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Abstract: Robust Design is an important method for improving product or manufac-

turing process design. In analyzing robust design experiments with a fixed target,

Taguchi proposed a two-step procedure to identify the “optimal” factor settings

that minimize the variance and adjust the mean to target. This paper generalizes

the two-step procedure to a multi-step procedure based on the response model ap-
proach. We derive and illustrate the procedure under various conditions. We also

show that the “optimal” solution from the procedure is invariant with respect to a

general class of loss functions.
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1. Introduction

In 1980, Taguchi (1986) introduced the robust design method to several ma-
jor American industries, which resulted in significant quality improvement in
product and manufacturing process design. In analyzing robust design exper-
iments where the response of interest has a fixed target, Taguchi proposed a
two-step procedure for identifying the “optimal” factor settings: (i) calculated
the signal-to-noise (SN) ratios and find the control factor settings which maximize
the SN ratio, (ii) shift mean response to the target by changing the adjustment
factor.

As explained in Leon, Shoemaker and Kacker (1987) (hereafter called LSK),
there are two major advantages of the two-step procedure: (i) it reduces the
dimension of the original optimization problem; (ii) it does not require re-
optimization for future changes of the target value. In terms of statistical model-
ing, Taguchi’s approach is a special case of the following “loss model” approach:
first compute estimates of loss measures (Taguchi proposed the SN ratio as the
loss measure), then determine the “optimal” factor settings by fitting a model
to these loss estimates. An alternative modeling approach is to first model the
observed response, and then determine the “optimal” factor settings from the
fitted response model. This approach is called the “response model” approach
and was first proposed by Welch et al. (1990) as a formal procedure. Recogniz-
ing the advantages of the response model approach, Shoemaker, Tsui and Wu
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(1991) (hereafter called STW) developed analysis techniques for examining in-
dividual control-by-noise (C×N) interaction plots to reveal control factor levels
that dampen the effects of individual noise factors. Related approaches have also
been discussed by Box and Jones (1990) and Lucas (1990). Although the re-
sponse model approach used in the multi-step procedure has several advantages
over the loss model approach (see STW (1991)) the former approach requires
more work and depends more critically on the adequacy of the fitted model. A
comparison of the response model and loss model approaches can be found in
Tsui (1996).

This paper generalizes the two-step procedure to a multi-step procedure
based on the noise decomposition idea discussed by STW (1991) and Shoemaker
and Tsui (1993). This multi-step procedure extends the advantages of both the
two-step procedure and the response model approach. Better than the two-setp
procedure, the multi-step procedure further reduces the dimension of the original
optimization problem and does not require re-optimization for future elimination
of noise factors as well as changes of the target value. Moreover, in addition to
helping the experimenter reveal control factor levels that dampen the effects
of individual noise factors, the new procedure allows the experimenter to make
tradeoffs among the off-target bias and the individual variances contributed by
different noise factors.

In addition, we discover an important advantage of the two-step procedure
that has never been addressed. We show that the “optimal” solution from the
two-step (or multi-step) procedure is invariant to the choice of the average loss
function within the class of loss functions proposed by Box and Jones (1990).

The rest of the paper is organized as follows. In Section 2 we define the
robust design problem and objective and explain how we can fix the noise factor
in the experiment to study the process mean and variance of the manufactur-
ing process. In Section 3 we propose a multi-step procedure under a response
model and characterize the classes of models where the procedure would work.
Section 4 discusses practical situations when the variation caused by individual
noise factors can not be completely eliminated due to physical and engineering
constraints. Section 5 considers a general class of average loss functions proposed
by Box and Jones (1990) and shows that the “optimal” control factor settings
resulting from the multi-step procedure will remain “optimal” within the whole
class of average loss functions. Section 6 illustrates the multi-step procedure with
a real example. The paper is concluded in Section 7.

2. Fixed Noise and Random Noise

In this paper we concentrate on robust design problems where the response
of interest has a known fixed target. (This type of response is called the on-
target or nominal-the-best (NTB) quality characteristic.) We assume that the
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experimenter has identified all the major control factors (C) and “external” noise
factors (N) that are the sources of variaton in the manufacturing process. (As
pointed out in the discussion by Shoemaker and Tsui in Nair (1992), the robust
design method would be much less efficient if there are no “external” noise fac-
tors.) In general, we assume that the response of interest (Y ) is affected by the
control and noise factors as follows:

Y = f(C, N) + ε, (2.1)

where C = (C1, . . . , Cp)T , N = (N1, . . . , Nq)T , and f is a transfer function.
The control factors C are assumed to be fixed since they are controllable during
production. In the situation where there is a random shift of the nominal value
of the control factor, an additional noise factor can be added to the model to
represent the shift (see Welch et al. (1990) for an example). The noise factors N

are assumed to be random and follow some distributions as the values of noise
factors are not controllable during production. The pure error ε represents the
remaining variability of the manufacturing process that is not captured by the
noise factors. We assume that the dependence of ε on the control and noise
factors is negligible, i.e., the ε’s are independently and identically distributed
with mean zero and variance σ2 and are independent of the noise factors.

