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Abstract: A common objective in longitudinal studies is to characterize the rela-

tionship between a longitudinal response process and a time-to-event. Considerable

recent interest has focused on so-called joint models, where models for the event

time distribution and longitudinal data are taken to depend on a common set of

latent random effects. In the literature, precise statement of the underlying as-

sumptions typically made for these models has been rare. We review the rationale

for and development of joint models, offer insight into the structure of the likelihood

for model parameters that clarifies the nature of common assumptions, and describe

and contrast some of our recent proposals for implementation and inference.
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1. Introduction

Longitudinal studies where repeated measurements on a continuous response,
an observation on a possibly censored time-to-event (“failure” or “survival”),
and additional covariate information are collected on each participant are com-
monplace in medical research, and interest often focuses on interrelationships
between these variables. A familiar example is that of HIV clinical trials, where
covariates, including treatment assignment, demographic information, and phys-
iological characteristics, are recorded at baseline, and measures immunologic and
virologic status such as CD4 count and viral RNA copy number are taken at sub-
sequent clinic visits. Time to progression to AIDS or death is also recorded for
each participant, although some subjects may withdraw early from the study or
fail to experience the event by the time of study closure. The study may have been
designed to address the primary question of effect of treatment on time-to-event,
but subsequent objectives may be (i) to understand within-subject patterns of
change of CD4 or viral load and/or (ii) to characterize the relationship between
features of CD4 or viral load profiles and time to progression or death. Similarly,
in studies of prostate cancer, repeated prostate specific antigen (PSA) measure-
ments may be obtained for patients following treatment for prostate cancer, along
with time to disease recurrence. Again, characterizing (i) within-subject patterns
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of PSA change or (ii) the association between features of the longitudinal PSA
process and cancer recurrence may be of interest.

Statement of objectives (i) and (ii) may be made more precise by thinking
of “idealized” data for each subject i = 1, . . . , n as {Ti, Zi,Xi(u), u ≥ 0}, where
Ti is event time, Zi is a vector of baseline (time 0) covariates, and {Xi(u), u ≥
0} is the longitudinal response trajectory for all times u ≥ 0. Objective (i),
elucidating patterns of change of the longitudinal response (e.g., CD4 or PSA)
may involve, for example, estimating aspects of average longitudinal behavior
and its association with covariates, such as E{Xi(u)|Zi} and Var {Xi(u)|Zi}. A
routine framework for addressing objective (ii), characterizing associations among
the longitudinal and time-to-event processes and covariates, is to represent the
relationship between Ti, Xi(u), and Zi by a proportional hazards model

λi(u) = lim
du→0

du−1pr{u ≤ Ti < u + du|Ti ≥ u,XH
i (u), Zi}

= λ0(u) exp{γXi(u) + ηT Zi}, (1)

where XH
i (u) = {Xi(t), 0 ≤ t < u} is the history of the longitudinal process up

to time u and, as in Kalbfleisch and Prentice (2002, Section 6.3), Xi(u) should be
left-continuous; in the sequel, we consider only continuous Xi(u) so do not dwell
on this requirement. In (1), for definiteness, the hazard is taken to depend linearly
on history through the current value Xi(u), but other specifications and forms
of relationship are possible. Here, Xi(u) may be regarded as a time-dependent
covariate in (1), and formal assessment of the association involves estimation of
γ and η. The first author’s interest in this problem arose from his work with
the AIDS Clinical Trials Group (ACTG) in the 1990s, when the issue of whether
longitudinal CD4 count is a “surrogate marker” for time to progression to AIDS
or death was hotly debated; that is, can the survival endpoint, which may be
lengthy to ascertain, be replaced by short-term, longitudinal CD4 measurements
to assess treatment efficacy? Prentice (1989) set forth conditions for surrogacy:
(I) treatment must have an effect on the time-to-event; (II) treatment must have
effect on the marker; and (III) effect of treatment should manifest through the
marker, i.e., the risk of the event given a specific marker trajectory should be
independent of treatment. Tsiatis, DeGruttola and Wulfsohn (1995) evaluated
potential surrogacy by noting that, if (I) and (II) hold and Zi is a treatment
indicator, then in (1) γ < 0 and η = 0 would be consistent with (III) and hence
surrogacy of Xi(u).

Formalizing these objectives is straightforward in terms of the “idealized”
data, but addressing them in practice is complicated by the nature of the data
actually observed. Although the above formulation involves the longitudinal
response at any time u, the response is collected on each i only intermittently
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at some set of times tij ≤ Ti, j = 1, . . . ,mi. Moreover, the observed values
may not be the “true” values Xi(tij); rather, we may observe only Wi(tij) =
Xi(tij) + ei(tij), say, where ei(tij) is an intra-subject “error.” In fact, the event
time Ti may not be observed for all subjects but may be censored for a variety
of reasons.

A further difficulty for making inference on the longitudinal process is that
occurrence of the time-to-event may induce an informative censoring, as discussed
by Wu and Carroll (1988), Hogan and Laird (1997ab), and many other authors.
For example, subjects with more serious HIV disease may be more likely to ex-
perience the event or withdraw from the study earlier than healthier individuals,
leading to fewer CD4 measurements, and to have sharper rates of CD4 decline.
Failure to take appropriate account of this phenomenon, e.g., by using ordinary
longitudinal data techniques, can lead to biased estimation of average quantities
of interest. Valid inference requires a framework in which potential underlying
relationships between the event and longitudinal process are explicitly acknowl-
edged. A philosophical issue of whether the form of trajectories that might have
occurred after death is a meaningful scientific focus is sometimes raised; we do
not discuss this here.

For objective (ii), if, ideally, Xi(u) were observable at all u ≤ Ti, then the
main difficulty for fitting (1) is censoring of the time-to-event. Letting Ci denote
underlying potential censoring time for subject i in the usual way, then we observe
only Vi = min(Ti, Ci) and ∆i = I(Ti ≤ Ci), where I( · ) is the indicator function.
Following Cox (1972,1975) and under conditions discussed by Kalbfleisch and
Prentice (2002, Sections 6.3, 6.4), inference on γ and η is made by maximizing
the partial likelihood

n∏
i=1

[
exp{γXi(Vi) + ηT Zi}∑n

j=1 exp{γXj(Vi) + ηT Zj}I(Vj ≥ Vi)

]∆i

. (2)

It is clear from (2) that this approach is predicated on availability of Xi(u)
for all i = 1, . . . , n at each observed failure time. In practice, implementation is
complicated by the fact that Xi(u) is available only intermittently for each subject
and is possibly subject to error. Early attempts to circumvent this difficulty
involved some sort of “naive” imputation of required Xi(u). For example, in the
method of “Last Value Carried Forward (LVCF),” the unavailable, true Xi(u)
values in (2) are replaced by the most recent, observed value for i. Prentice (1982)
showed that such substitution leads to biased estimation of model parameters.
A more sophisticated framework in which these features may be incorporated is
required.

The complications posed by the realities of the observed data and the po-
tential for biased inferences for both objectives (i) and (ii) if ordinary or naive
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techniques are applied have led to considerable recent interest in so-called “joint
models” for the longitudinal data and time-to-event processes. In this paper,
we review the development of joint models and offer insights into the underlying
assumptions that commonly accompany their use. As we describe in more detail
in Section 2, models for the (possibly error-prone) longitudinal process and the
hazard for the (possibly censored) time-to-event are taken to depend jointly on
shared, underlying random effects. Under this assumption, it has been demon-
strated by numerous authors, whose work is cited herein, that use of these models
leads to correction of biases and the potential for enhanced efficiency. Our obser-
vation has been that, in much of this literature, precise, transparent statements
of the assumptions on the interrelationships among model components have been
lacking; thus, in Section 3, we attempt to offer clarification by stating a simplified
version of a joint-model likelihood for model parameters and making explicit how
common assumptions formally arise. Section 4 describes briefly two approaches
for inference we have recently proposed, which are evaluated and contrasted in
Section 5.

