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Abstract: Qin and Zhang (1997) considered a goodness-of-fit test for the logistic

regression model under a case-control sampling plan on the basis of a Kolmogorov-

Smirnov-type statistic. There, however, does not exist a goodness-of-fit test for

the multiplicative-intercept risk model or the odds-linear model described in the

literature. By extending the work of Qin and Zhang (1997), and by indicating

the equivalence of the multiplicative-intercept risk model and a two-sample semi-

parametric selection bias model, we propose a Kolmogorov-Smirnov-type statistic

to test the validity of the multiplicative-intercept risk model based on case-control

data. We also propose a bootstrap procedure for finding the P-values of the pro-

posed test. In addition, we establish some asymptotic results associated with the

proposed test statistic and justify the proposed bootstrap procedure. As an ap-

plication of the proposed test procedure, we consider simulation results and the

analysis of two real data sets.
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1. Introduction

Let Y be a binary response variable and X be the associated 1 × p co-
variate vector. Hsieh, Manski and McFadden (1985) introduced the following
multiplicative-intercept risk model:

P (Y = 1|X = x)
1 − P (Y = 1|X = x)

= θ∗r(x;β), or P (Y = 1|X = x) =
θ∗r(x;β)

1 + θ∗r(x;β)
,

(1.1)
where P (Y = 1|X = x) is the probability of disease given 1 × p covariate vector
x = (x1, . . . , xp), r(x;β) is, for fixed x, a known function from Rp to R+, θ∗ is
an unknown positive scalar, and β = (β1, . . . , βp)τ is a p-vector of unknown pa-
rameters. Note that linearity is not assumed in r(x;β). Note also that model
(1.1) reduces to the standard logistic regression model if θ∗ = exp(α∗) and
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r(x;β) = exp(xβ), and reduces to the odds-linear model (Weinberg and Sandler
(1991) and Wacholder and Weinberg (1994)) when r(x;β) = 1 + xβ. By gen-
eralizing earlier works of Anderson (1972, 1979), Farewell (1979), and Prentice
and Pyke (1979) in the context of logistic regression models, Weinberg and Wa-
cholder (1993) showed that under model (1.1), case-control data can be analyzed
by maximum likelihood as if they had arisen prospectively, up to an unidenti-
fiable multiplicative constant which depends on the relative sampling fractions.
Moreover, they showed that the prospective analysis leads not only to valid point
estimates for β, but to valid estimates of standard errors and likelihood ratio test-
ing under model (1.1). Since there does not exist a goodness-of-fit test for the
multiplicative-intercept risk model or the odds-linear model described in the lit-
erature, we consider in this paper testing the validity of model (1.1) based on
case-control data, as specified below.

Let X1, . . . ,Xn0 be a random sample from P (x|Y = 0) and, independent
of the Xi, let Z1, . . . , Zn1 be a random sample from P (x|Y = 1). Write π =
P (Y = 1) = 1 − P (Y = 0). Let g(x) = f(x|Y = 0) and h(x) = f(x|Y = 1)
be, respectively, the conditional density or frequency functions of X given Y = 0
and Y = 1. Then an application of Bayes’ rule yields the following two-sample
semiparametric model:

X1, . . . ,Xn0

i.i.d.∼ g(x), Z1, . . . , Zn1

i.i.d.∼ h(x) = exp[θ + s(x;β)]g(x), (1.2)

where θ = log θ∗ + log 1−π
π and s(x;β) = log r(x;β). Throughout this paper, let

G(x) and H(x) be, respectively, the corresponding cumulative distribution func-
tions of g(x) and h(x). Note that model (1.2) includes the two-sample length-
biased sampling model (Vardi (1982)) with θ = − log µ and s(x;β) ≡ log x. Note
also that model (1.2), equivalent to model (1.1), is a two-sample semiparamet-
ric selection-bias model with weight functions w1(x, θ, β) = exp[θ + s(x;β)] and
w2(x, θ, β) = 1 depending on the unknown parameters θ and β. The s-sample
semiparametric selection-bias model was proposed by Vardi (1985) and was fur-
ther developed by Gilbert, Lele, and Vardi (1999). Vardi (1982, 1985), Gill, Vardi
and Wellner (1988), and Qin (1993) have discussed estimation problems in biased
sampling models with known weight functions. Qin and Zhang (1997) considered
testing the validity of model (1.2) when s(x;β) = xβ. Our focus of attention in
this paper is to test the validity of model (1.2) for some smooth function s(x;β).