Similar to LSK (1987) and Leon and Wu (1992), we define the robust design
objective as follows. For given values of control factors, the values of the response
Y are determined by the values of noise factors N and ε through the transfer
function f . A loss occurs if Y differs from a fixed target t that represents the
ideal response. Since both N and ε are random, the average loss is R(C) =
EN,ε(L(Y, t)), where L(Y, t) is a loss function. The robust design objective is to
choose the values of the control factors to minimize the average loss. In practice,
this minimization may be subject to a constraint such as the mean on target
constraint, E(Y ) = t. A common choice of loss function is the quadratic loss
function popularized by Taguchi (1986), L(Y, t) = A0(Y − t)2, where A0 is a
constant. (See Leon and Wu (1992) for other classes of loss functions.) It follows
that the average loss becomes:

R(C) = A0EN,ε(Y − t)2

= A0[Var N,ε(Y ) + (EN,ε(Y ) − t)2], (2.2)

where Var N,ε(Y ) and EN,ε(Y ) are the mean and variance of the response of the
manufacturing process over random noise N and ε, which we willl refer to as the
process mean and process variance in the rest of the paper. Therefore, if the
quadratic loss is believed to be a good approximation, the objective of robust
design is to minimize the sum of the process variance and the square of the
process bias (the bias of the process mean from the target).
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In reality, the transfer function f is often unknown. To achieve the robust
design objective, the designer needs to first run experiments to understand the
relationship between the response and the control and noise factors, then deter-
mine the “optimal” control factor values. Although the noise factors are random
during production, they are often treated as fixed during the experiment to in-
crease the efficiency of the experiment (see the discussion by Shoemaker and Tsui
in Nair (1992) for more explanation). In practice, after running the experiment,
the experimenter would first fit an empirical model to either the response or the
average loss, then determine the “optimal” control factor values based on this
empirical model.

Since the experiment is usually done off-line, an implicit assumption behind
this approach is that the fitted empirical model will continue to be a good approx-
imation to the true transfer function f or the true average loss function during
on-line production. This assumption is not always valid since it is actually an
extrapolation of the fitted model. To increase the validity of the extrapolation
assumption, the experimenter should simulate the manufacturing conditions as
much as possible during the experiment.

Below we consider a simple approximation of the transfer function, an ad-
ditive model with control-by-noise interactions, to illustrate how we can fix the
noise factors in the experiment to estimate the process mean and variance during
production. Suppose the response Y for fixed noise factors in the experiment can
be expressed by the following model:

Y | N = α0 + αT C +
q∑

j=1

(γj + βT
j C)Nj + ε, (2.3)

where Y | N is the conditional random variable Y given N, α = (α1, . . . , αp)T

and βj = (βj1, . . . , βjp)T . We assume no control-by-control interaction terms in
(2.3). More general models including these terms will be addressed in Section 6.

As mentioned earlier, N is treated as fixed in the experiment although it
is random during on-line production. It follows that the conditional mean and
variance for fixed noise are E(Y | N) = α0 + αT C +

∑q
j=1(γj + βT

j C)Nj , and
Var (Y | N)σ2.

Suppose the Nj ’s are independently distributed with mean zero and variance
σ2

Nj during production. In order to use model (2.3) to estimate the process mean
and variance, we apply the following conditional expectation relationships:

EN,ε(Y ) = EN[E(Y | N)] = α0 + αT C, (2.4)

Var N,ε(Y ) = Var N[E(Y | N)] + EN[Var (Y | N)]

=
q∑

j=1

(γj + βT
j C)2σ2

Nj + σ2. (2.5)
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As mentioned above, formulae (2.4) and (2.5) are good approximations of
the true process mean and process variance only if model (2.3) continues to be a
good approximation of the true response model during on-line production where
noise is random.

3. A Response Model Multi-Step Procedure

As explained in Section 2, the objective of robust design is to minimize the
average loss, i.e., the sum of the process variance and the square of the process
bias. According to (2.4), the process bias can be ideally minimized to zero by
choosing appropriate values of the control factors such that α0 +

∑p
1 αiCi =

t. According to (2.5), the process variance can be ideally minimized to σ2 by
choosing appropriate values of the control factors such that γj +

∑p
1 βijCi = 0 for

all j. In general, in order to minimize the average loss, these two minimizations
have to be done simultaneously since they involve the same set of control factors
C1, . . . , Cp. However, if there exists a control factor (mean adjustment factor)
such that the value of this factor does not affect the process variance and this
factor can be used to shift the process mean to the target, the average loss can be
minimized in two sequential steps, i.e., first minimize the process variance with
respect to the other control factors, then shift the process mean to the target by
changing the mean adjustment factor. This is called a two-step procedure and
was discussed extensively in LSK (1987).