Throughout, we focus mainly on the data-analytic objective (ii), and thus
on inference for γ and η in (1); however, the models we discuss in the sequel have
been used for both objectives.

2. Joint Modeling

2.1. Modeling considerations

As in Section 1, for subject i, i = 1, . . . , n, let Ti and Ci denote the event
and censoring times, respectively; let Zi be a q-dimensional vector of baseline
covariates and let Xi(u) be the longitudinal process at time u ≥ 0. Components
of Zi might also be time-dependent covariates whose values are known exactly
and that are “external” in the sense described by Kalbfleisch and Prentice (2002,
Section 6.3.1)); our consideration of baseline covariates for simplicity does not
alter the general insights we highlight in the next section. Rather than observe
Ti for all i, we observe only Vi = min(Ti, Ci) and ∆i = I(Ti ≤ Ci). Values of
Xi(u) are measured intermittently at times tij ≤ Vi, j = 1, . . . ,mi, for subject
i, which may be different for each i; often, target values for the observations
times are specified by a study protocol, although deviations from protocol are
common. The observed longitudinal data on subject i may be subject to “error”
as described below; thus, we observe only Wi = {Wi(ti1), . . . ,Wi(timi)}T , whose
elements may not exactly equal the corresponding Xi(tij).

A joint model is comprised of two linked submodels, one for the “true” longi-
tudinal process Xi(u) and one for the failure time Ti, along with additional spec-
ifications and assumptions that allow ultimately a full representation of the joint



JOINT MODELING OVERVIEW 813

distribution of the observed data Oi = {Vi,∆i,Wi, ti}, where ti = (ti1, . . . , timi)
T .

The Oi are taken to be independent across i, reflecting the belief that the disease
process evolves independently for each subject.

For the longitudinal response process, a standard approach is to characterize
Xi(u) in terms of a vector of subject-specific random effects αi. For example, a
simple linear model

Xi(u) = α0i + α1iu, αi = (α0i, α1i)T (3)

has been used to represent “true” (log) CD4 trajectories (e.g., Self and Pawitan
(1992), Tsiatis, DeGruttola and Wulfsohn (1995), DeGruttola and Tu (1994),
Faucett and Thomas (1996), Wulfsohn and Tsiatis (1997), Bycott and Taylor
(1998) and Dafni and Tsiatis (1998)). Here, α0i and α1i are subject-specific
intercept and slope, respectively. More flexible models may also be considered;
e.g., a polynomial specification Xi(u) = α0i +α1iu+α2iu

2 + · · ·+αpiu
p, or, more

generally,
Xi(u) = f(u)T αi, (4)

where f(u) is a vector of functions of time u (so including splines), may be posited,
as may, in principle, nonlinear functions of αi, although we restrict attention to
linear functions here.

Models for Xi(u) of form (4) specify that the “true” longitudinal process fol-
lows a “smooth” trajectory dictated by a small number of time-invariant, subject-
specific effects, so that evolution of the process throughout time is determined by
these effects. Alternatively, Taylor, Cumberland and Sy (1994), Lavalley and De-
Gruttola (1996), Henderson, Diggle and Dobson (2000), Wang and Taylor (2001)
and Xu and Zeger (2001a) consider models of the form

Xi(u) = f(u)T αi + Ui(u), (5)

where Ui(u) is a mean-zero stochastic process, usually taken to be independent
of αi and Zi. Taylor, Cumberland and Sy (1994), Lavalley and DeGruttola
(1996) and Wang and Taylor (2001) specify Ui(u) to be an integrated Ornstein-
Uhlenbeck (IOU) process. Henderson, Diggle and Dobson (2000) and Xu and
Zeger (2001) discuss taking Ui(u) to be a stationary Gaussian process. As noted
by these authors, (5) allows the trend to vary with time and induces a within-
subject autocorrelation structure that may be thought of as arising from evolving
biological fluctuations in the process about a smooth trend. For example, from a
biological perspective, one may believe that a response like CD4 does not decline
mostly smoothly, but rather that patients go through “good” and “bad” periods
as their disease progresses. Typically, f(u)T αi is taken to be simple (e.g., random
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intercept and slope or random intercept only). We contrast the specifications (4)
and (5) further below.

In (4) and (5), the αi (given Zi) are usually assumed to be normally dis-
tributed to represent inter-subject variation in the features of the “true” longitu-
dinal trajectories. Depending on the situation, the mean and covariance matrix
of αi may be taken to depend on components of Zi; e.g., if Zi contains a treat-
ment indicator, mean intercept and slope in (3) may have a different mean and
covariance matrix for each treatment group. A common specification is that the
αi are independent of Zi so that the same normal model holds for all i.

For the event time process, a model of the form (1) is posited, where depen-
dence on the covariate history XH

i (u) implies dependence on αi (and Ui(u) for
models of the form (5)). Modifications are possible to reflect different specifica-
tions for the underlying mechanism; for example, under (3) or similar model of
form (5), taking λi(u) = limdu→0 du−1pr{u ≤ Ti < u + du|Ti ≥ u,XH

i (u), Zi} =
λ0(u) exp{γα1i +ηTZi} reflects the belief that the hazard, conditional on the lon-
gitudinal history and covariates, is associated mainly with the assumed constant
rate of change of the underlying smooth trend; the rationale is discussed further
below. See Song, Davidian and Tsiatis (2002a) for consideration of such hazard
models in an HIV case study.

Given a specification for Xi(u), the observed longitudinal data Wi are taken
to follow

Wi(tij) = Xi(tij) + ei(tij), (6)

where ei(tij) ∼ N (0, σ2) are independent of αi (and Ui(u) for all u ≥ 0 if present).
Under the perspective of (5), the ei(tij) represent deviations due to measurement
error and “local” biological variation that is on a sufficiently short time scale
that ei(tij) may be taken independent across j; e.g., if the scale of time is on the
order of months or years, diurnal variation may be regarded as “local.” From
the point of view of models like (4), the ei(tij) may be thought of as representing
measurement error and biological variation due both to local and longer-term
within-individual autocorrelation processes; thus, one way to view (4) is that
Ui(u) in (5) has been “absorbed” into ei(tij). Under this model, it is often argued
(e.g., Tsiatis, DeGruttola and Wulfsohn (1995) and Song, Davidian and Tsiatis
(2002ab)) that if the tij are at sufficiently long intervals so that within-subject
autocorrelation among observed values is practically negligible, or if measurement
error is large relative to biological fluctuations, the assumption that ei(tij) are
independent across j is still reasonable. Note that (6), along with (4), specifies a
standard linear mixed effects model (e.g., Laird and Ware (1982)). Alternatively,
under this model, if observations are sufficiently close that this autocorrelation
cannot be disregarded, the ei(tij) admit a covariance structure that must be
taken into account.
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2.2. Philosophical considerations

Whether one takes the model for the “true” longitudinal process to be of
form (4) or (5) is to some extent a philosophical issue dictated in part by one’s
belief about the underlying biological mechanisms and the degree to which the
proposed model is meant to be an empirical or “realistic” representation of the
result of these mechanisms. In particular, taken literally, a model of form (4) for
the longitudinal process takes the trajectory followed by a subject throughout
time to be dictated by time-independent random effects αi, thus implying that
the smooth trend followed by the subject’s trajectory is an “inherent” charac-
teristic of the subject that is fixed throughout time. This may or may not be
realistic from a biological point of view; e.g., it may be more biologically plausi-
ble to expect the trend to vary with time as disease evolves. However, often, the
goal of investigators is to assess the degree of association between the dominant,
smooth trend and event time, rather than to characterize accurately the under-
lying biological process. Here a model of form (4), although admittedly a gross
simplification as is the case for many popular statistical models, may provide an
adequate empirical approximation for this purpose; under this perspective, the
αi are empirical representations of the dominant part of the trajectory. On the
other hand, a model of form (5) may be viewed as an attempt to capture more
precisely the features of the trajectory, allowing the trend to vary over time, so
in some sense getting “closer” to the true biological mechanism dictating the
association with the event. Then again, from a purely empirical, statistical point
of view, (5) can be viewed as a way to incorporate within-subject autocorrelation
and allow a “wiggly” empirical representation of within-subject trends.

