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Abstract: The shelf-life of a drug product is the time that the average drug charac-

teristic (e.g., potency) remains within an approved specification after manufacture.

The United States Food and Drug Administration (FDA) requires indication for

every drug product of a shelf-life on the immediate container label. Since the true

shelf-life of a drug product is typically unknown, it has to be estimated based on

assay results of the drug characteristic from a stability study usually conducted

during the process of drug development. Furthermore, the FDA requires that the

estimated shelf-life be so constructed that it is statistically evident that the esti-

mated shelf-life is less than the true shelf-life, i.e., the estimated shelf-life should be

a conservative (negatively biased) estimator. In this paper, we study and compare

several shelf-life estimators, one of which is adopted by the FDA’s 1987 guide-

lines, in terms of their asymptotic biases and mean squared errors. Finite sample

performance of some shelf-life estimators is examined in a simulation study.

Key words and phrases: Asymptotic bias, asymptotic mean squared error, batch-to-

batch variation, inverse regression, lower confidence bound, lower prediction bound.

1. Introduction

The expiration dating period or shelf-life of a drug product is defined as the
time at which the average drug characteristic (e.g., potency) remains within an
approved specification after manufacture (FDA, 1987). The United States Food
and Drug Administration (FDA) requires that a shelf-life be indicated on the
immediate container label of every drug product. Since the true shelf-life of a
drug product is usually unknown, it is typically estimated based on assay results
of the drug characteristic from a stability study conducted during the process of
drug development. Let yj be the assay result of a pharmaceutical compound at
time xj, j = 1, . . . , n. A simple linear regression model is usually assumed:

yj = α + βxj + ej , j = 1, . . . , n, (1.1)

where α and β are unknown parameters, xj’s are deterministic time points se-
lected in the stability study, and ej ’s are measurement errors independently and
identically distributed as N(0, σ2). Under (1.1), the average drug characteristic
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at time x is α + βx. Throughout the paper, we assume that the drug charac-
teristic decreases as time increases, i.e., β in (1.1) is negative, and that the drug
product expires if its average characteristic is below a given specification constant
η. Thus the true shelf-life, denoted by θ, is the solution of η = α + βx, hence
θ = (η − α)/β. Note that α is the average drug characteristic at the time of
manufacture (i.e., x = 0) which is usually larger than η. Thus θ > 0.

Let θ̂ be an estimator of the true shelf-life θ based on (yj, xj)’s. It is desirable
that θ̂ ≤ θ be statistically evident, i.e., θ̂ is a conservative estimator. According
to FDA guidelines (FDA 1987), the probability of θ̂ ≤ θ should be nearly 95%,
i.e., θ̂ is approximately a 95% lower confidence bound for θ. Thus θ̂ has a nega-
tive bias of the same order of magnitude as the standard deviation of θ̂. Studying
the magnitude of the bias of θ̂ is particularly important for pharmaceutical com-
panies, because the closeness of θ̂ to θ is directly related to the bias of θ̂ and
a less biased shelf-life estimator is preferred. In Sections 2-4, we study the bias
and variance of three different shelf-life estimators, using two different asymp-
totic approaches. Finite sample performance of these three shelf-life estimators
is studied in Section 5 through a simulation study.

In the pharmaceutical industry, drug products are usually manufactured in
different batches. The FDA requires testing of at least three batches, preferably
more, in any stability analysis to account for batch-to-batch variation. When
there is batch-to-batch variation, (1.1) holds for data from each batch but the
values of α and β in different batches are different. A discussion of shelf-life
estimation in the presence of batch-to-batch variation is given in Section 6.

2. FDA’s Method

Let (α̂, β̂) be the least squares estimator of (α, β) based on (yj , xj)’s under
(1.1). For any fixed time x, a 95% lower confidence bound for α + βx is

L(x) = α̂ + β̂x − σ̂tn−2

√
1
n

+
(x − x̄)2

Sxx
,

where tn−2 is the 95th percentile of the t-distribution with n − 2 degrees of
freedom, x̄ is the average of xj’s, σ̂2 = (Syy −S2

xy/Sxx)/(n−2), Syy =
∑n

j=1(yj −
ȳ)2, Sxx =

∑n
j=1(xj − x̄)2, Sxy =

∑n
j=1(xj − x̄)(yj − ȳ), and ȳ is the average of

yj’s. FDA’s shelf-life estimator is θ̂F = inf{x ≥ 0 : L(x) ≤ η}, the smallest x ≥ 0
satisfying L(x) = η. By definition, θ̂F > θ implies L(θ) > η and P (θ̂F > θ) ≤
P (L(θ) > η) = 5%, since L(θ) is a 95% lower confidence bound for α + βθ = η.
This means that θ̂F is a (conservative) 95% lower confidence bound for θ. We
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now study its asymptotic bias and asymptotic mean squared error. Define