This paper is structured as follows. In Section 2, we propose our test statistic.
In Section 3, we present some asymptotic results including the weak convergence
of the proposed test statistic to a Gaussian process. In Section 4, we propose and
justify a bootstrap procedure which allows us to find P-values of the proposed
test. Also in Section 4, we report some results on analysis of two real data prob-
lems. Section 5 concerns constructing confidence bands for G under model (1.2).
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A simulation study is presented in Section 6 to demonstrate the performance of
the maximum semiparametric likelihood estimation of (θ, β). Finally, proofs of
the main theoretical results appear in Section 7.

2. Methodology

We first discuss the problem of identifiability of (θ, β) and G. According
to Theorem 2 of Gilbert, Lele and Vardi (1999), it can be shown that model
(1.2) is identifiable if and only if s(x0;β′) ≡ s(x0;β′′) for some x0 ∈ Rp and
all β′, β′′ ∈ Rp with β′ �= β′′. In particular, if s(x0;β) ≡ 0 for some x0 and
all β, then model (1.2) is identifiable. Clearly, the logistic regression model with
s(x;β) = xβ and the odds-linear model with s(x;β) = log(1+xβ) are identifiable
because s(0;β) ≡ 0 for all β in either case.

We next consider semiparametric maximum likelihood estimation of (θ, β)
and G. To this end, let {T1, . . . , Tn} denote the pooled sample {X1, . . . ,Xn0 ;
Z1, . . . , Zn1} with n = n0+n1. Throughout this paper, we assume that the partial
derivatives ∂r(t;β)

∂β and ∂2r(t;β)
∂β∂βτ exist for each t and β. Based on the observed data

in (1.2), we can write the full likelihood function as

L(θ, β,G) =
n0∏
i=1

dG(Xi)
n1∏

j=1

w1(Zj , θ, β)dG(Zj) =
{ n∏

i=1

pi

}{ n1∏
j=1

w1(Zj , θ, β)
}
,

where w1(x, θ, β) = exp[θ + s(x;β)] and pi = dG(Ti), for i = 1, . . . , n, are (non-
negative) jumps with total mass being unity. By employing the two-step profile
maximization approach described in Owen (1988, 1990) and Qin and Lawless
(1994), we are led to the following estimates of G and (θ, β) :

G̃(t) =
n∑

i=1

p̃iI[Ti≤t] =
1
n0

n∑
i=1

I[Ti≤t]

1 + ρ exp[θ̃ + s(Ti; β̃)]
(2.1)

and (θ̃, β̃) maximizes the profile semiparametric log-likelihood function of (θ, β)
given by

�(θ, β) = −n log n0 −
n∑

i=1

log{1 + ρ exp[θ + s(Ti;β)]} + n1θ +
n1∑
j=1

s(Zj ;β), (2.2)

where ρ = n1/n0. Since the weight functions w1(x, θ, β) = exp[θ + s(x;β)] and
w2(x, θ, β) = 1 are strictly positive and �(θ, β) is identical to the logarithm of the
partial likelihood (4.3) of Gilbert, Lele and Vardi (1999) plus n log n0, Theorem
4 of Gilbert, Lele and Vardi (1999) implies that if s(x0;β′) ≡ s(x0;β′′) for some
x0 ∈ Rp and all β′, β′′ ∈ Rp with β′ �= β′, then (θ̃, β̃, G̃) maximizes the full likeli-
hood function L(θ, β,G). Consequently, L(θ, β,G) will have a unique maximum
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if �(θ, β) has a unique maximum. Let s1(t;β) = ∂s(t;β′)
∂β′ |β′=β. If s1(t;β)

s(t;β) is not

degenerate at the unit vector, min(n0, n1) > 0, and ∂2s(t;β)
∂β∂βτ = 0, then Theorem

5 of Gilbert, Lele and Vardi (1999) implies that the profile semiparametric log-
likelihood function �(θ, β) defined in (2.2) is strictly concave over the parameter
space in which β lives. Furthermore, under these three conditions, if (θ̃, β̃) is a
solution to the following system of score equations:

∂�(θ, β)
∂θ

= n1 −
n∑

i=1

ρ exp[θ + s(Ti;β)]
1 + ρ exp[θ + s(Ti;β)]

= 0,

∂�(θ, β)
∂β

=
n1∑

j=1

s1(Zj ;β) −
n∑

i=1

ρ exp[θ + s(Ti;β)]
1 + ρ exp[θ + s(Ti;β)]

s1(Ti;β) = 0, (2.3)

then (θ̃, β̃) uniquely maximizes �(θ, β). In this case, we call (θ̃, β̃, G̃) the maximum
semiparametric likelihood estimator of (θ, β,G) under model (1.2). It is easy to
see that the logistic regression model with s(x;β) = xβ satisfies the above three
conditions. However, the odds-linear model with s(x;β) = log(1 + xβ) does not
satisfy ∂2s(t;β)

∂β∂βτ = 0 and, in this case, a solution to (2.3) may be a local maximum.
Although asymptotically a local maximum is not a problem (since only local
statistical properties are considered when the sample size is sufficiently large), it
can be considerably biased with a larger variance when the sample size is small.