According to Shoemaker and Tsui (1993), the process variance in (2.5) can
be further decomposed into q individual variance components contributed by the
q noise factors, plus the pure error variance σ2 . The following table illustrates
the complete decomposition of the average loss:

Decomposition of average loss

Component Coefficients Mean or Ideal Squared Bias or
C1 C2 · · · Cp Intercept ∂Y/∂Nj Value Individual Variance

Mean α1 α2 · · · αp α0

∑
αiCi + α0 t (

∑
αiCi + α0 − t)2

N1 β11 β21 · · · βp1 γ1

∑
βi1Ci + γ1 0 (

∑
βi1Ci + γ1)2σ2

N1

N2 β12 β22 · · · βp2 γ2

∑
βi2Ci + γ2 0 (

∑
βi2Ci + γ2)2σ2

N2

· · · · · · · · · · ·
· · · · · · · · · · ·

Nq β1q β2q · · · βpq γq

∑
βiqCi + γq 0 (

∑
βiqCi + γq)2σ2

Nq

Pure Error
Total Average Loss

(3.1)

As shown above, instead of decomposing into only the squared bias and
variance, the average loss can be decomposed into (q+2) components: the squared
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bias, the q individual process variances, and the pure error variance σ2. As
mentioned earlier, the process bias squared can be minimized to zero by choosing
appropriate values of the Ci’s to make the process mean equal to its ideal value t.
Similarly, each of the individual process variances, σ2

Y |Nj
= (

∑p
1 βijCi + γj)2σ2

Nj,
can be ideally minimized to zero by choosing appropriate values of the C ′

is to
make the gradient of Y with respect to Nj , ∂Y/∂Nj , equal to zero.

This is an ideal situation for robust design since ∂Y/∂Nj is a measure of
the sensitivity of Y with respect to a change in the noise factor Nj . When this
sensitivity is reduced to zero, the response Y will be completely insensitive (or
robust) to the noise factor Nj. The last component, pure error, is independent of
the control factors, so its variance remains constant as σ2 for all values of the Ci’s.
Therefore, ideally, the process bias and the q individual process variances can be
minimized to zero by solving the following q +1 simultaneous linear equations of
the p control factors, if a solution exists.




α1 α2 · · · αp

β11 β21 · · · βp1

β12 β22 · · · βp2

· · · · · ·
· · · · · ·

β1q β2q · · · βpq







C1

C2

·
·

Cp




+




α0 − t

γ1

γ2

·
·
γq




=




0
0
0
·
·
0




. (3.2)

In terms of matrix notation, these equations can be written as AC + b = 0,
where A=

( αT

B

)
with B={βij},b=(α0−t, γ1, . . . , γq)T , and 0 = (0, 0, . . . , 0)T .

Note that a solution of (3.2) does not always exist in practice. When this
is the case, the average loss can be minimized by a more general multi-step
procedure described in the next section.

When a solution of (3.2) exists, the average loss can be minimized by the
values of C1, . . . , Cp that solve these q + 1 simultaneous equations. In particular,
if there are some special structures in these equations, the minimization of the
average loss can be partitioned into several smaller optimization problems. For
the two-step procedure, the special structure is the existence of a mean adjust-
ment factor. In terms of the coefficients in (3.1) or (3.2), the definition of the
mean adjustment factor is the control factor Ci∗ such that αi∗ �= 0 and βi∗j = 0
for all j.

Following the definition of the mean adjustment factor, we can define the
individual variance tuning factor for Nj∗ as the control factor Ci∗ such that
βi∗j∗ �= 0, αi∗ = 0, and βi∗j = 0 for all j �= j∗. Thus the individual variance
tuning factor of Nj∗ can be used to tune down the individual process variance
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contributed by Nj∗ without affecting the other individual process variances and
the process mean.

Similar to the mean adjustment factor, the existence of the individual vari-
ance tuning factors will allow further partitioning of the original optimization
problem. As shown later, if there exist a mean adjustment factor and an in-
dividual variance tuning factor for each noise factor, the optimization problem
can be partitioned into q + 1 subproblems and can be solved sequentially by a
(q + 1)-step procedure.

In general, the existence of mean adjustment factor and individual variance
tuning factor depends on the structure of the matrix A defined after Equation
(3.2). Below we will classify the special structure of matrix A and develop a
corresponding multi-step procedure for each class of the special structure. For
convenience of discussion, we first assume an ideal situation that p ≥ q + 1 and
the ranges of all the control factors are in the real line (i.e., C ∈ �n) so that
the system of Equations (3.2) will always have solutions. The development of
a multi-step procedure under more practical situations will be discussed in the
next section.

I. In the first class of models, we assume that the matrix A in (3.2) is a
blocked diagonal matrix with qk×pk block matrix Ak, for k = 1, . . . ,K,

∑K
1 pk =

p,
∑K

1 qk = q + 1, and pk ≥ qk (the case when pk < qk will be discussed later).
Clearly, the problem of solving the system of Equations (3.2) can be decomposed
into K subsets of systems of qk equations, AkCk + bk = 0, where Ck and
bk are respectively the vectors of the pk control factors and the qk intercepts
of b corresponding to the qk equations. It follows that the average loss can be
minimized by sequentially solving these K subsets of systems of equations, which
can be considered as a K-step procedure analogous to the two-step procedure.
An extreme case of this class of models is that qk = 1 for all k. This implies that
K = q + 1 and the average loss can be minimized by a (q + 1)-step procedure
as discussed earlier. Note that it does not matter in what order we perform the
K-step procedure because of the special structure of (3.3). However, the order
of performing the steps does matter in the next class of models.