An = σ̂2t2n−2

(
1
n

+
x̄2

Sxx

)
, Bn = − x̄σ̂2t2n−2

Sxx
, Cn =

σ̂2t2n−2

Sxx
. (2.1)

Without loss of generality, assume that Sxx is exactly of order n. Then An, Bn,
and Cn are exactly of order n−1. Thus, asymptotically, θ̂F is the unique solution
of L(x) = η. A straightforward calculation shows that the solution should be

(η − α̂)β̂ + Bn −
√

[(η − α̂)β̂ + Bn]2 − (β̂2 − Cn)[(η − α̂)2 − An]

β̂2 − Cn

.

Removing terms of order n−1, we obtain that

θ̂F =
η − α̂

β̂
−
√

Anβ̂2 + 2Bn(η − α̂)β̂ + Cn(η − α̂)2

β̂2
+ op

(
n−1/2

)
. (2.2)

From the asymptotic theory for the least squares estimators, and Taylor’s expan-
sion, we know that

(
η − α̂

β̂
− η − α

β

)/
σ

|β|

√
1
n

+
(θ − x̄)2

Sxx
→ N(0, 1) in law. (2.3)

Since θ = (η − α)/β, the asymptotic expectation of η−α̂

β̂
− θ is 0. Since α̂ →p α,

β̂ →p β, and σ̂ →p σ, the asymptotic expectation of the second term on the right
side of (2.2) is

−σtn−2

β2

√(
1
n

+
x̄

Sxx

)
β2 − 2x̄(η − α)β

Sxx
+

(η − α)2

Sxx
= −σtn−2

|β|

√
1
n

+
(θ − x̄)2

Sxx
.

(2.4)
This is the asymptotic bias of θ̂F as n → ∞ and is of order n−1/2. Furthermore,
it follows from (2.3) and (2.4) that the asymptotic mean squared error of θ̂F is

σ2(1 + t2n−2)
β2

[
1
n

+
(θ − x̄)2

Sxx

]
. (2.5)

Stability studies are often conducted under controlled conditions so that the
assay measurement error variance σ2 is very small. This leads to the study of
the “small error asymptotics”. When n is fixed and σ → 0,

β̂ =
Sxy

Sxx
=
∑n

i=1(xi − x̄)yi

Sxx
= β +

∑n
i=1(xi − x̄)ei

Sxx
= β + Op(σ) →p β,
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where Op(σ) denotes a random variable of order σ as σ → 0. This result holds
because ei/σ is N(0, 1). Similarly, α̂ = ȳ − β̂x̄ = α + Op(σ) →p α. Furthermore,
(n − 2)σ̂2/σ2 has the chi-square distribution with (n − 2) degrees of freedom.
Thus (2.2) holds with op(n−1/2) replaced by op(σ). The asymptotic (σ → 0) bias
of the second term on the right side of (2.2) is given by (2.4), which is now of
order σ. Using Taylor’s expansion and the fact that α̂ − α and β̂ − β are jointly
normal with mean 0 and covariance matrix

σ2

Sxx

(
x̄2 + n−1Sxx −x̄

−x̄ 1

)
,

we conclude that (2.3) holds when σ → 0 and n is fixed. Hence the asymptotic
bias and mean squared error of θ̂F , in the case of σ → 0, are the same as those
for the case of n → ∞, given by (2.4) and (2.5), respectively.

Formulas (2.4) and (2.5) indicate that, when n and xi’s are fixed, the asymp-
totic bias and mean squared error of θ̂F depend mainly on the noise-to-signal
ratio σ/|β|. If σ/|β| cannot be controlled to a desirable level, then an increase of
sample size n is necessary in order to reduce bias and mean squared error.

3. The Direct Method

From the asymptotic theory (either n → ∞ or σ → 0),

(
η − α̂

β̂
− θ

)/
σ̂

|β̂|

√√√√ 1
n

+
1

Sxx

(
η − α̂

β̂
− x̄

)2

→ N(0, 1) in law.