Remark 2.1. The two-step profile maximization procedure, by which we derive
the maximum semiparametric likelihood estimator (θ̃, β̃, G̃), is similar to that of
Murphy, Rossini, and van der Vaart (1997) in which they considered maximum
likelihood estimation of the parameters in the proportional odds model with
right-censored data. Both procedures rely on first maximizing the nonparametric
part in the full likelihood function with the parametric part fixed, and then
maximizing the profile log-likelihood function with respect to the parametric
part.

Remark 2.2. We can also derive the estimator (θ̃, β̃, G̃) by employing the “plug-
in” method of Dabrowska and Doksum (1988) in the context of a two-sample
generalized odds-rate model. As indicated below by this approach, the maximum
semiparametric likelihood estimator (θ̃, β̃) is identical to a method of moments
estimator of (θ, β). Motivated by the work of Gill, Vardi, and Wellner (1988), let
F = n0

n G+ n1
n H be the “average distribution function”. Then by (1.2) we have

G(t) = n

∫ 1
n0

1
1 + ρ exp[θ + s(y;β)]

I[y≤t]dF (y).
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Let Fn(t) = 1
n

∑n
i=1 I[Ti≤t] be the empirical distribution function of the pooled

sample {T1, . . . , Tn}. Then we can estimate G by

Gn(t) = n

∫ 1
n0

1
1 + ρ exp[θ + s(y;β)]

I[y≤t]dFn(y) =
1
n0

n∑
i=1

I[Ti≤t]

1 + ρ exp[θ + s(Ti;β)]

with the constraint Gn(∞) = 1. Let Ĝ(t) = 1
n0

∑n0
i=1 I[Xi≤t] be the empirical

distribution function based on the control data X1, . . . ,Xn0 , and let ψ(t, θ, β) =
(ψ0(t, θ, β), ψ1(t, θ, β), . . . , ψp(t, θ, β))τ be a vector function from R2p+1 to Rp+1.

Then for a particular choice of ψ(t, θ, β), we can estimate (θ, β) by matching the
expectation of ψ(t, θ, β) under Gn with that under Ĝ :

∫
ψ(t, θ, β)dGn(t) =∫

ψ(t, θ, β)dĜ(t). In other words, we can estimate (θ, β) by seeking a root to the
following system of equations:

1
n0

n∑
i=1

1
1 + ρ exp[θ + s(Ti;β)]

ψ(Ti, θ, β) =
1
n0

n0∑
i=1

ψ(Xi, θ, β).

It is easy to see that the above system of equations reduces to the system of score
equations in (2.3) if we take ψ(t, θ, β) = (1, sτ

1(t;β))τ .

The discrepancy between the two estimators G̃(t) and Ĝ(t) allows us to assess
the validity of model (1.2). Thus, the difference

∆n(t) =
√
n|G̃(t) − Ĝ(t)|, ∆n = sup

−∞≤t≤∞
∆n(t) (2.4)

can be employed to measure the departure from the assumption of the multi-
plicative-intercept risk model (1.1). Note that the test statistic proposed in (2.4)
reduces to that of Qin and Zhang (1997) when θ∗ = exp(α∗) and r(x;β) =
exp(xβ) in model (1.1).

Remark 2.3. One can estimate H(t) by H̃(t) =
∑n

i=1 p̃i exp[θ̃ + s(Ti; β̃)]I[Ti≤t]

based on the case-control data T1, . . . , Tn under model (1.2).

Remark 2.4. The test statistic ∆n can be applied to mixture sampling data.
See Remark 3 of Qin and Zhang (1997).

