blocks, obviously, many fewer available subsamples than in
the independent case.

Define θ̂n,b,t = θ̂b(Xt, . . . ,Xt+b−1), the estimator of θ(P ) based on the sub-
sample {Xt, . . . ,Xt+b−1}. Let Jb(P ) be the sampling distribution of τb(θ̂n,b,1 −
θ(P )), where τb is an appropriate normalizing constant. Also define the corre-
sponding cumulative distribution function:

Jb(x, P ) = ProbP {τb(θ̂n,b,1 − θ(P )) ≤ x}. (15)

Essentially, to consistently estimate Jn(P ), we only need Assumption 2.1.
Let Yt be the block of size b of the consecutive data {Xt, . . . ,Xt+b−1}. Only a

very weak assumption on b is required; typically, b/n → 0 and b → ∞ as n → ∞.
The approximation to Jn(x, P ) we study is the analogue of (1) for the i.i.d. case,
defined by

Ln,b(x) =
1

n − b + 1

n−b+1∑
t=1

1{τb(θ̂n,b,t − θ̂n) ≤ x}. (16)

The motivation behind the method is the following. For any t, Yt is a true
subsample of size b from the true model P . Hence, the exact distribution of
τb(θ̂n,b,t−θ(P )) is Jb(P ). By stationarity, the empirical distribution of the n−b+1
values of τb(θ̂n,b,t − θ(P )) should serve as good approximation to Jn(P ), at least
for large n. Replacing θ(P ) by θ̂n is permissible because τb(θ̂n − θ(P )) is of
order τb/τn in probability and we assume τb/τn → 0. Just as in Theorem 2.1,
we show that subsampling with a general data-driven choice of block size is
consistent. In order to support this claim, one must show the convergence of
Ln,b(·) to J(·, P ) is uniform in a broad range of b values, say jn ≤ b ≤ kn

(as expressed in Theorem 2.1). Analogous to the proof of Theorem 2.1, define
Un,b(x) = q−1

n,b

∑qn,b

t=1 1{τb[θ̂n,b,t − θ(P )] ≤ x}, where q = qn,b = n − b + 1. Then,
the proof in the i.i.d. case goes through if we can bound

(kn − jn + 1) sup
jn≤b≤kn

ProbP{|Un,b(x) − Jb(x, P )| ≥ t} (17)

by something tending to zero; see equation (5). To do this, we appeal to an
exponential type inequality for mixing sequences, as provided in Theorem 1.3 of
Bosq (1996). Then one can obtain uniform consistency over b in {b : jn ≤ b ≤ kn}
under the assumption kn = o(n) if one is willing to slightly strengthen the mixing
assumption. The result is the following.

Theorem 4.1. Let X1, . . . ,Xn be observations from a stationary model with
mixing coefficients αX(·). Let 1 ≤ jn ≤ kn ≤ n be integers satisfying jn → ∞,
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kn/n → 0, and τkn/τn → 0, as n → ∞, {τn} nondecreasing in n, assume, for
some β > 1,

limsupm→∞mβαX(m) < ∞. (18)

Under Assumption 2.1, we have the following.
(i) If x is a continuity point of J(·, P ), then supjn≤b≤kn

|Ln,b(x) − J(x, P )| → 0
in probability.

(ii) If {b̂n} is a data-dependent sequence (that is, a measurable function of
X1, . . . ,Xn), and ProbP{jn ≤ b̂n ≤ kn} → 1, then Ln,b̂n

(x) → J(x, P ) in
probability.

(iii) If J(·, P ) is continuous, then supx |Ln,b̂n
(x) − J(x, P )| → 0 in probability In

fact, supjn≤b≤kn
supx |Ln,b(x) − J(x, P )| → 0 in probability.

(iv)Let cn,b̂n
(1 − α) = inf{x : Ln,b̂n

(x) ≥ 1 − α}. Then, if J(·, P ) is contin-

uous, ProbP{τn[θ̂n − θ(P )] ≤ cn,b̂n
(1 − α)} → 1 − α as n → ∞. There-

fore, the asymptotic coverage probability under P of the confidence interval
[θ̂n − τ−1

n cn,b̂n
(1 − α),∞) is the nominal level 1 − α.

Proof. For the proof we just need to bound (17), because the rest of the
argument from Theorem 2.1 carries over. Note that Un,b(x) is an average of
the variables 1{τb[θ̂n,b,t − θ(P )]} as t ranges between 1 and n − b + 1. More-
over, as t varies between 1 and n − b + 1, these variables form a stationary
sequence, each between 0 and 1, and with mixing coefficients αn,b(·) satisfying
αn,b(j) ≤ αX [max(0, j − b + 1)]. Also, E[Un,b(x)] = Jb(x, P ). Then, according to
Theorem 1.3 in Bosq (1996), for any q in [1, n

2 ] and any t > 0, (17) is bounded
above by

kn4 exp(−t2q/8) + kn22(1 +
4
t
)1/2q αX([

n − b + 1
2q

]).