Let z be the 95th percentile of the standard normal distribution. Then an ap-
proximate (large n or small σ) 95% lower confidence bound for θ is

θ̂D =
η − α̂

β̂
− σ̂z

|β̂|

√√√√ 1
n

+
1

Sxx

(
η − α̂

β̂
− x̄

)2

.

We call this the direct method (of obtaining a shelf-life estimator). Using An,
Bn and Cn given in (2.1), we find

θ̂D =
η − α̂

β̂
− z

tn−2

√
Anβ̂2 + 2Bn(η − α̂)β̂ + Cn(η − α̂)2

β̂2
. (3.1)

When n → ∞, z/tn−2 → 1. It follows from (2.2) and (3.1) that θ̂D −
θ̂F = op(n−1/2). Hence the shelf-life estimators obtained by using FDA’s method
and the direct method are asymptotically equivalent, and their large sample
asymptotic bias and mean squared error agree.
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The small error asymptotic bias and mean squared error of θ̂D are given by
(2.4) and (2.5), respectively, with tn−2 replaced by z. When n is fixed, z/tn−2 is
a fixed constant less than 1. Hence, θ̂D > θ̂F holds asymptotically as σ → 0, i.e.,
θ̂D is less conservative than θ̂F . This result indicates that, when σ2 is small, θ̂D

is preferred. The same conclusion can be made based on the simulation result in
Section 5.

4. The Inverse Method

Another shelf-life estimator can be obtained using the so-called inverse re-
gression method (Krutchkoff (1967); Halperin (1970)). Start with

xj = α∗ + β∗yj + e∗j , j = 1, . . . , n, (4.1)

which is the same as (1.1) except that xj and yj are switched. In a stability
study, however, the xj’s are deterministic time points and the yj ’s are assay
results and, therefore, the error term e∗j is not independent of yj. Nevertheless,
suppose that we fit model (4.1) based on (xj , yj)’s. Since the true shelf-life is
the x-value when the mean of y is η, the shelf-life estimator θ̂I based on the
inverse method is the 95% lower confidence bound for α∗ + β∗η. Treating (4.1)
as an ordinary linear regression model, we obtain the least squares estimators
α̂∗ = x̄− ȳSxy/Syy, β̂∗ = Sxy/Syy, and the following “unbiased” estimator of the
variance of α̂∗ + β̂∗η:

1
n − 2

(
Sxx − S2

xy

Syy

)[
1
n

+
(η − ȳ)2

Syy

]
= σ̂2 Sxx

Syy

[
1
n

+
(η − ȳ)2

Syy

]
.

Consequently, the shelf-life estimator based on the inverse method is

θ̂I = x̄ +
Sxy

Syy
(η − ȳ) − σ̂tn−2

√√√√Sxx

Syy

[
1
n

+
(η − ȳ)2

Syy

]
. (4.2)

Under (1.1) with Sxx having order n−1 as n → ∞, θ̂I has the same limit as

x̄ +
β

β2 + σ2n
Sxx

(η − α − βx̄) =
σ2n
Sxx

β2 + σ2n
Sxx

x̄ +
β2

β2 + σ2n
Sxx

θ,

which is a convex combination of x̄ and θ. Unless x̄ = θ, θ̂I has a non-zero limiting
bias as n → ∞. Since x̄ is the average of the time values used in stability study,
it is usually much smaller than the true shelf-life θ. Hence the limiting bias of
θ̂I is negative, i.e., θ̂I can be too conservative. In fact, if x̄ < θ for all n, then
limn→∞ P (θ̂I < θ) = 1.
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When n is fixed but σ → 0, the difference between the last term on the right
side of (4.2) and the quantity on the right side of (2.4) is of the order op(σ). Thus
θ̂I − θ̂F = op(σ) and the small error asymptotic properties of θ̂I are the same as
those of θ̂F .

The inverse method has a better asymptotic performance in case σ → 0
than if n → ∞ since (4.1) and (1.1) are asymptotically the same as σ → 0, but
asymptotically different as n → ∞. Note that (1.1) and (4.1) are the same if and
only if σ = 0, regardless of how large n is.

The inverse method is appealing because of its simplicity. However, it is not
valid unless σ → 0. Our simulation study shows that the inverse method is too
conservative unless σ is very small, so θ̂I is not recommended.