Remark 2.5. In light of Anderson (1972, 1979), we may treat the case-control
data as the prospective data to compute the maximum likelihood estimate of
(θ∗, β) under model (1.1). Let (θ̃, β̃) denote the solution to the likelihood equa-
tions in (2.3) and (θ̂∗, β̂) denote the maximum likelihood estimate of (θ∗, β) under
model (1.1). Then θ̃ = log θ̂∗ + log n0

n1
and β̃ = β̂. Thus, the maximum likeli-

hood estimates of β are identical under the retrospective sampling scheme and
the prospective sampling scheme. In addition, estimated asymptotic variance-
covariance matrices for β̂ and β̃ based on the observed information coincide.
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Weinberg and Wacholder (1993) obtained these results under the assumption
that X in model (1.1) is discrete. Their approach is based on the EM algo-
rithm. Moreover, in the context of the standard logistic regression model with
θ∗ = exp(α∗) and r(x;β) = exp(xβ), we have θ̃ = α̂∗ + log n0

n1
.

3. Asymptotic Results

In this section, we study the asymptotic properties of the proposed estimator
G̃(t) in (2.1), and the proposed test statistic ∆n in (2.4). To this end, let (θ0, β0)
be the true value of (θ, β) under model (1.2). Throughout this paper, we assume
ρ = n1/n0 is positive and finite, and remains fixed as n = n0 + n1 → ∞. Write

s1k(t;β) =
∂s(t;β)
∂βk

=
1

r(t;β)
∂r(t;β)
∂βk

, k = 1, . . . , p, s10(t;β) ≡ 1,

s1(t;β) =
∂s(t;β)
∂β

=
1

r(t;β)
∂r(t;β)
∂β

= (s11(t;β), . . . , s1p(t;β))τ ,

s2kl(t;β) =
∂2s(t;β)
∂βk∂βl

=
∂s1k(t;β)

∂βl

=
1

r(t;β)
∂2r(t;β)
∂βk∂βl

− 1
r2(t;β)

(
∂r(t;β)
∂βk

)(
∂r(t;β)
∂βl

)
, k, l=1, . . . , p,

s2(t;β) =
∂2s(t;β)
∂β∂βτ

=
∂s1(t;β)
∂βτ

=
1

r(t;β)
∂2r(t;β)
∂β∂βτ

− 1
r2(t;β)

(
∂r(t;β)
∂β

)(
∂r(t;β)
∂βτ

)
= (s2kl)k,l=1,...,p,

s3klm(t;β) =
∂3s(t;β)
∂βk∂βl∂βm

=
∂s2kl(t;β)
∂βm

, k, l,m = 1, . . . , p,

A11(t) =
∫ exp[θ0 + s(y;β0)]

1+ρ exp[θ0+s(y;β0)]
I[y≤t]dG(y), A11 =A11(∞), S11 =

ρ

1+ρ
A11,

A21(t) =
∫ exp[θ0 + s(y;β0)]

1+ρ exp[θ0 + s(y;β0)]
s1(y;β0)I[y≤t]dG(y), A21 =A21(∞),

S21 =
ρ

1+ρ
A21,

A22 =
∫ exp[θ0 + s(t;β0)]

1 + ρ exp[θ0 + s(t;β0)]
s1(t;β0)sτ

1(t;β0)dG(t), S22 =
ρ

1 + ρ
A22,

A =
(A11 A

τ
21

A21 A22

)
, S=

(S11 S
τ
21

S21 S22

)
=

ρ

1 + ρ
A, Σ =

1+ρ
ρ

[
A−1−

(1 + ρ 0
0 0

)]
.

In order to formulate our results, we state some assumptions.
(A1) There exists a neighborhood Θ0 of the true parameter point β0 such that

for all t, the function r(t;β) admits all third derivatives ∂3r(t;β)
∂βk∂βl∂βm

for all
β ∈ Θ0.
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(A2) There exists a function Q1 such that |s1k(t;β)|≤ Q1(t) for all β ∈ Θ0 and
k = 1, . . . , p, where q1j =

∫
Qj

1(y){1 + ρ exp[θ0 + s(y;β0)]}dG(y) <∞, j =
1, 2, 3.

(A3) There exists a function Q2 such that |s2kl(t;β)|≤ Q2(t) for all β ∈ Θ0 and
k, l = 1, . . . , p, where q2j =

∫
Qj

2(y){1+ρ exp[θ0+s(y;β0)]}dG(y) <∞, j =
1, 2.

(A4) There exists a function Q3 such that |s3klm(t;β)|≤ Q3(t) for all β ∈ Θ0 and
k, l,m = 1, . . . , p, where q3 =

∫
Q3(y){1 + ρ exp[θ0 + s(y;β0)]}dG(y) <∞.