Let p = (β−1)/(β+1) and choose q = np. The first term in the last expression is
bounded above by 4n exp(−t2np/2) → 0. Letting Ct = 22(1 + 4

t )
1/2, the second

term is bounded above by

CtknnpαX([
n − b + 1

2np
]) ≤ Ct

kn

n
np+1αX([

n − kn + 1
2np

]),

which is bounded above by Ct
kn
n np+1αX([n1−p/4]) as soon as kn/n ≤ 1/2. Let-

ting mn = n1−p and noting that β = (1 + p)/(1 − p), this bound becomes

Ct
kn

n
m

1+p
1−p
n αX([mn/4]) = Ct

kn

n
mβ

nαX([mn/4]),

which tends to zero by assumptions on the mixing coefficients and the fact that
kn/n → 0.

Just as in the i.i.d. case, the assumption that τb/τn can be removed if the
interval is modified appropriately.
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Corollary 4.1. Adopt the assumptions of Theorem 4.1, but do not assume
τkn/τn → 0 or that τn is monotonic. If J(·, P ) is continuous at c(1 − α,P ),
then the interval [θ̂n− (τn− τb̂n

)−1cn,b̂n
(1−α),∞) contains θ(P ) with asymptotic

probability 1 − α under P .

Remark 4.1. One can weaken the mixing condition (18) at the expense of
a stronger condition on jn and kn, which allows us to recover the nonran-
dom block size case under just mixing (as pointed out by an anonymous ref-
eree). To see how, define Ib,t = 1{τb[θ̂n,b,t − θ(P )] ≤ x}, t = 1, . . . , q and
sq,h = q−1∑q−h

t=1 Cov(Ib,t, Ib,t+h). Then, V ar(Un(x)) = A∗
n + An, where A∗

n =
q−1(sq,0 +2

∑b−1
h=1 sq,h) and An = 2q−1∑q−1

h=b sq,h. By Chebychev, (17) is bounded
above by (kn − jn + 1) supjn≤b≤kn

|A∗
n| + (kn − jn + 1) supjn≤b≤kn

|An|. But,

(kn−jn+1) sup
jn≤b≤kn

|A∗
n| ≤ (kn−jn +1) sup

jn≤b≤kn

2(b − 1) + 1
n − b + 1

≤ 2kn(kn − jn + 1)
(n − jn + 1)

.

By Davydov’s (1970) inequality for bounded mixing variables, |Cov(Ib,t, Ib,t+h)| ≤
4αX(h − b + 1) and so |An| ≤ 8q−1∑q−h

h=1 αX(h). Therefore,

(kn − jn + 1) sup
jn≤b≤kn

|An| ≤ (kn − jn + 1) · 1
(n − jn + 1)

n−jn+1∑
h=1

αX(h).

Thus, if we replace the conditions on jn, kn, and αX(·) in the theorem, with
(kn − jn + 1)/(n − jn + 1) → 0 and (kn − jn + 1)

∑n−jn+1
h=1 αX(h)/(n − jn + 1),

the theorem goes through (as long as we still retain jn → ∞ for the rest of the
argument). In particular, in the case jn = kn = b, the conditions are satisfied if
αX(h) → 0 as h → ∞, b → ∞, and b/n → 0, thereby recovering the nonrandom
b case. We also find the theorem goes through under just α-mixing as long as
(kn − jn) is uniformly bounded in n.

5. Hypothesis Testing in the Stationary Case

In Section 3, it was discussed how to use subsampling for hypothesis testing
when the null hypothesis does not translate into a null hypothesis on a parameter,
and thus the duality between hypothesis tests and confidence regions cannot be
exploited. The discussion was limited to i.i.d. observations but the problem, of
course, also exists for dependent observations. Goodness of fit tests are one of
many examples. The approach presented here will be analogous to the one of
Section 3. To provide a general framework, assume X1, . . . ,Xn is a sample of
stationary observations taking values in a sample space S. Denote the probability
law governing the infinite, stationary sequence . . . ,X−1,X0,X1, . . . by P . This
unknown law P is assumed to belong to a certain class of laws P. The null
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hypothesis H0 asserts P ∈ P0, and the alternative hypothesis H1 is P ∈ P1,
where Pi ⊂ P and P0

⋃
P1 = P. The goal is to construct an asymptotically

valid test based on a given test statistic, Tn = τntn(X1, . . . ,Xn), where, as usual,
τn is a fixed nonrandom normalizing sequence (but this assumption could be
relaxed).