II. In the second class of models, we assume that the matrix A in (3.2) is a
blocked triangular matrix, i.e.,

A =




A11 0 0 · · · 0
A12 A22 0 · · · 0
A13 A23 A33 · · · 0
· · · · · · ·

A1K A2K A3K · · · AKK




, (3.3)

where the dimension of each block matrix Akk is qk × pk with pk ≥ qk, the
dimension of each block matrix Alk is qk × pl with l < k,

∑K
1 pk = p, and
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∑K
1 qk = q + 1. The problem of solving the system of Equations (3.2) can be

decomposed to K subsets of systems of qk equations,
∑k

l=1 AlkCl + bk = 0,
where Cl and bk are respectively the vectors of the pl control factors and the qk

intercepts of b corresponding to the qk equations. It follows that the average loss
can be minimized by the following iterative procedure:
1. Find C∗

1 that solves the system of equations A11Cl + b1 = 0.
2. For k = 2 to K, find C∗

k that solves the system of equations :

AkkCk +
k−1∑
l=1

AlkC∗
l + bk = 0.

It follows that the solution C∗ = (C∗
1, . . . ,C

∗
K)T is the solution of the system of

Equations (3.2). This iterative procedure is equivalent to a K-step procedure.
The difference between this K-step procedure and the K-step procedure in Class
I is that the K steps here have to be performed in the special order from k = 1 to
K. Similarly, an extreme case of this class of models is that qk = 1 for all k. This
implies that K = q + 1 and the average loss can be minimized by a (q + 1)-step
procedure following the special order from k = 1 to q + 1.

As an example, consider the two-step procedure for the additive model de-
scribed in LSK (1987). It follows that in LSK’s additive model, K = 2, q1 = q,
q2 = 1, C1 equals their d vector, and C2 equals their a vector. We further as-
sume that the control factors can take any possible values so that it is possible
to reduce the process bias to zero and the process variance to σ2. (The more
general case where the process variance cannot be reduced to σ2 will be discussed
in next section.) Thus, the average loss is minimized by the two-step procedure:
first finding the solution C∗

1 of the system of equations BC1 + γ = 0; then at
C1 = C∗

1, find the solution C∗
2 of the equation αTC2 + BC∗

1 + α0 = t.
III. In this class there is no special structure in the matrix A. The values

of C that minimize the average loss can be obtained by solving the system of
Equations (3.2) by any numerical method such as the simplex method. There
are always solutions that minimize the average loss to σ2 since it is assumed that
p ≥ q + 1 and C ∈ �n. The solution will be unique when p = q + 1 and the
system of equations has full rank.

Note that the three classes of models have a hierarchical relationship, i.e.,
Class I is a special case of Class II, which is a special case of Class III. Therefore,
each subproblem in the partition above can be considered as Class III problem.
As illustrated in Section 5, the existence of Classes I and II are quite possible
in practice. This agrees with the sparsity assumption given in Box, Hunter
and Hunter (1978) and Taguchi (1986), which is quite common in industrial
experiments.
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4. A Multi-Step Procedure under Realistic Constraints

As mentioned in the last section, the average loss equals the sum of the
process variance and the process bias squared. Ideally, the process bias squared
can be reduced to zero by shifting the process mean to the target t, and the
process variance can be reduced to σ2 by making each individual process variance
(σ2

Y |Nj
) equal zero. In practice, although it may be possible to shift the mean

onto the target or to make some σ2
Y |Nj

, equal zero, it is unlikely that we would be
able to make all of them equal zero because of the following realistic constraints:
1. Under physical or engineering constraints, the feasible ranges of the control
factor are limited, i.e., Li ≤ Ci ≤ Ri for all i.
2. Some control factors may be categorical (or qualitative) so that the only
possible values of these factors are those we tested in the experiment.
3. There are more noise factors than control factors, i.e., p < q + 1.

In reality, the robust design problem can be under one or several of the
constraints listed above. Welch et al. (1991), STW (1991), Shoemaker and Tsui
(1993), and many other papers consider the problem under the second constraint,
i.e., the only possible values of the control factors are those values tested in
the experiment. Kim and Myers (1992) consider the problem under the third
constraint, i.e., p < q +1 and C ∈ �n. They apply response surface methodology
techniques to minimize the process variance. The first constraint, although very
common in practice, has seldom been discussed in the context of robust design
problems. Typically, a robust design problem often contains both continuous and
categorical control factors where the continuous factors are under some physical
constraints on their feasible values. Note that the first constraint above is quite
common in practice but does not cover general constraints that involve several
control factors simultaneously. These general constraints will be addressed in the
Discussion.