These considerations hence have implications for how one chooses to specify
the event time model. Consider (1), where dependence of the hazard at u on
longitudinal response history is through the current value Xi(u). If a model of
the form (4) is postulated, this reflects the view that the value of the smooth trend
at u is the predominant feature associated with prognosis; i.e., the association
with event time depends on where, in the context of an HIV study, a subject’s
CD4 is in general at u, irrespective of local fluctuations from a dominant trend. In
contrast, a model of the form (5) emphasizes the belief that fluctuations about
an overall trend are themselves related to the event. For instance, from an
approximate biological point of view, it may be thought that the occurrence of
“good” and “bad” periods of CD4 are related to prognosis; alternatively, such a
model may be postulated from the purely empirical perspective that “wiggles”
are an important aspect of the association. Of course, along the lines of the
usual “signal or noise?” debate, it may be argued that either type of model may
be employed if the main purpose is to represent empirically the hazard (1) in
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terms of what are believed to be relevant features of the longitudinal process. A
complicated model of the form (4) involving higher-order polynomial terms or
splines, may capture “wiggles” in a way comparable to a model of form (5).

Alternatively, consider a model for the hazard at u depending on a longitu-
dinal process of either form (4) or (5) through, say, a slope α1i only, as discussed
above. Such a model reflects the belief that whether a patient is on an overall
downward CD4 trajectory, which presumably indicates increasingly serious dis-
ease, is the main factor thought to be associated with progression to AIDS or
death, irrespective of “wiggles” or local “good” or “bad” periods.

A drawback of models of form (5) is their relatively more difficult implemen-
tation. Perhaps in part due to this feature and in part due to interest in the
relationship between prognosis and an underlying, smooth trend (e.g., from an
empirical modeling perspective), most accounts of application of joint models in
the literature have focused on models of the form (4).

2.3. Joint models in the literature

Much of the early literature on joint modeling focuses on models of the form
(4) for the longitudinal data process; we recount some highlights of this literature
here. Schluchter (1992) and Pawitan and Self (1993) considered joint models in
which times-to-event (and truncation and censoring for the latter authors) are
modeled parametrically, which facilitates in principle straightforward likelihood
inference. Later papers adopted the proportional hazards model, mostly of the
form (1), for the time-to-event. Raboud, Reid, Coates and Farewell (1993) did
not consider a full joint model per se in which Xi(u) is explicitly modeled; they
focused mainly on potential bias due to use of LVCF and failure to account for
measurement error, and also showed that simple smoothing methods to impute
the Xi(u) in (1) yield reduced bias relative to naive approaches.

Other work directly considered inference in a joint model defined by sub-
models for the longitudinal and event time processes. Self and Pawitan (1992)
proposed a longitudinal model of form (4) and hazard model similar to (1) with
the term exp{γXi(u)} replaced by {1 + γXi(u)}, so that the hazard is linear
in αi. They developed a “two-step” inferential strategy in which the individual
least squares estimators for the αi are used to impute appropriate values for
Xi(u) that are then substituted into a partial likelihood based on the hazard
model. Tsiatis, DeGruttola and Wulfsohn (1995) proposed a model exactly of
form (4) and (1) as a framework for inference on the relationship between log
CD4 Xi(u) and mortality Ti in an early HIV study. Due to the nonlinearity
of (1) in the αi, these authors developed an approximation to the hazard for
Ti given the observed covariate history W H

i (u), say, that suggests implement-
ing the joint model by maximizing the usual partial likelihood (2) with Xi(u)
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for each failure time replaced by an “estimate” of E{Xi(u)|W H
i (u), Ti ≥ u}. In

particular, for event time u at which Xi(u) is required, they advocate using the
empirical Bayes “estimator” or “EBLUP” for Xi(u) based on a standard fit of
the mixed effects model defined by (4) and (6) to the data up to time u from all
subjects still in the risk set at u (so with Ti ≥ u). This approach thus requires
fitting as many linear mixed effects models as there are event times in the data
set; an advantage over more computationally-intensive methods discussed below
is that it may be implemented using standard software for mixed effects and
proportional hazards models. Such a “two-stage” approach to inference has also
been considered by Bycott and Taylor (1998), who compared several procedures,
and Dafni and Tsiatis (1998) who investigated the performance of the Tsiatis,
DeGruttola and Wulfsohn (1995) procedure via simulation. These authors found
that this approximate method yields estimators for γ and η in (1) that reduce
but do not completely eliminate bias relative to naive methods (see also Tsiatis
and Davidian (2001)). This is in part due to the approximation and in part
a result of the fact that, under normality of ei(tij) and αi, at any event time
u > 0, the Wi(tij), tij ≤ u for subjects still in the risk set, on which fitting the
mixed model and hence the imputation of Xi(u) for each u depends, are a biased
sample from a normal distribution, and thus are no longer marginally normally
distributed. Hence, as the form of the empirical Bayes estimator/EBLUP for
Xi(u) depends critically on validity of the normality assumption, which is suc-
cessively less relevant as u increases, the resulting imputed Xi(u) are not entirely
appropriate.

Rather than rely on approximations, other authors have taken a likelihood
approach, based on specification of a likelihood function for the parameters in
(4), (6), and a model for the time-to-event. DeGruttola and Tu (1994) considered
a longitudinal data model of the form (4) along with a parametric (lognormal)
model for Ti and developed an EM algorithm to maximize the resulting loglike-
lihood, which involves intractable integrals over the distribution of αi, taken to
be normally distributed. For the proportional hazards model (1), (4) and (6),
Wulfsohn and Tsiatis (1997) derived an EM algorithm based on a loglikelihood
specification for γ, η, σ2, the infinite-dimensional parameter λ0(u), and param-
eters in a normal model for αi. More recently, Henderson, Diggle and Dobson
(2000) have discussed likelihood inference for models of the form (1) and (5).
Lin, Turnbull, McCulloch and Slate (2002) consider a related model in which
dependence of longitudinal and event-time models on a common random effect
is replaced by a shared dependence on a latent class variable that accommodates
underlying population heterogeneity. Song, Davidian and Tsiatis (2002b) con-
sidered the model of Wulfsohn and Tsiatis (1997) but relaxed the assumption
of normality of the αi for the random effects to one of requiring only that αi
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have distribution with a “smooth” density; this method is described further in
Section 4.2.

Faucett and Thomas (1996) took a Bayesian approach to joint models of the
form (1) and (4), and developed and demonstrated implementation via Markov
chain Monte Carlo (MCMC) techniques. Xu and Zeger (2001ab) considered
generalizations of this approach, and allowed models of form (5). Wang and
Taylor (2001) incorporated a longitudinal model of the form (5) into a Bayesian
framework, again using MCMC to fit a joint model to data from a study of HIV
disease, while Brown and Ibrahim (2003a) considered a semiparametric Bayesian
joint model of form (1) and (4) that furthermore makes no parametric assumption
on the random effects. Brown and Ibrahim (2003b) and Law, Taylor and Sandler
(2002) developed joint models in the presence of a fraction cured. Ibrahim,
Chen and Sinha (2001, Chap. 7) provide a detailed discussion of joint modeling,
particularly from a Bayesian perspective.