Let Gn(x, P ) = ProbP{τntn(X1, . . . ,Xn) ≤ x}. As before, we assume that
Gn(·, P ) converges in distribution, at least for P ∈ P0. The theorem we present
assumes tn is constructed to satisfy the following: tn(X1, . . . ,Xn) → t(P ) in
probability, where t(P ) is a constant which satisfies t(P ) = 0 if P ∈ P0 and
t(P ) > 0 if P ∈ P1.

Let tn,b,j be equal to the statistic tb evaluated at the block of data {Xj , . . .,
Xj+b−1}. The sampling distribution of Tn is then approximated by

Ĝn,b(x) =
1

n − b + 1

n−b+1∑
j=1

1{τbtn,b,j ≤ x}. (19)

Given the estimated sampling distribution, the critical value for the test is ob-
tained as the 1 − α quantile of Ĝn,b(·); specifically, define

gn,b(1 − α) = inf{x : Ĝn,b(x) ≥ 1 − α}. (20)

Finally, the nominal level α test rejects H0 if and only if Tn > gn,b(1 − α).

Theorem 5.1.
(i) Assume, for P ∈ P0, Gn(P ) converges weakly to a continuous limit law

G(P ), whose corresponding cumulative distribution function is G(·, P ) and
whose 1−α quantile is g(1−α,P ). Assume b/n → 0 and b → ∞ as n → ∞.
Also, assume that αX(m) → 0 as m → ∞, where αX(·) is the mixing sequence
corresponding to {Xt}. If G(·, P ) is continuous at g(1 − α,P ) and P ∈ P0,
then gn,b(1−α) → g(1−α,P ) in probability and ProbP{Tn > gn,b(1−α)} → α

as n → ∞.
(ii) Assume the test statistic is constructed so that tn(X1, . . . ,Xn) → t(P ) in

probability, where t(P ) is a constant which satisfies t(P ) = 0 if P ∈ P0

and t(P ) > 0 if P ∈ P1. Assume b/n → 0, b → ∞, and τb/τn → 0
as n → ∞. Also, assume that αX(m) → 0 as m → ∞, where αX(·) is
the mixing sequence corresponding to {Xt}. Then if P ∈ P1, the rejection
probability satisfies ProbP {Tn > gn,b(1 − α)} → 1 as n → ∞.

(iii)Suppose Pn is a sequence of alternatives such that, for some P0 ∈ P0, {P [n]
n }

is contiguous to {P [n]
0 } (P [n]

n denotes the law of the finite segment X1, . . . ,Xn

when the law of the infinite sequence . . . ,X−1,X0,X1, . . . is given by Pn; the
meaning of {P [n]

0 } is analogous). Assume b/n → 0 and b → ∞ as n → ∞.
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Then gn,b(1 − α) → g(1 − α,P0) in P
[n]
n -probability. Hence, if Tn converges

in distribution to T under Pn and G(·, P0) is continuous at g(1 − α,P0),
P

[n]
n {Tn > gn,b(1 − α)} → Prob{T > g(1 − α,P0}.

Proof. The proof mimicks the proof of Theorem 3.1, with differences being
analogous to the differences between the proofs of Theorems 2.1 and 4.1.

Remark 5.1. Remarks 3.1 and 3.3 also apply here.

6. An Example

The goal of this section is to illustrate the idea of data-dependent choice of
block size by presenting a heuristic algorithm and a small simulation study. More
extensive simulations can be found in Politis, Romano and Wolf (1997). Our al-
gorithm is based on the fact that for the subsampling method to be consistent,
the block size b needs to tend to infinity with the sample size n but at a smaller
rate, satisfying b/n → 0. Indeed, for b too close to n all subsample statistics
(θ̂n,b,i or θ̂n,b,t) will be almost equal to θ̂n, resulting in the subsampling distribu-
tion being too tight and in undercoverage of subsampling confidence intervals.
Lahiri (1998) makes this intuition precise by proving, in the context of mean-like
statistics, that for b/n → 1, the subsampling approximation collapses to a point
mass at zero. On the other hand, if b is too small, the intervals can undercover
or overcover depending on the state of nature; e.g., see Table 1. This leaves a
number of b values in the ‘right range’ where we would expect almost correct
results, at least for large sample sizes. Hence, in this range, the confidence inter-
vals should be ‘stable’ when considered as a function of the block size. This idea
is exploited by computing subsampling intervals for a large number of block sizes
b, and then looking for a region where the intervals do not change very much.
Within this region, an interval is picked according to some reasonable criterion.

While this method can be carried out by ‘visual inspection’, it is desirable to
also have some automatic selection procedure, at the very least when simulation
studies are to be carried out. The procedure we propose is based on minimizing
a running standard deviation. Assume one computes subsampling intervals for
block sizes b in the range of bsmall to bbig. The endpoints of the confidence
intervals should change in a smooth fashion, as b changes. A running standard
deviation applied to the endpoints determines the volatility around a specific b

value, and the value of b associated with the smallest volatility is chosen. Here
is a more formal description of the algorithm.