When it is impossible to make the squared bias and all individual process
variances equal zero because of the constraints described above, there will be
no solutions for the system of Equations (3.2). Recall that the original robust
design objective is to minimize the average loss defined in (2.2)− a weighted sum
of squares of the bias and the gradients ∂Y/∂Nj ’s with weights 1 for the bias and
σ2

Nj
for the gradients, respectively. In matrix notation, the general robust design

problem under (2.3) is defined as:

Minimize R(C) = (AC + b)T D(AC + b) + σ2 with respect to C ∈ �, (4.1)

where D is a diagonal matrix with diagonal elements d11 = 1, djj = σ2
Nj−1

for
j = 2, . . . , (q + 1), and � is the set of feasible values of the control factor under
some realistic constraints.
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It is possible to decompose the general optimization problem (4.1) into sub-
problems and develop a multi-step procedure. The general partition of optimiza-
tion problems has been studied in the past and a good review can be found in
Duff (1977). The methods proposed in this paper take advantage of the simple
structure assumed in the models and provide more information on understanding
the manufacturing process. For Class I models described in Section 3, it can be
easily seen that the general optimization problem (4.1) can be decomposed into
the following K sub-optimization problems:

Minimize (AkCk + bk)T Dk(ACk + bk) with respect to Ck ∈ �, k = 1, . . . ,K,

where Dk is the kth diagonal block of the matrix D. This is a trivial situation. It
is interesting to note that, when K = q + 1, the solutions of the general problem
(4.1) do not depend on the values of σ2

Nj−1
although these terms appear in the

objective function.
For Class II models described in Section 3, the optimization problem (4.1)

cannot always be decomposed into K subproblems. As shown in the Appendix
A of Tsui (1993), any average loss function R(x1, . . . ,xM ) can be minimized by
the following general multi-step procedure.
1. Find x∗

1 that minimizes P1(x1).
2. For m = 2 to M , find x∗

m that minimizes Pm(x∗
1, . . . ,xm−1∗ ,xm),

where Pm is the mth intermediate performance measure and defined to be

Pm(x1, . . . ,xm) = min
xm+1,...,xM

R(x1, . . . ,xM ), for m = 1, . . . ,M.

This general multi-step procedure is an extension of the general two-step
procedure described in LSK (1987). They call P1 the performance measure inde-
pendent of adjustment. As pointed out in the paper, even though this procedure
is always possible, it is not always useful since the intermediate performance mea-
sures Pm’s are sometimes very hard to derive. However, under model (2.3) and
the special Class II structure of A in (3.3), the intermediate performance mea-
sures can be derived as follows. (See Leon and Wu (1992) for similar derivations
under other conditions.)

It follows from (3.5) that the average loss equals:

R(C) = (A11C1 + b1)T D1(A11C1 + b1) + · · ·

+
( K∑

l=1

AlKCl + bK

)T
DK

( K∑
l=1

AlKCl + bK

)
+ σ2

=
K∑

k=1

Rk(C1, . . . ,Ck) + σ2,
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where Rk(C1, . . . ,Ck) = (
∑k

l=1 AlkC1 + bk)TDk(
∑k

l=1 AlkCl + bk) for k =
1, . . . ,K.

Suppose for any given values of C1, . . . ,Ck−1 ∈ �, say C∗∗
1 , . . . ,C∗∗

k−1, there
exists C∗∗

k ∈ � such that

Rk(C∗∗
1 , . . . ,C∗∗

k ) = min
C1,...,Ck∈�

Rk(C1, . . . ,Ck) = Rk0 for k = 2, . . . ,K, (4.2)

where Rk0 is the absolute minimum of Rk(C1, . . . ,Ck) for C ∈ �. It follows that,
for k = 1, . . . ,K,

Pk(C1, . . . ,Ck) = min
Ck+1,...,CK

R(C1, . . . ,CK)

=
k∑

l=1

Rl(C1, . . . ,Cl) +
K∑

l=k+1

min
Ck+1,...,CK

Rl(C1, . . . ,Cl)

=
k∑

l=1

Rl(C1, . . . ,Cl) +
K∑

l=k+1

Rl0, (4.3)

since the terms in the second summation of (4.3) all reduce to their absolute
minimum for any given values of C1, . . .Ck.

Since there exist intermediate performance measures for model (2.3), we can
apply the general multi-step procedure to minimize the average loss in (4.1).
Therefore, under (2.3) and (3.3), (4.1) can be minimized by the following multi-
step procedure:

1. Find C∗
1 ∈ � that minimizes R1(C1). (4.4)

2. For k = 2 to K, find C∗
k ∈ � that minimizes Rk(C∗

1, . . . ,C
∗
k−1,Ck).

Note that minimizing Rk(C∗
1, . . . ,C

∗
k−1,Ck) in steps 2 to K is equivalent to

minimizing Pk(C∗
1, . . . ,C

∗
k−1,Ck) since the other terms of Pk in (4.3) all reduce

to constants for given C∗
1, . . . ,C

∗
k−1.

An obvious special case of condition (4.2) to be satisfied is that � = �n,
i.e., C ∈ �n, which is the case in Section 3. Since Rk(C1, . . . ,Ck) can always be
minimized to zero for any fixed values of C1, . . . ,Ck−1 and zero is the absolute
minimum of Rk, condition (4.2) is satisfied.