Both Bayesian and likelihood procedures rely on specification of an appropri-
ate likelihood for the joint model parameters. In the next section, we offer some
insight into the form of specifications that are routinely used and the assumptions
they embody.

Tsiatis and Davidian (2001) took an entirely different approach, focusing on
estimation of γ and η in a joint model of the form (1) and (4). To minimize
reliance on parametric modeling assumptions, these authors developed a set of
unbiased estimating equations that yield consistent and asymptotically normal
estimators with no assumptions on the αi. The rationale for and derivation of
this procedure are given in Section 4.1.

The focus of most authors in the preceding discussion was on characterizing
the association between the longitudinal and event time processes. Alternatively,
Faucett, Schenker and Taylor (2002) and Xu and Zeger (2001a) used joint models
as a framework in which to make make more efficient inference on the marginal
(given, say, baseline covariates such as treatment) event-time distribution by
incorporating the longitudinal data as auxiliary information; see also Hogan and
Laird (1997a).

3. Likelihood Formulation and Assumptions

For definiteness, we consider first the joint model defined by (1), (4) and (6)
along with the usual assumption of normal, independent ei(tij). Letting δ denote
parameters in the density p(αi|Zi; δ) for αi given Zi, which is ordinarily assumed
multivariate normal, the usual form of a likelihood for the full set of parameters
of interest, Ω = {λ0( · ), γ, η, σ2, δ}, conditional on Zi, is

n∏
i=1

∫ [
λ0(Vi) exp{γXi(Vi)+ηT Zi}

]∆i
exp

[
−

∫ Vi

0
λ0(u) exp{γXi(u)+ηT Zi}du

]
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× 1
(2πσ2)mi/2

exp


− mi∑

j=1

{Wi(tij) − Xi(tij)}2

2σ2


 p(αi|Zi; δ) dαi. (7)

In most of the literature, (7) is advocated as the basis for inference with little
comment regarding its derivation; generally, a statement that (7) follows from the
assumption that censoring and timing of longitudinal measurements are “unin-
formative” is made, with no attempt to elucidate this assumption more formally.
DeGruttola and Tu (1994) give a likelihood specification that explicitly includes
components due to timing of measurements and censoring in making such an
assumption, but the underlying formal considerations are not discussed.

For a longitudinal model of form (1), (5) and (6), the details in the liter-
ature are similarly sketchy. To obtain a likelihood function analogous to (7),
one would be required to integrate the integrand in (7) with respect to the joint
distribution of αi and the infinite-dimensional process Ui( · ) (given Zi); even if
Ui(u) and αi are independent for all u, this is still a formidable technical prob-
lem. From a practical perspective, some authors (e.g., Wang and Taylor (2001))
circumvent such difficulties by approximating continuous Ui(u) by a piecewise
constant function on a fine time grid containing all time points where longitu-
dinal measurements are available for subject i; the Ui(u) on the grid then are
regarded as a finite-dimensional vector in a similar vein as the αi. Alternatively,
Henderson, Diggle and Dobson (2000) argue in their formulation that, because
the nonparametric estimator of the baseline hazard λ0(u) is zero except at ob-
served event times, one need only consider finite such integration with respect to
the joint distribution of {Ui(V1), . . . , Ui(Vnd

)}, where nd =
∑

i ∆i is the number
of (assumed distinct) event times.

To shed light on the nature of assumptions that may lead to the likelihood
specification (7) and its counterpart for (5), we consider a discretized version of
the problem in a spirit similar to arguments of Kalbfleisch and Prentice (2002,
Section 6.3.2). In particular, suppose that subjects are followed on the interval
[0, L), and consider time discretized over a fine grid t0, t1, t2, . . . , tM , where t0 = 0
is baseline, tM = L, and ultimately M will be taken to be large. We may
then conceptualize the data-generating process for subject i as we now describe.
For simplicity, in the case of (4), conditional on αi and Zi, assume all subjects
have a baseline longitudinal measurement, Wi(t0) for i, that, given (αi, Zi), is
independent of Ti; this could be relaxed without altering the upcoming results.
Similarly for a model of form (5), letting Uik = Ui(tk) for the kth grid point, we
may also condition on Ui = (Ui0, . . . , UiM ) here and in the developments below;
for brevity, we consider (4) in what follows and comment briefly on this case.
Additional data then arise according to the following scheme.
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• Does death occur at t1? Let Di(t1) = I(Vi = t1,∆i = 1), which corresponds
to Ti = t1, Ci > t1. If Di(t1) = 1, stop collecting data.

• Otherwise, if Di(t1) = 0, does censoring occur at t1? Let Ci(t1) = I(Vi =
t1,∆i = 0), corresponding to Ti > t1, Ci = t1. If Ci(t1) = 1, stop collecting
data.

• Otherwise, if Ci(t1) = 0, then is a longitudinal measurement taken at t1? If
so, define Ri(t1) = 1, with Ri(t1) = 0 otherwise.

• If Ri(t1) = 1, then Wi(t1) is the longitudinal observation taken at t1.
• Does death occur at t2? Let Di(t2) = I(Vi = t2,∆i = 1) (Ti = t2). If
Di(t2) = 1, stop collecting data.

This pattern continues until death or censoring terminates data generation,
at which point all subsequent values for Di( · ), Ci( · ) and Ri( · ) are set equal to
zero. We may then summarize the observed data as {Wi(t0),Di(tj), Ci(tj),Ri(tj),
Ri(tj)Wi(tj), j = 1, . . . ,M}.

Now define Yi(tj) = 1 − ∑j−1
�=1{Di(t�) + Ci(t�)} = I(Vi ≥ tj),

λi(tj) = P{Ti = tj|Ti ≥ tj , Ci ≥ tj ,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < j, αi, Zi}, (8)

µi(tj) = P{Ci = tj|Ti > tj, Ci ≥ tj ,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < j, αi, Zi},(9)
πi(tj) = P{Ri(tj) = 1|Ti > tj , Ci > tj ,Ri(t�),Ri(t�)Wi(t�),

0 ≤ � < j, αi, Zi}, (10)

ϕi(tj , wj) = P{Wi(tj) = wj |Ti > tj , Ci > tj ,Ri(t�),R(t�)Wi(t�),

0 ≤ � < j,Ri(tj) = 1, αi, Zi}, (11)

where Ri(t0) ≡ 1. For (4), we may then specify the joint density for the observed
data, conditional on (αi, Zi), to obtain a conditional likelihood contribution for
i as

fi( · |αi, Zi) = ϕi{t0,Wi(t0)}
M∏

j=1

(
{λi(tj)Yi(tj)}Di(tj ){1 − λi(tj)Yi(tj)}1−Di(tj)

×[µi(tj){Yi(tj) −Di(tj)}]Ci(tj)[1 − µi(tj){Yi(tj) −Di(tj)}]1−Ci(tj)

×[πi(tj){Yi(tj) −Di(tj) − Ci(tj)}]Ri(tj)

×[1 − πi(tj){Yi(tj) −Di(tj) − Ci(tj)}]1−Ri(tj)

×[Ri(tj)ϕi{tj ,Wi(tj)}]Ri(tj)
)
, (12)

where 00 = 1. These developments lead to a likelihood for Ω (conditional on Zi),
of the form

n∏
i=1

Li( · ) =
n∏

i=1

∫
fi( · |αi, Zi)p(αi|Zi; δ) dαi. (13)
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In the case of (5), with Ui( · ) independent of αi, fi would also involve conditioning
on Ui and integration would also be with respect to the M + 1-variate density of
Ui.