The first theorem concerns the strong consistency and the asymptotic dis-
tribution of (θ̃, β̃).

Theorem 3.1. Suppose that model (1.2) and Assumptions (A1)–(A4) hold, and
that A is positive definite.
(a) As n → ∞, with probability 1 there exists a sequence (θ̃, β̃) of roots of the

system of score equations (2.3) such that (θ̃, β̃) is strongly consistent for es-
timating (θ0, β0).

(b) As n→ ∞, one can write(
θ̃ − θ0
β̃ − β0

)
=

1
n
S−1

(∂�(θ0,β0)
∂θ

∂�(θ0,β0)
∂β

)
+ op(n−1/2), (3.1)

where ∂�(θ0,β0)
∂θ = ∂�(θ,β)

∂θ |(θ,β)=(θ0,β0)
and ∂�(θ0,β0)

∂β = ∂�(θ,β)
∂β |(θ,β)=(θ0,β0)

. As a
result,

√
n

(
θ̃ − θ0
β̃ − β0

)
d−→ Np+1(0,Σ). (3.2)

We now establish the weak convergence of
√
n(G̃− Ĝ) to a Gaussian process

by representing G̃− Ĝ as the mean of a sequence of independent and identically
distributed stochastic processes with a remainder term of order op(n−1/2).

Theorem 3.2. Under the conditions of Theorem 3.1, one can write G̃(t)−Ĝ(t) =
H1(t) − G̃(t) −H2(t) +Rn(t), where

H1(t) =
1
n0

n∑
i=1

I[Ti≤t]

1+ρ exp[θ0 + s(Ti;β0)]
,

(3.3)

H2(t) =
ρ

n
(A11(t), Aτ

21(t))S
−1

(∂�(θ0,β0)
∂θ

∂�(θ0,β0)
∂β

)
,

and the remainder term Rn(t) satisfies sup−∞≤t≤∞ |Rn(t)| = op(n−1/2). Then
√
n(G̃−Ĝ) D−→W in D[−∞,∞]p, where W is a Gaussian process with continuous
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sample paths and satisfies, for −∞ ≤ s, t ≤ ∞,

EW (t) = 0, EW (s)W (t) = ρ(1+ρ)
[
A11(s∧t)−(A11(s), Aτ

21(s))A
−1

(
A11(t)
A21(t)

)]
.

(3.4)
Theorem 3.2 forms the basis for testing the validity of model (1.2) on the basis

of the test statistic ∆n in (2.4). Let wα denote the α-quantile of the distribution
of sup−∞≤t≤∞ |W (t)|. According to Theorem 3.2 and the Continuous Mapping
Theorem (Billingsley (1968, p.30)), we have

lim
n→∞P (∆n ≥ w1−α) = lim

n→∞P
(

sup
−∞≤t≤∞

√
n
∣∣∣G̃(t) −G(t)

∣∣∣ ≥ w1−α

)
= P

(
sup

−∞≤t≤∞
|W (t)| ≥ w1−α

)
= α.

Thus, our proposed goodness-of-fit test procedure has the following decision
rule: reject model (1.2) at level α if ∆n > w1−α. In order for this proposed
test procedure to be useful in practice, we need to find the distribution of
sup−∞≤t≤∞ |W (t)| and be able to calculate the (1 − α)-quantile w1−α. Un-
fortunately, no analytic expressions appear to be available for the distribution
function of sup−∞≤t≤∞ |W (t)| and the quantile function thereof. Alternatively,
one may employ a bootstrap procedure as described in the next section.

4. A Bootstrap Procedure

In this section we present a bootstrap procedure which can be employed
to approximate the quantile w1−α defined at the end of the last section. If
model (1.2) is valid, we can generate bootstrap data, respectively, from G̃ and
H̃, where G̃ is given by (2.1) and H̃ is defined in Remark 2.3. Specifically,
let X∗

1 , . . . ,X
∗
n0

be a random sample from G̃ and, independent of the X∗
i , let

Z∗
1 , . . . , Z

∗
n1

be a random sample from H̃. Note that some of the X∗
i could come

from Z1, . . . , Zn1 and some of the Z∗
j could be fromX1, . . . ,Xn0 . Let {T ∗

1 , . . . , T
∗
n}

denote the combined bootstrap sample {X∗
1 , . . . ,X

∗
n0

;Z∗
1 , . . . , Z

∗
n1
} and (θ̃∗, β̃∗)

be the solution to the system of score equations in (2.3) with the T ∗
i in place of

the Ti. Moreover, similar to (2.1)–(2.4), let Ĝ∗(t) = 1
n0

∑n0
i=1 I[X∗

i ≤t] and

G̃∗(t) =
n∑

i=1

p̃∗i I[T ∗
i ≤t] =

1
n0

n∑
i=1

I[T ∗
i ≤t]

1 + ρ exp[θ̃∗ + s(T ∗
i ; β̃∗)]

.