As pointed out in Wu (1987) and Leon and Wu (1992), condition (4.2) is
only a sufficient condition for the multi-step procedure (4.4) to work. A weaker
condition for the procedure to work is that (4.2) is true only when the first k− 1
factors are at their optimal values from the earlier steps, i.e., for given values of
C∗

1, . . . ,C
∗
k−1, there exists C∗

k ∈ � such that

Rk(C∗
1, . . . ,C

∗
k) = min

C1,...,Ck∈�
Rk(C1, . . . ,Ck) = Rk0 for k = 2, . . . ,K.
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A common situation for procedure (4.4) to work is that, at the kth step, there
exist values of Ck ∈ � for k = 2, . . . ,K suh that the bias or any gradient in Rk can
be reduced to zero at the optimal values of the earlier steps, i.e., there exist valus
of Ck that solve the subsystem of equations, AkkCk +

∑k−1
l=1 AlkC∗

l +bk = 0. (In
this case, minimizing Rk is equivalent to solving the subsystem of equations since
there exists a solution.) This situation will be illustrated with a real example in
the next section.

The two-step procedure for the additive model described in LSK (1987) is
a special case of procedure (4.4). As described in their paper, the condition for
the two-step procedure to work is the existence of an adjustment factor, a factor
which is independent of the process variance and can be used to shift the mean to
the target at the optimal values of the other factors. This condition is equivalent
to the condition that A belongs to Class II models and the subsystem equation
(the single equation of the process bias) has a solution at the optimal values of
the other factors.

Note that since the average loss function (4.1) is a quadratic function of
the control factors, it can be minimized by directly setting its first derivative to
zero and solving a linear systems of p equations. However, this approach does
not result in a decomposition of the average loss to process bias squared and
individual process variances, and thus cannot be used to derive the multi-step
procedure.

As mentioned before, the multi-step procedure extends the advantages of
both the two-step procedure and the response model approach. Since the orig-
inal optimization problem can be partitioned into several subproblems, the di-
mension of the original problem has been further reduced. Also, if it is decided
in the future to eliminate some of the noise factors to satisfy the manufacturing
specifications, re-optimization wil not be required if these noise factors are the
components in the subproblems. Moreover, the decomposition provides a very
clear picture for the experimenter to make tradeoffs on which component of the
individual process variances and the bias to eliminate. This will be illustrated by
the example in Section 6. Finally, as mentioned before, the “optimal” solution
from the multi-step procedure remains “optimal” for a wide range of average loss
functions. This advantage is discussed in detail in the next section.

5. An Invariance Property of the Multi-Step Procedure

The multi-step (or two-step) procedure has a very important property that
has never been addressed. The property is that, when the conditions are met, the
“optimal” solution from the multi-step (or two-step) procedure that minimizes
the quadratic loss (2.2) will remain “optimal” within the general class of loss
functions introduced by Box and Jones (1990).
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Box and Jones (1990) considered the following average loss function as an
overall measure of robust performance (which we refer to as the weighted mean
variance loss in the rest of the paper):

Rλ(C) = A0[λ(E(Y ) − t)2 + (1 − λ)Var (Y )], 0 ≤ λ ≤ 1. (5.1)

This class of average loss functions does not correspond to any loss functions for
an individual response except when λ = 0.5. As argued in Nair and Pregibon
(1988), it is more reasonable to assume a quadratic model for the average loss
function than for the loss of an individual response. We agree with the approach
taken in Box and Jones (1990) and Nair and Pregibon (1988). We prefer to
consider the average loss function as a weighted sum of the mean and variance
of the distribution of the response.

The average loss function (5.1) is motivated by the fact that the average
quadratic loss function (2.2) contains an arbitrary element and puts equal weights
on the bias squared and variance. Note that (2.2) is a special case of (5.1)
with λ = 0.5. As argued in Box and Jones (1990), “Unfortunately, the relative
importance placed upon [the mean and variance] if we use the portmanteau
criterion [the loss in (2.2)] is entirely dependent on how we choose t. If we give a
higher value to t then more emphasis will be given to [the bias squared] and less
to [the variance], and vice versa.” The value of t may be different for different
product designs, which creates an arbitrary element in the problem. In addition,
there is no reason to have the same weight for the bias squared and variance as
in (2.2) for different values of t. On the contrary, the average loss (5.1) will give
the experimenter flexibility to weight the bias squared and variance for different
design problems based on the engineering knowledge.

Although the average loss (5.1) gives more flexibility to the experimenter, a
different choice of weight (λ) may require different analysis methods and result
in different “optimal” solution in general. In practice, it may be hard for the
experimenter to know what weight to choose for some problems and misspecifi-
cation of weight may result in a “non-optimal” solution. However, as shown in
Appendix B of Tsui (1993), if the conditions are met so that the multi-step pro-
cedures can be used to minimize the quadratic loss (2.2),the “optimal” solution
from the procedure also minimizes the average loss function of (5.1) for any value
of λ.