5. Simulation Results

A simulation study is conducted to examine the finite sample performance
of θ̂F , θ̂D and θ̂I . We also study whether the asymptotic bias and mean squared
error formulas (2.4) and (2.5) are close to the bias and mean squared error given
by simulation.

We consider a typical stability study design: xj = 0, 3, 6, 9, 12, 18, and 24
months, with 3 replications at each xj. Thus n = 21. Values of α, β and η are
chosen to be 105, −0.5 and 90, respectively, so that θ = 30. To see the asymptotic
effect, we consider values of σ ranging from 0.1 to 2.0.

Based on 2,000 simulations, Table 1 lists (1) the bias (BIAS) and mean
squared error (MSE) of θ̂F , θ̂D and θ̂I ; (2) the asymptotic bias (ABIAS) and
asymptotic mean squared error (AMSE) computed using formulas (2.4) and (2.5);
(3) the coverage probability (CP) when θ̂F , θ̂D and θ̂I are considered to be 95%
lower confidence bounds for θ. The results can be summarized as follows.
1. The performance of θ̂F and θ̂D is good, especially when σ is small. The

coverage probability for θ̂F and θ̂D is close to 95% and never below 94%.
Comparing θ̂F with θ̂D, we find that θ̂D is slightly better when σ is small
whereas θ̂F is slightly better when σ is large.

2. For θ̂F or θ̂D, asymptotic bias and mean squared error from (2.4) and (2.5)
are very close to exact bias and mean squared error when σ is small. For
large σ, the asymptotic bias (or the asymptotic mean squared error) is quite
different from the exact bias (or the exact mean squared error).

3. In general, θ̂I is too conservative unless σ is very small, which supports our
theory in Section 4. Even when σ = 0.2, the bias and mean squared error of
θ̂I are still much larger than those of θ̂F (or θ̂D), and the coverage probability
of θ̂I is over the nominal level by more than 2%.
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Table 1. Simulation averages of bias, mean squared error, and coverage
probability of shelf-life estimators.

σ Estimator BIAS ABIAS MSE AMSE CP
0.1 θ̂F -0.2002 -0.2044 0.0545 0.0557 0.9510

θ̂D -0.1922 -0.1944 0.0513 0.0518 0.9460
θ̂I -0.2136 -0.2044 0.0603 0.0557 0.9615

0.2 θ̂F -0.4042 -0.4088 0.2193 0.2230 0.9585
θ̂D -0.3917 -0.3889 0.2093 0.2071 0.9525
θ̂I -0.4571 -0.4088 0.2667 0.2230 0.9720

0.3 θ̂F -0.5850 -0.6132 0.4617 0.5017 0.9475
θ̂D -0.5715 -0.5833 0.4462 0.4660 0.9430
θ̂I -0.7020 -0.6132 0.6170 0.5017 0.9760

0.4 θ̂F -0.7757 -0.8176 0.8138 0.8920 0.9445
θ̂D -0.7646 -0.7777 0.7972 0.8284 0.9425
θ̂I -0.9824 -0.8176 1.1865 0.8920 0.9755

0.5 θ̂F -0.9437 -1.0219 1.2001 1.3937 0.9505
θ̂D -0.9382 -0.9721 1.1909 1.2944 0.9485
θ̂I -1.2599 -1.0219 1.9117 1.3937 0.9820

0.6 θ̂F -1.1588 -1.2263 1.7660 2.0069 0.9580
θ̂D -1.1623 -1.1666 1.7742 1.8639 0.9580
θ̂I -1.6088 -1.2263 3.0227 2.0069 0.9915

0.8 θ̂F -1.4868 -1.6351 2.9398 3.5678 0.9495
θ̂D -1.5169 -1.5554 3.0291 3.3135 0.9535
θ̂I -2.2552 -1.6351 5.8382 3.5678 0.9915

1.0 θ̂F -1.8407 -2.0439 4.4785 5.5747 0.9555
θ̂D -1.9111 -1.9443 4.7305 5.1774 0.9615
θ̂I -3.0114 -2.0439 10.128 5.5747 0.9970

1.5 θ̂F -2.5670 -3.0658 8.8510 12.543 0.9490
θ̂D -2.7854 -2.9164 9.8985 11.649 0.9630
θ̂I -4.9163 -3.0658 26.042 12.543 0.9990

2.0 θ̂F -3.2363 -4.0878 13.940 22.299 0.9475
θ̂D -3.6868 -3.8885 16.659 20.710 0.9710
θ̂I -6.9898 -4.0878 51.426 22.299 0.9990

6. Shelf-Life Estimation Under Batch-To-Batch Variation

Drug products are usually manufactured in batches. The values of α and
β in (1.1) may be different for different batches, referred to as batch-to-batch
variation. The FDA requires testing of at least three batches, preferably more,
in any stability analysis to account for this variation so that a single estimated
shelf-life can be used for all future drug products. Some procedures for testing
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batch-to-batch variation are proposed in Shao and Chow (1994). If there is no
batch-to-batch variation, then the results in Sections 2-4 can be applied after
combining data from different batches.