We may now make a correspondence between (13) and (7), where M is large,
and highlight the usual assumptions that lead to (7). In particular, λi(tj) in (8)
is taken to satisfy

λi(tj) = P{Ti = tj|Ti ≥ tj, Ci ≥ tj,Ri(t�),R(t�)Wi(t�), 0 ≤ � < j, αi, Zi}
= P (Ti = tj|Ti ≥ tj, αi, Zi) = λ0(tj)dtj exp{γXi(tj) + ηT Zi} (14)

here, exp[
∫ Vi
0 λ0(u) exp{γXi(u) + ηT Zi} du] is approximated in discrete time by∏M

j=1{1 − λi(tj)Yi(tj)}1−Di(tj ). Inspection of (7) shows that (11) is assumed to
have the form

ϕi(tj , wj) =
1

(2πσ2)1/2
exp

[
− {Wi(tj) − Xi(tj)}2

2σ2

]
, (15)

reflecting the usual specification that the “errors” in (6) are mutually independent
and independent of all other variables, conditional on (αi, Zi). The likelihood (7)
does not include terms corresponding to µi(tj) and πi(tj) in (9) and (10). If µi(tj)
and πi(tj) do not depend on αi, these terms “factor out” of the integral in (13)
and may thus be disregarded. The term µi(tj) has to do with the censoring mech-
anism, while πi(tj) involves the timing of longitudinal measurements. Thus, the
usual assumption that “censoring and timing of longitudinal measurements are
uninformative” may be seen to correspond formally to the assumption that the
conditional probabilities in this factorization do not depend on αi. Practically
speaking, from (9) and (10), this assumption implies the belief that decisions on
whether a subject withdraws from the study or appears at the clinic for a longitu-
dinal measurement depend on observed past history (longitudinal measurements
and baseline covariates), but there is no additional dependence on underlying,
latent subject characteristics associated with prognosis.

In the case of (5), failure of µi(tj) and πi(tj) to depend on Ui would have a
similar interpretation. Note then that the integration in (13) with respect to Ui

would only involve the elements up to the last grid time tk for which Ri(tk) = 1,
so that the M + 1-dimensional integration is in reality only k-dimensional. A
rigorous argument to elucidate the behavior of (13) as M gets large in this case
would be challenging; informally, mass will be placed only at the event times,
so that we expect that (13) will involve only the multivariate distribution of the
Ui(u)’s at the event times in the limit, as discussed by Henderson, Diggle and
Dobson (2000).

It is natural to be concerned whether the usual assumption given in (14),
that P{Ti = tj|Ti ≥ tj, Ci ≥ tj,Ri(t�),R(t�)Wi(t�), 0 ≤ � < j, αi, Zi} = P{Ti =
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tj|Ti ≥ tj , αi, Zi}, is relevant in practice; we consider this in the context of (4).
Ideally, interest focuses on the relationship between the event time and the “true”
longitudinal process, as in (1). However, the observable relationship is that in
the first line of (14), that between event time and all observable quantities up
to the current time in addition to the latent “true” process (represented through
the random effects). In order to identify the relationship of interest from the
observable information then, it is critical to identify reasonable conditions that
would be expected to hold in practice that would lead to the equality in the second
line of (14). We now elucidate such conditions; specifically, we demonstrate that
(14) follows from assumptions that are similar in spirit to “missing at random,”
conditional on αi. In particular, we sketch an argument showing that if, for all
j = 1, . . . ,M and k < j,

P{Ci = tk|Ti > tk, Ci ≥ tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, Ti = tj, αi, Zi}
= P{Ci = tk|Ti > tk, Ci ≥ tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, αi, Zi}
= µi(tk), (16)

P{Ri(tk) = 1|Ti > tk, Ci > tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, Ti = tj, αi, Zi}
= P{Ri(tk) = 1|Ti > tk, Ci > tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, αi, Zi}
= πi(tk). (17)

P{Wi(tj) = wk|Ti > tk, Ci > tk,Ri(t�),R(t�)Wi(t�), 0 ≤ � < k,Ri(tk) = 1,

Ti = tj , αi, Zi}
= P{Wi(tk)=wk|Ti >tk, Ci >tk,Ri(t�),R(t�)Wi(t�), 0≤�<k,Ri(tk)=1, αi, Zi}
= ϕi(tk, wk), (18)

then (14) holds. In words, (16)−(18) state that probabilities of censoring, timing,
and measurement depend only on observed history and latent random effects but
not on the future event time itself. To see this, note that

P{Ti = tj|Ti ≥ tj , Ci ≥ tj ,Ri(t�),R(t�)Wi(t�), 0 ≤ � < j, αi, Zi}

=
P{Ti = tj, Ci > t1, . . . , Ci > tj−1,Ri(t�),R(t�)Wi(t�), 0 ≤ � < j, αi, Zi}
P{Ti ≥ tj, Ci > t1, . . . , Ci > tj−1,Ri(t�),R(t�)Wi(t�), 0 ≤ � < j, αi, Zi}

, (19)

where we have written the event {Ci ≥ tj} equivalently as {Ci > t1, . . . , Ci >

tj−1}. By the assumption that Wi(t0) is independent of Ti, we may factor the
numerator in (19) as

P (Ti = tj|αi, Zi)P{Wi(t0) = w0|αi, Zi}
×P{Ci >t1|Wi(t0), Ti = tj, αi, Zi}P{Ri(t1)=r1|Ci >t1,Wi(t0), Ti = tj, αi, Zi}
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×P{Wi(t1) = w1|Ci > t1,Ri(t1) = 1,Wi(t0), Ti = tj, αi, Zi}Ri(t1)

×
j−1∏
k=2

[
P{Ci > tk|Ci > tk−1,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, Ti = tj, αi, Zi}

×P{Ri(tk) = rk|Ci > tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, Ti = tj, αi, Zi}
×P{Wi(tk) = wk|Ci > tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k,

Ri(tk) = 1, Ti = tj , αi, Zi}Ri(tk)
]
. (20)

Now conditional probabilities for Ci in (20) may be reexpressed in the form of
the right hand side of (16); i.e., for k = 1, . . . , j − 1,

P{Ci > tk|Ci > tk−1,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, Ti = tj , αi, Zi}
= 1 − P{Ci = tk|Ti > tk, Ci ≥ tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, Ti = tj, αi, Zi},

where we have used the fact that the events {Ti = tj} and {Ti > tk, Ti = tj}
are the same. This reduces by assumption (16) to 1 − µi(tk). Similarly, con-
ditional probabilities involving Ri(tk) and Wi(tk) reduce to πi(tk) and ϕi(tk)
by assumptions (17) and (18), respectively. The denominator of (19) may be
factored in a manner identical to (20), but where Ti ≥ tj replaces Ti = tj in
the leading term and all conditioning sets. It is straightforward to show that
these conditional probabilities involving Ci, Ri(tk) and Wi(tk) are equivalent to
1 − µi(tk), πi(tk) and ϕi(tk) for k = 1, . . . , j − 1, respectively. For example,
consider P{Ci > tk|Ci > tk−1,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, Ti ≥ tj, αi, Zi} =
1 − P{Ci = tk|Ci ≥ tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, Ti ≥ tj, αi, Zi}. We have

P{Ci = tk|Ci ≥ tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, Ti ≥ tj, αi, Zi}

=
P{Ci = tk, Ti ≥ tj |Ci ≥ tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, αi, Zi}