This invariance property is a very important advantage of the multi-step
(two-step) procedure. When the conditions of the procedure are met, the experi-
menter does not need to know the exact weight of the average loss function. The
solution from the procedure is always “optimal” for any choice of the average loss
within the class of weighted mean variance loss functions. On the other hand, if
the multi-step procedure cannot be applied to solve the robust design problem,
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the “optimal” solution that minimizes the average loss (5.1) will be different for
different choices of λ.

6. A Power Supply Transformer Example

This experiment addressed a transformer processing problem involving in-
ductance changes. Due to inductance falling out of the required ranges, much
time and cost had been incurred in dealing with the problem. The primary
objective of the experiment was to minimize the variation of inductance from
transformer to transformer after processing and to maintain the process mean to
the target t = 9.75. Since the distribution of the noise was not specified in the
original paper, we assume that the components are independent of each other
and all have mean zero and variance 1. The process was described in Pfaff (1987).

Table 5.1. Design and data of the transformer example

Run Control Array Noise Array
r −1 −1 1 1
s −1 1 −1 1
t −1 1 1 −1

L A B C D E F G H Data
1 1 −1 1 1 −1 1 −1 −1 1 9.44 10.21 9.54 9.73
2 2 −1 1 1 −1 −1 1 1 −1 9.07 9.68 8.82 8.84
3 3 −1 1 −1 1 1 −1 1 −1 8.41 7.23 8.87 8.17
4 4 −1 1 −1 1 −1 1 −1 1 10.20 10.48 10.62 11.08
5 1 1 −1 −1 1 −1 1 1 −1 9.56 8.39 8.85 7.87
6 2 1 −1 −1 1 1 −1 −1 1 9.08 9.18 9.30 8.94
7 3 1 −1 1 −1 −1 1 −1 1 9.30 8.11 9.43 9.04
8 4 1 −1 1 −1 1 −1 1 −1 9.72 9.83 9.92 9.85
9 5 −1 −1 1 1 1 1 −1 −1 9.10 8.88 9.43 10.08
10 6 −1 −1 1 1 −1 −1 1 1 9.63 9.77 9.90 9.73
11 7 −1 −1 −1 −1 1 1 1 1 9.94 9.17 10.40 9.15
12 8 −1 −1 −1 −1 −1 −1 −1 −1 9.63 7.85 9.52 7.87
13 5 1 1 −1 −1 −1 −1 1 1 10.11 8.52 9.84 7.83
14 6 1 1 −1 −1 1 1 −1 −1 9.89 10.65 10.19 10.71
15 7 1 1 1 1 −1 −1 −1 −1 10.20 9.87 10.87 10.73
16 8 1 1 1 1 1 1 1 1 8.72 8.94 9.14 8.91

There are nine control factors, A, B, C, D, E, F , G, H, and L in the exper-
iment. Each factor was tested at two levels except for factor L for which eight
levels were tested. The control array was constructed by customizing a 215−11

saturated fractional factorial design. Seven columns of the saturated design were
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collapsed to generate an eight-level column for factor L and the remaining eight
factors were assigned to the other eight columns. For the noise array, three
two-level noise factors, r, s, and t, were assigned to a 23−1 saturated fractional
factorial design. As shown in Table 5.1, the resulting experiment plan is a prod-
uct array of two saturated designs for control factors and noise factors.

Following the response model approach, we first modeled the response over
both the control and noise factors. We decomposed factor L into seven or-
thogonal contrasts (L1, . . . , L7) which correspond to the seven columns of the
original 215−11 saturated design. The following fitted model was obtained using
the method in Lenth (1989) to identify significant effects at the 0.10 significance
level under the assumption that main effects are more important than 2-factor
interactions.

ŷ = 9.41 + .14B + .11C − .26G + .13L1 − .11L3 + .15L4 − .24L5 − .47L7

+.18s + .12L2r + .10Bs + .18Cs + .13Es−.11Gs + .15L4s−.13L7s . (6.1)

Based on the fitted model above, the decomposition table discussed in Section
3 can be constructed as follows:

Decomposition table of the transformer example

Bias or
Comp. B C G L1 L3 L4 L7 L2 E L5 Inter. ∂Y/∂Nj

r 0 0 0 0 0 0 0 .12 0 0 0
∑

βi1Ci + γ1

s .1 .18 −.11 0 0 .15 .13 0 .13 0 −.18
∑

βi2Ci + γ2

Mean .14 .11 −.26 .13 −.11 .15 −.47 0 0 −.24 −.34
∑

αiCi + α0 − t

To identify the “optimal” control factor values, we first assume that the
values of all control factors are continuous and can take any values on the real
line. In addition, for purposes of illustration, we hypothetically assume that the
contrasts L, L1, . . . , L7 are actual control factors.