When there is batch-to-batch variation, the batches used in a stability study
should constitute a random sample from the population of all future batches.
Since a single estimated shelf-life should be applicable to all future batches, it
is more appropriate to treat the batch-to-batch variation as a random effect.
Suppose that there are k batches in a stability study. Let

yij = αi + βixij + eij (6.1)

be the jth assay result at time xij for the ith batch, j = 1, . . . , n, i = 1, . . . , k.
The shelf-life for the ith batch is θi = (αi − η)/βi. Let (α0, β0) be the regression
parameters for a future batch. Then the shelf-life for the future batch is θ0 =
(α0 − η)/β0. If αi’s and βi’s are random variables, then θ0 is random and a 95%
lower prediction bound for θ0 should be considered as a shelf-life estimator.

Assume that (αi, βi), i = 0, 1, . . . , k, are independent and have a bivariate
normal distribution N((α, β),Σ) with β < 0 and the second component truncated
at 0 (so that all βi’s are negative). In practice, this truncation has a negligible
effect if |β| is more than 4 times the standard deviation of βi. Shao and Chen
(1997) derived the following approximate (n → ∞ or σ → 0) 95% lower prediction
bound as a shelf-life estimator: θ̂SC = inf{x ≥ 0 : L̃(x) ≤ η} with L̃(x) = α̂ +
β̂x − ρk

√
v11 + 2v12x + v22x2. Here (α̂, β̂) is the average of (α̂i, β̂i), i = 1, . . . , k,

and (α̂i, β̂i) is the least squares estimator of (αi, βi) under (6.1) for fixed i; vij is
the (i, j)th element of the matrix

V =
1

k(k − 1)

( ∑k
i=1(α̂i − α̂)2

∑k
i=1(α̂i − α̂)(β̂i − β̂)∑k

i=1(α̂i − α̂)(β̂i − β̂)
∑k

i=1(β̂i − β̂)2

)
;

ρk is the 95th percentile of the random variable Tk(U) with U being a uniform
(0,1) random variable, Tk(u) being the non-central t-random variable with k − 1
degrees of freedom and non-centrality parameter

√
kΦ−1(1 − u) (for any given

u), Φ being the standard normal distribution function (values of ρk are listed in
Shao and Chen (1997)). That is, for the future shelf-life θ0, P (θ̂SC ≤ θ0) ≈ 0.95
as n → ∞ or σ → 0, where P is the joint probability of θ̂SC and θ0.

Using the argument of Section 2, we find

θ̂SC =
(η−α̂)β̂ + ρ2

kv12−
√

[(η−α̂)β̂ + ρ2
kv12]2−(β̂2−ρ2

kv22)[(η−α̂)2−ρ2
kv11]

β̂2−ρ2
kv22

.
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The exact bias of θ̂SC is E(θ̂SC − θ0), which does not have a simple form. We
may use the following measure of closeness of θ̂SC to θ0:

(η−α)β + ρ2
kv̄12−

√
[(η−α)β + ρ2

kv̄12]2−(β2−ρ2
kv̄22)[(η−α)2−ρ2

kv̄11]

β2−ρ2
kv̄22

− η−α

β
,

(6.2)
which is obtained by replacing random variables in θ̂SC−θ0 by their expectations,
where v̄ij is the (i, j)th element of the matrix

E(V ) =
1
k


Σ +

σ2

k

k∑
i=1

(
n

∑n
j=1 xij∑n

j=1 xij
∑n

j=1 x2
ij

)−1

 .

As σ → 0 and Σ → 0 (which means that the variance matrix Σ for the random
batch effects is relatively small compared with the mean (α, β)), the quantity in
(6.2) simplifies to the asymptotic bias of θ̂SC , which is

−β−2ρk

√
v̄11β2 − 2v̄12(η − α)β + v̄22(η − α)2.
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