P{Ti ≥ tj |Ci ≥ tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, αi, Zi}
. (21)

Defining Aik = {Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k}, the numerator in (21) may be
written as

M∑
�=j

P (Ci = tk|Ci ≥ tk, Ti = t�,Aik, αi, Zi)P (Ti = t�|Ci ≥ tk,Aik, αi, Zi). (22)

Because P (Ci = tk|Ci ≥ tk, Ti = t�,Aik, αi, Zi) = P (Ci = tk|Ti > tk, Ci ≥
tk, Ti = t�,Aik, αi, Zi) = P (Ci = tk|Ti > tk, Ci ≥ tk,Aik, αi, Zi) for � > k by
assumption (16), it follows that (22) becomes

P (Ci = tk|Ti > tk, Ci ≥ tk,Aik, αi, Zi)
M∑
�=j

P (Ti = t�|Ci ≥ tk,Aik, αi, Zi)

= P (Ci = tk|Ti > tk, Ci ≥ tk,Aik, αi, Zi)P (Ti ≥ j|Ti > tk, Ci ≥ tk,Aik, αi, Zi);
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substitution in the right hand side of (21) reduces it to

P{Ci = tk|Ti > tk, Ci ≥ tk,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < k, αi, Zi} = µi(tk),

as required. Applying these results to the quotient in (19), note that P{Wi(t0) =
w0|αi, Zi} and all other terms cancel, and (19) reduces to

P (Ti = tj |αi, Zi)
P (Ti ≥ tj |αi, Zi)

= P (Ti = tj |Ti ≥ tj , αi, Zi),

which yields (14), as claimed.
This argument shows that the assumption (14), usually stated directly with-

out comment, follows naturally from assumptions that the censoring, timing, and
measurement processes depend only on the observable history and latent random
effects and not additionally on the unobserved future event time itself, as formal-
ized in (16)−(18). Note that this formulation allows for otherwise complicated
dependencies, so that (14) may hold under rather general conditions. Of course,
to obtain (7), one must make the additional assumption that the probabilities
µi(tj) and πi(tj) do not depend on αi, as noted above.

4. Recent Approaches

In this section we review two of our recent proposals for inference in joint
models; details may be found in the cited references. As in any model involv-
ing unobservable random effects, concern over whether a parametric (normality)
assumption on the αi may be too restrictive and may potentially compromise
inference if incorrect leads to interest in models and methods that relax this as-
sumption. The proposals discussed here take different approaches to this issue.
The conditional score approach, discussed next, also involves potentially differ-
ent assumptions from those discussed for the usual likelihood specification, as we
demonstrate in Section 4.1.

4.1. Conditional score

A drawback of the approaches based on a likelihood formulation is the en-
suing computational complexity involved in maximizing an expression like (7) in
Ω. Tsiatis and Davidian (2001) considered a joint model defined by (1), (4) and
(6) and proposed an alternative approach to inference on γ and η in (1) that
is relatively simple to implement, yields consistent and asymptotically normal
estimators, and moreover makes no distributional assumption on the underlying
random effects αi. The approach exploits the conditional score idea of Stefanski
and Carroll (1987) for generalized linear models with measurement error, which
suggests, in our context, unbiased estimating equations for γ and η based on
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treating the αi as “nuisance parameters” and conditioning on an appropriate
“sufficient statistic,” as we now outline.

The assumptions under which the approach is valid were not specified care-
fully by Tsiatis and Davidian (2001); here, we are more precise. Define ti(u) =
{tij, tij < u}, let W̃i(u) and ẽi(u) be the corresponding vectors of Wi(tij) and
ei(tij) in (6) at times in ti(u), and let mi(u) be the length of ei(u). Tsiatis and
Davidian (2001) took ti(u) to involve tij ≤ u; however, to facilitate the discrete-
time argument given below, we must be more careful to use a strict inequality;
this distinction is of little consequence in continuous time (or in practice). As-
sume that the event time hazard satisfies

λi(u) = lim
du→0

P{u ≤ Ti < u + du|Ti ≥ u,Ci ≥ u, ti(u), W̃i(u), αi, Zi)

= lim
du→0

P{u ≤ Ti < u + du|Ti ≥ u,Ci ≥ u, ti(u), ẽi(u), αi, Zi)

= lim
du→0

P{u≤Ti <u+du|Ti≥u, αi, Zi)=λ0(u) exp{γXi(u)+ηT Zi}. (23)

This is the continuous-time analog to (14), so holds under (16)–(18); moreover,
the conditioning set may be expressed equivalently in terms of W̃i(u) or ẽi(u), as
it also contains αi.

We now describe the conditional score approach. For definiteness, consider
the simple linear model (3), and assume for the moment that σ2 is known.
Let X̂i(u) be the ordinary least squares estimator for Xi(u) based on the data
{W̃i(u), ti(u)}, that is, based on the longitudinal measurements for i up to time
u. Thus X̂i(u) = (1, u)α̂i(u), where α̂i(u) = {T T

i (u)Ti(u)}−1T T
i (u)W̃i(u), and

Ti(u) is the usual {mi(u)×2} design matrix with first column all ones and second
column ti(u). Note that α̂i(u) and hence X̂i(u) are defined only if there are at
least two measurements prior to u. Define Yi(u) = I(Vi ≥ u, ti2 ≤ u). Assume
that the distribution of “error” ei(tij) at time tij , given that a measurement is
taken at tij , i is at risk at tij, the measurement history prior to tij , αi and Zi,
is N (0, σ2). In the discrete-time representation of Section 3, this corresponds to
assumption (15). This is in contrast to (1) of Tsiatis and Davidian (2001). As
we demonstrate below, it may be shown that, under these conditions and certain
assumptions regarding the censoring and timing processes,

(X̂i(u)|Yi(u) = 1, ti(u), αi, Zi) ∼ N{Xi(u), σ2θi(u)}, (24)

where σ2θi(u) is the usual variance of the predicted value X̂i(u), which depends
on ti(u) (given in Tsiatis and Davidian (2001, p.449)).

Define dNi(u) = I(u ≤ Vi < u + du,∆i = 1, ti2 ≤ u), which puts point
mass at time u for an observed event time after the second longitudinal measure-
ment on i. The motivation for the conditional score estimating equations relies
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on identifying a “sufficient statistic” for αi. At time u, given i is at risk, the
conditional density for {dNi(u) = r, X̂i(u) = x} is

Pr{dNi(u) = r, X̂i(u) = x|Yi(u) = 1, ti(u), αi, Zi}
= Pr{dNi(u) = r|X̂i(u) = x, Yi(u) = 1, ti(u), αi, Zi}

×Pr{X̂i(u) = x|Yi(u) = 1, ti(u), αi, Zi}. (25)

From (23), the first term on the right hand side of (25) is a Bernoulli density
with probability λ0(u) du exp{γXi(u) + ηT Zi}, and the second term is, from
(24), the N{Xi(u), σ2θi(u)} density. Substituting these expressions into (25)
and simplifying shows that, to order du, (25) is

exp

[
Xi(u)

{
γσ2θi(u)dNi(u) + X̂i(u)

σ2θi(u)

}]
{λ0(u) exp(ηT Zi)du}dNi(u)

{2πσ2θi(u)}1/2

× exp

{
−X̂2

i (u) + X2
i (u)

2σ2θi(u)

}
,

from which it follows that a “sufficient statistic” for αi is Si(u, γ, σ2) = γσ2θi(u)
dNi(u) + X̂i(u).