Table 1. Univariate mean, AR(1) model, n = 250. Estimated coverage
probabilities of nominal 95% symmetric confidence intervals for the
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univariate mean. The estimates are based on 1000 replications for
each scenario.

Gaussian innovations
Parameter b = 4 b = 8 b = 16 b = 32 Data-driven
ρ = 0.2 0.93 0.92 0.91 0.89 0.93
ρ = 0.5 0.87 0.90 0.89 0.88 0.92
ρ = 0.8 0.74 0.84 0.87 0.87 0.87
ρ = 0.95 0.41 0.53 0.64 0.73 0.74
ρ = −0.5 0.97 0.95 0.94 0.92 0.93

Exponential innovations
Parameter b = 4 b = 8 b = 16 b = 32 Data-driven
ρ = 0.2 0.92 0.92 0.92 0.89 0.92
ρ = 0.5 0.88 0.90 0.90 0.88 0.91
ρ = 0.8 0.70 0.81 0.86 0.86 0.90
ρ = 0.95 0.44 0.57 0.67 0.74 0.72
ρ = −0.5 0.97 0.95 0.93 0.91 0.94

Algorithm 6.1. (Minimizing confidence interval volatility)
(i) For b = bsmall to b = bbig, compute a subsampling interval for θ(P ) at the

desired confidence level, resulting in endpoints Ib,low and Ib,up.
(ii) For a small integer k, let V Ib be the standard deviation of the endpoints

{Ib−k,low, . . ., Ib+k,low} plus the standard deviation of the endpoints {Ib−k,up,
. . ., Ib+k,up}.

(iii)Pick b∗ corresponding to the smallest volatility index V Ib and report [Ib∗,low,
Ib∗,up] as the final confidence interval.

Remark 6.1. The range of b values, determined by bsmall and bbig, which is
included in the minimization algorithm is not very important, as long as it is not
too narrow. In the terminology of Sections 2 and 4, we can think of bsmall as
corresponding to jn and bbig as corresponding to kn. Dependence on n has been
suppressed.

Remark 6.2. The algorithm contains a model parameter k. Simulation studies
have shown that the algorithm is not very sensitive to the choice of this parameter.
We typically employ k = 2 or k = 3.

Using a simulation study, we can compare the performance of this data-
driven choice of block size with that of the best fixed block size, which in practice
is unknown. Performance will be measured by empirical coverage probability of
nominal 95% symmetric confidence interval for the univariate mean. As the data
generating process, a simple AR(1) model is used, given by Xt = ρXt−1 + εt,

where the εt are i.i.d. standard normal or (centered) exponential with mean 1.
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The closer the AR(1) parameter ρ is to one in absolute value, the stronger is the
dependence of the {Xt} sequence. The values of ρ included in the study are ρ

= 0.2, 0.5, 0.8, 0.95, and -0.5 and the sample size considered is n = 250. We
compare the fixed block sizes b = 4, 8, 16, and 32 with the above data-dependent
choice of block size using bsmall = 4 and bbig = 40. The results are presented in
Table 1.

One can see that the best fixed block size changes significantly with the
AR(1) parameter ρ and the larger is ρ in absolute value, the larger is in general
the optimal block size. This is not surprising, since bigger block sizes should be
needed to capture stronger dependence structures. For positive ρ, the intervals
tend to undercover and, again not surprising, the performance decreases for larger
ρ. For the negative value ρ = −0.5, the intervals overcover for small block
sizes, but undercover eventually (which is a consequence of the formerly stated
theoretical results). The data-driven method of choosing the block size does
about as well as the best fixed block size. This is encouraging, since the data-
driven method is feasible while the optimal block size is unknown in practice.
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Giné, E. and Zinn, J. (1990). Bootstrapping general empirical measures. Ann. Probab. 18,

851-869.



1124 DIMITRIS N. POLITIS, JOSEPH P. ROMANO AND MICHAEL WOLF

Hall, P. (1988). On symmetric bootstrap confidence intervals. J. Roy. Statist. Soc. Ser. B 50,

35-45.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York.

Hartigan, J. (1969). Using subsample values as typical values. J. Amer. Statist. Assoc. 64,

1303-1317.

Hartigan, J. (1975). Necessary and sufficient conditions for asymptotic joint normality of a

statistic and its subsample values. Ann. Statist. 3, 573-580.

Lahiri, S. N. (1998). Effects of block lengths on the validity of block resampling methods.

Preprint, Department of Statistics, Iowa State University.

Mahalanobis, P. (1946). Sample surveys of crop yields in India. Sankhyā Ser. A 7, 269-280.
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