The table above illustrates a very clear picture of how each control factor
affects the process bias and the individual process variance. It is found that con-
trol factors B,C,G,L1, L3, L4, L5, and L7 affect the process bias, only L2 affects
the individual process variance caused by noise factor r, factors B,C,E,G,L4,
and L7 affect the individual process variance caused by noise factor s, and the
noise factor t does not contribute any variation to the process variance. This
table allows the experimenter to identify the mean adjustment factor and in-
dividual variance tuning factors. Clearly L1, L3, and L5 can be classified as
mean-adjustment factors since these three control factors affect the mean but do
not affect any of the individual process variances. Similarly, L2 and E are the
individual variance tuning factors for noise factors r and s, respectively.
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According to the classifications in Section 3, the structure of the decom-
position table above belongs to Class II, with qk = 1 for all k. We follow the
algorithm described in Section 3 to identify the control factor values that mini-
mize the average loss. First, we chose L∗

2 = 0 to reduce the individual variance
σ2

Y |r to zero. Second, to reduce the individual variance σ2
Y |s to zero, we could

have chosen any arbitrary values for B,C,G,L1, L3, L4, L7. We chose their val-
ues as B∗ = −1, C∗ = 1, G∗ = 1,L∗

1 = 1, L∗
3 = −1, L∗

4 = 1, L∗
7 = −1,

which are the best testing values for the discrete case as shown later. Then
we determined the value of E by solving the second linear equation, E∗ =
(.1B∗ + .18C∗− .11G∗ + .15L∗

4 + .13L∗
7 − .18)/.13 = −1.46. Finally, to reduce the

bias to zero, we determined the value of L5 by solving the third linear equation,
L∗

5 = (.14B∗+.11C∗−.26G∗+.13L∗
1−.11L∗

3+.15L∗
4−.47L∗

7−.34)/(−.24) = −0.96.
This choice of control factor values reduces the bias and the individual variance
of each noise factor to zero so that the total average loss in minimized to σ2.

Note that the choice of E∗ (−1.46) is outside the experimental range (−1, 1).
If this range is a constraint to the experimenter as described in Section 4, the
values of B,C,G,L1, L3, L4, L7 can be changed so that the choice of E is within
(−1, 1) but still reduce σ2

Y |s to zero. One such choice is E∗ = −1, L∗
5 = −.06,

L∗
7 = −.54 and all other control factors remain unchanged.

Suppose that instead of taking continuous values, the possible values of all
control factors are restricted to those values tested in the experiment. In this
case, the multi-step procedure cannot be used to minimize the average loss since
the condition described in Section 4 is not satisfied. However, the decomposition
table described in Section 3 can still be used to help the experimenter make trade-
offs among the off-target bias and the individual process variances contributed
by different noise factors. This was illustrated in Tsui (1993).

7. Discussion

By taking advantage of the special structure of the model of the response, the
minimization of the average loss can be decomposed into several sub-optimization
problems. This decomposition leads to a multi-step procedure, which extends
the advantages of both Taguchi’s two-step procedure and the response model ap-
proach discussed in STW (1991). The new procedure further reduces the dimen-
sion of the original optimization problem and does not require re-optimization
for future eliminations of noise factors as well as changes of the target value. The
procedure also allows the experimenter to make tradeoffs among the off-target
bias and individual process variances contributed by different noise factors. More-
over, the “optimal” solution from the two-step (or multi-step) procedure remains
“optimal” within the class of loss functions proposed by Box and Jones (1990).



A MULTI-STEP ANALYSIS PROCEDURE FOR ROBUST DESIGN 647

Another advantage of this approach is that it can be applied to smaller-the-
better (STB) and larger-the-better (LTB) robust design problems. Contrary to
the concept that there is no two-step procedure for these problems, as shown
in Tsui and Li (1994), it is possible to develop a multi-step procedure for these
problems. In addition, it is possible to apply the approach to problems with
multiple responses which have different goals (NTB, STB, LTB etc.). However,
in these problems the systems of equations will contain more equations and it
is unlikely to be able to decompose the problems into multiple steps. Thus the
multi-step procedure proposed in this paper may not be appropriate for problems
with multiple responses.

An alternative to these problems, as suggested by a referee, is to determine
the space of control factor values that solve each sub-optimization problem for
each response, then explore all these spaces of values together to find a common
solution. This approach increases the chance of finding a solution and is more
appropriate for multi-response problems. Also, as pointed out in Section 4, the
proposed multi-step procedure does not provide solutions for the problems with
constraints that involve several control factors simulatneously. Instead, this al-
ternative approach may be used to handle this type of constraints since a larger
solution space is available. It is of great interest to further investigate this ap-
proach and to develop practical strategies and test them with real examples.

In this paper we concentrate on the additive model described in LSK (1987).
For the multi-plicative model or other models in Box (1988), the transformation
approach proposed there can be applied so that the model on the transformed
response is additive. However, the criterion for identifying the appropriate trans-
formation will be different since the response model approach is used instead. It
will be interesting to develop new graphical methods to determine the appropri-
ate transformation. Once the transformation is identified, the method proposed
in this paper can be applied to the transformed response to make the process
robust against the noise factors.

Finally, the approach in this paper is applicable as long as the general trans-
fer function f can be approximated by an additive model with control-by-noise
interactions. Note that the gradient of Y with respect to the noise, which is
represented by the control-by-noise interactions, is the key for robustness im-
provement. As shown in Tsui (1993), if the transfer function f needs to be
approximated by a full quadratic model, the approach is still applicable except
that the process bias equation becomes quadratic.
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