Tsiatis and Davidian (2001) suggested that conditioning on Si(u, γ, σ2) would
remove the dependence of the conditional distribution on (the “nuisance param-
eter”) αi. In particular, they observed that the conditional intensity process

lim
du→0

du−1Pr{dNi(u) = 1|Si(u, γ, σ2), Zi, ti(u), Yi(u)} (26)

= λ0(u) exp{γSi(u, γ, σ2) − γ2σ2θi(u)/2 + ηT Zi}Yi(u)
= λ0(u)E∗

0i(u, γ, η, σ2). (27)

Based on (26), they thus proposed the following estimating equations for γ and
η based on equating “observed” and “expected” quantities in a spirit similar to
such a derivation for the usual partial likelihood score equations:

n∑
i=1

∫
{Si(u, γ, σ2), ZT

i }T {dNi(u) − E∗
0i(u, γ, η, σ2)λ0(u)du} = 0

n∑
i=1

{dNi(u) − E∗
0i(u, γ, η, σ2)λ0(u)du} = 0. (28)

With dN(u) =
∑n

j=1 dNj(u) and E∗
0(u, γ, η, σ2) =

∑n
j=1 E∗

0j(u, γ, η, σ2), the sec-
ond equation yields λ̂0(u)du = dN(u)/E∗

0 (u, γ, η, σ2). By substitution of λ̂0(u)du

in the first equation in (28), one obtains the conditional score estimating equation
for γ and η given by

n∑
i=1

∫ [
{Si(u, γ, σ2), ZT

i }T − E∗
1(u, γ, η, σ2)

E∗
0(u, γ, η, σ2)

]
dNi(u) = 0, (29)
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where E∗
1j(u, γ, η, σ2) = {Sj(u, γ, σ2), ZT

j }T E∗
0j(u, γ, η, σ2) and E∗

1(u, γ, η, σ2) =∑n
j=1 E∗

1j(u, γ, η, σ2).
As σ2 is unknown, Tsiatis and Davidian (2001) proposed an additional es-

timating equation for σ2 based on residuals from individual least squares fits
to the mi measurements for each i and gave arguments that indicate that the
resulting estimators for γ and η are consistent and asymptotically normal under
assumptions (23) and (24), with standard errors that may be derived based on
the usual sandwich approach. An advantage of the procedure is that γ̂ and η̂

solving (29) are relatively easy to compute; although technically (29) may have
multiple solutions, identifying a consistent solution is not problem in practice.
The equation (29) reduces to the partial likelihood score equations when σ2 = 0
(so X̂i(u) = Xi(u)).

The foregoing developments depend critically on assumption (24). We now
elucidate conditions under which (24) holds using a discrete time representation
as in Section 3. Partition time up to u as 0 = t0 < t1 < · · · < tMu = u.
For an individual at risk at time u, i.e., with Ti ≥ u,Ci ≥ u and at least two
measurements, denote the ji times at which measurements are taken as ti1 <

· · · < tiji < u. Then, to demonstrate (24), it suffices to show that

{ei(ti1), . . . , ei(tiji)|Ti ≥ u,Ci ≥ u,Ri(ti1) = · · · = Ri(tiji) = 1,Ri(tr) = 0,

for tr, r = 1, . . . ,M with tr �= ti1, . . . , tiji , αi, Zi} ∼ N (0, σ2Iji), (30)

where Ij is a (j × j) identity matrix. As before, let Aik = {Ri(t�),Ri(t�)Wi(t�),
0 ≤ � < k}. In the following arguments, Aik always appears in conditioning
sets with αi so that, under these conditions, Aik may be written equivalently as
{Ri(t�),Ri(t�)ei(t�), 0 ≤ � < k}. Define A∗

ik = {Ri(t�), 0 ≤ � < k}. Then the
conditional density (30) may be written as a quotient with numerator

M−1∏
k=1

P (Ci > tk|Ti ≥ u,Ci ≥ tk,Aik, αi, Zi)

×P{Ri(tk) = rk|Ti ≥ u,Ci > tk,Aik, αi, Zi}

×
ji∏

q=1

P{ei(tiq) = eiq|Ti ≥ u,Ci > tiq,Aiq,Ri(tiq) = 1, αi, Zi} (31)

and denominator

M−1∏
k=1

P (Ci > tk|Ti ≥ u,Ci ≥ tk,A∗
ik, αi, Zi)

×P{Ri(tk) = rk|Ti ≥ u,Ci > tk,A∗
ik, αi, Zi}. (32)
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From (15), we have
∏ji

q=1 P{ei(tiq) = eiq|Ti ≥ u,Ci > tiq,Aiq,Ri(tiq) = 1, αi, Zi}
=

∏ji
q=1(2πσ2)−1/2 exp{−e2

iq)/(2σ
2)}, which is the distribution in (30); thus, the

result follows if the remaining terms in the numerator (31) and (32) cancel. This
is the case if

P (Ci = tk|Ti ≥ u,Ci ≥ tk,Aik, αi, Zi) = P (Ci = tk|Ti ≥ u,Ci ≥ tk,A∗
ik, αi, Zi),

(33)

P{Ri(tk) = rk|Ti ≥ u,Ci > tk,Aik, αi, Zi}
= P{Ri(tk)=rk|Ti ≥ u,Ci > tk,A∗

ik, αi, Zi}. (34)

In words, (33) and (34) state that the probabilities of censoring and measurement
at time tk, conditional on the underlying αi and past measurements, cannot
depend on past “errors.”

These sufficient conditions may be contrasted with those that underlie the
usual likelihood formulation (7), i.e., that µi(tj) = P{Ci = tj|Ti > tj , Ci ≥
tj,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < j, αi, Zi} and πi(tj) = P{Ri(tj) = 1|Ti > tj, Ci >

tj,Ri(t�),Ri(t�)Wi(t�), 0 ≤ � < j, αi, Zi} may not depend on αi. For the con-
ditional score, dependence of the timing and censoring processes on the αi that
dictate the “inherent” smooth trend is permitted, but these processes may not
depend further on past errors (or, equivalently, past observations). For the like-
lihood approach, the conditions are “reversed.” Thus, belief about the nature of
these phenomena may dictate the choice of approach. Note that neither assump-
tion subsumes the other in general and, as these are only sufficient conditions,
it may be possible to identify assumptions that validate both formulations. Of
course, if censoring and timing are thought not to depend on αi or the past
measurement history, as might be the case in a study where the censoring is ad-
ministrative and timing of measurements adheres to protocol, then the conditions
for either approach are satisfied.

4.2. Semiparametric likelihood

Song, Davidian and Tsiatis (2002b) proposed an alternative, likelihood-based
approach for the situation where the usual normality assumption on the αi is re-
laxed. These authors considered the joint model given by (1), (4) and (6), but
assumed only that αi have conditional density p(αi|Zi; δ) in a class of “smooth”
densities H studied by Gallant and Nychka (1987), where densities in H do
not have jumps, kinks or oscillations, but may be skewed, multi-modal, fat- or
thin-tailed relative to the normal (and the normal is ∈ H). In particular, they
represent αi as αi = g(µ,Zi)+Rui, where g is a regression function with param-
eter µ, R is a lower triangular matrix, and ui has density h ∈ H. Gallant and
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Nychka (1987) showed that densities in H may be approximated by a truncated
Hermite series expansion of the form

hK(z) = P 2
K(z)ϕq(z), (35)

where PK(z) is a Kth order polynomial, e.g., for K = 2, PK(z) = a00 +
a10z1 + a01z2 + a20z

2
1 + a02z

2
2 + a11z1z2; the vector of coefficients a must sat-

isfy
∫

hK(z) dz = 1 and an identifiability constraint; and ϕq(z) is the q-variate
standard normal density. Under these conditions, K = 0 yields the standard
normal density; larger values of K allow departures from normality, so that K

acts as a tuning parameter that controls the degree of flexibility in representing
the true density. Gallant and Nychka (1987) termed this approach to represen-
tation and estimation of a density “SemiNonParametric” (SNP) to emphasize
that (35) acts like a nonparametric estimator but may be characterized by a
finite-dimensional set of parameters for fixed K.

Song, Davidian and Tsiatis (2002b) proposed inference on Ω = {λ0( · ), γ, η,
σ2, δ} based on the likelihood (7), where now δ includes µ, the elements of R, and
a; thus, the arguments of Section 3 clarify the assumptions underlying the ap-
proach. Following Davidian and Gallant (1993) and Zhang and Davidian (2001),
they advocated choosing K by inspection of measures such as Akaike’s informa-
tion criterion (AIC). Implementation for fixed K is via an EM algorithm and is
considerably more complex than that for the conditional score; see Song, David-
ian and Tsiatis (2002b).

5. Simulation Evidence

We offer a brief empirical comparison of the conditional score and semipara-
metric methods under a scenario for which the sufficient assumptions on censoring
and timing of measurements are satisfied for both. The situation was based on an
HIV clinical trial. For each of 200 Monte Carlo data sets, a sample of size n = 200
was generated assuming the joint model defined by (1) with η = 0, (3) and (6),
with γ = −1.0, σ2 = 0.60 and λ0(u) = 1. Measurements were taken to follow
a nominal time schedule of tij = (0, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80), where
measurements at any of these times were missing with constant probability 0.10,
and, for each subject i, Ci was generated independently of all other variables
as exponential with mean 110. Thus, the censoring and timing processes satisfy
the assumptions sufficient for both methods. With E(αi) = (4.173,−0.0103)T

and {Var (αi0), cov(α0i, αi1),Var (αi1)} = {4.96,−0.0456, 0.012}, we considered
two true distributions for the αi: (i) αi distributed as a symmetric, bimodal, bi-
variate mixture of normals, and (ii) αi distributed as bivariate normal. For each
data set, γ was estimated five ways: using the “ideal” approach, where Xi(u) is
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known for all u and γ is estimated by maximizing (2), denoted as I; maximiz-
ing (2) with Xi(u) imputed using LVCF; solving the conditional score equation
(CS); maximizing (7) assuming normal αi (so with K = 0 in the approach of
Section 4.2); and maximizing (7) with αi = µ + Rui with ui having SNP density
representation (35) for K = 1, 2, 3 and K chosen objectively by inspection of the
AIC. The “ideal” methods serves as an albeit unachievable benchmark against
which the others may be compared. For each method, standard errors were ob-
tained from the usual partial likelihood expression (I, LVCF), using the sandwich
method (CS), or based on the maximized likelihood (K = 0, SNP) as described
by Song, Davidian and Tsiatis (2002b). Nominal 95% Wald confidence intervals
were constructed as the estimate ±1.96 times standard error estimate in each
case.

Table 1. Simulation results for 200 data sets for estimation of γ by the “ideal”
approach where Xi(u) is known (I), last value carried forward (LVCF), con-
ditional score (CS), and the semiparametric likelihood approach with normal
random effects (K = 0) and with K chosen using AIC (SNP). Entries are
Monte Carlo average of estimates (Mean), Monte Carlo standard deviation
(SD), Monte Carlo average of estimated standard errors (SE), and Monte
Carlo coverage probability of nominal 95% Wald confidence interval. (True
value is γ = 1.0).

I LVCF CS K = 0 SNP

Case (i): Mixture Scenario
Mean −1.02 −0.82 −1.05 −1.01 −1.01
SD 0.09 0.07 0.17 0.10 0.10
SE 0.09 0.07 0.14 0.11 0.11
CP 0.96 0.31 0.94 0.97 0.95

Case (i): Normal Scenario
Mean −1.01 −0.81 −1.04 −1.00 −1.00
SD 0.08 0.07 0.15 0.10 0.10
SE 0.08 0.07 0.13 0.10 0.10
CP 0.96 0.25 0.93 0.96 0.95

Some interesting features are notable from the results, given in Table 1.
The LVCF estimator exhibits considerable bias in both cases, which leads to
confidence intervals that fail seriously to achieve the nominal level. Confidence
intervals for the other methods yield acceptable performance. Like the ideal
procedure, the conditional score and likelihood methods yield approximately un-
biased estimators in both cases; note that assuming αi to be normal under the
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mixture scenario still results in unbiased inference. The conditional score estima-
tor is inefficient relative to the likelihood approach in both scenarios; this is not
unexpected, as the conditional score approach does not exploit the full informa-
tion in the longitudinal data. Interestingly, the estimation of γ assuming normal
αi under the mixture scenario does not compromise efficiency relative to relax-
ing this assumption. This phenomenon, along with the unbiasedness, which we
have noted in other situations not reported here, suggests a sort of “robustness”
of the likelihood approach with αi taken to be normal to departures from this
assumption, see Section 6. Allowing more flexibility for this distribution than
is required when the αi are normal (case (ii)) does not result in efficiency loss;
here, the information criterion chose K = 0 correctly for most of the 200 data
sets. We have carried out extensive simulations of the likelihood approach under
different scenarios, including taking the true random effects distribution to be
discrete with mass at a few points but assuming normality, regardless of scenario,
and the “robustness” phenomenon persists. We believe that this feature deserves
further investigation.

Overall, these simulations, and others we have carried out (Tsiatis and Da-
vidian (2001) and Song, Davidian and Tsiatis (2002ab)) indicate that both the
conditional score and likelihood approaches using (7) lead to sound inferences on
hazard parameters when the assumptions under which the methods are valid do
indeed hold.

6. Discussion

Some critical issues for practice are that naive approaches to inference on re-
lationships between longitudinal and time-to-event data are inappropriate, and
approximate methods based on a joint model framework may not completely
eliminate bias and may be inefficient. Methods based on a joint model likelihood
formulation may yield most precise inferences, but can be computationally de-
manding. The conditional score approach is by comparison easier to compute,
but at the expense of loss of efficiency. An interesting finding that deserves fur-
ther, formal investigation is the apparent robustness of the likelihood approach
for estimation of hazard parameters assuming normal random effects to devia-
tions from this assumption. Another critical issue, mentioned only briefly, is the
assumption on the distribution of αi given Zi. Although it is routine to assume
this is independent of Zi, if this assumption is incorrect, biased inference will re-
sult (e.g., Heagerty and Kurland (2001)). An advantage of the conditional score
approach is that it is valid without requiring any assumption on this distribution.

There is considerable recent work (e.g., Zhang, Lin, Raz and Sowers (1998))
on expressing splines as random effects models, connected with the work of
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Wahba (1990) relating smoothing splines to a stochastic process. It may be pos-
sible to exploit this ability to write the stochastic process in a model like (5) as a
“random effects model” and thereby develop new joint model implementations;
this is a subject for future research.

Throughout this presentation, we have regarded Xi(u) as a scalar. In some
settings, several such longitudinal responses are collected (e.g., CD4, CD8 and
viral load in HIV studies), and interest focuses on the relationship between the
multivariate longitudinal process and the time-to-event. The framework dis-
cussed herein may be extended to this situation (e.g., Xu and Zeger (2001b)
and Song, Davidian and Tsiatis (2002a), who adapt the conditional score to this
setting); however, the modeling considerations become more complex, involving
the joint distribution of several longitudinal processes. Similarly, rather than a
single time-to-event, some studies may involve a sequence of event times (e.g.,
recurrent events); Henderson, Diggle and Dobson (2000) discuss modifications
for this setting. In both of these extensions, issues regarding assumptions and
implementation are the same, albeit more complex.
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