Then the corresponding bootstrap version of the test statistic ∆n in (2.4) is given
by ∆∗

n(t) =
√
n|G̃∗(t) − Ĝ∗(t)| and ∆∗

n = sup−∞≤t≤∞ ∆∗
n(t).

We now study the asymptotic behavior of (θ̃∗, β̃∗), G̃∗(t), and ∆∗
n by deriving

the bootstrap versions of the representations and weak convergence as given in
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Theorems 3.1 and 3.2. Let An11(t), An21(t), An11, An21, An22, Sn11, Sn21, Sn22,
An, Snn, and Σn be the bootstrap versions of previously defined expressions, with
(θ0, β0, G) replaced by (θ̃, β̃, G̃). Furthermore, let

∂�∗(θ̃, β̃)
∂θ

= n1 −
n∑

i=1

ρ exp[θ̃ + s(T ∗
i ; β̃)]

1 + ρ exp[θ̃ + s(T ∗
i ; β̃)]

,

∂�∗(θ̃, β̃)
∂β

=
n1∑
j=1

s1(Z∗
j ; β̃) −

n∑
i=1

ρ exp[θ̃ + s(T ∗
i ; β̃)]

1 + ρ exp[θ̃ + s(T ∗
i ; β̃)]

s1(T ∗
i ; β̃).

Theorem 4.1. Suppose that model (1.2) and Assumptions (A1)–(A4) hold, A is
positive definite, and

∫
Q2

1(y)Q2(y){1 + ρ exp[θ0 + s(y;β0)]}dG(y) <∞.

(a) With probability one as n→ ∞,(
θ̃∗ − θ̃

β̃∗ − β̃

)
=

1
n
S−1

nn

(∂�∗(θ̃,β̃)
∂θ

∂�∗(θ̃,β̃)
∂β

)
+ o∗p(n

−1/2), (4.1)

where o∗p stands for op in bootstrap probability under G̃ or H̃, and

√
n

(
θ̃∗ − θ̃

β̃∗ − β̃

)
d−→ Np+1(0,Σ). (4.2)

(b) With probability one as n→ ∞, G̃∗(t)−Ĝ∗(t) = H∗
1 (t)−Ĝ∗(t)−H∗

2 (t)+R∗
n(t),

where

H∗
1 (t) =

1
n0

n∑
i=1

I[T ∗
i ≤t]

1 + ρ exp[θ̃ + s(T ∗
i ; β̃)]

,

H∗
2 (t) =

ρ

n
(An11(t), Aτ

n21(t))S
−1
nn

(∂�∗(θ̃,β̃)
∂θ

∂�∗(θ̃,β̃)
∂β

)
,

and the remainder term R∗
n(t) satisfies sup−∞≤t≤∞ |R∗

n(t)| = o∗p(n−1/2). With

probability one as n → ∞,
√
n(G̃∗ − Ĝ∗) D−→ W in D[−∞,∞]p, where W is

the Gaussian process defined in Theorem 3.2.

Theorem 3.2 and part (b) of Theorem 4.1 indicate that the limit process of√
n(G̃∗−Ĝ∗) agrees with that of

√
n(G̃−Ĝ). It follows from the Continuous Map-

ping Theorem that ∆∗
n = sup−∞≤t≤∞

√
n|G̃∗(t) − Ĝ∗(t)| has the same limiting

behavior as does ∆n = sup−∞≤t≤∞
√
n|G̃(t) −G(t)|. Thus, we can approximate

the quantiles of the distribution of ∆n by those of ∆∗
n. This heuristic argument

is justified in Theorem 4.2 with Assumption (A5).

(A5) The distribution of sup−∞≤t≤∞ |W (t)| is continuous.
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By Theorem 1 of Tsirel’son (1975), when p = 1, this distribution is contin-
uous except perhaps at the lower endpoint of its support. (See also Assumption
4 of Bickel and Krieger (1989)). In case p > 1, according to Theorem 6.9.2 of
Adler (1981), the function S(w) = P (sup−∞≤t≤∞ |W (t)| ≥ w) is continuous for
sufficiently large w.

Theorem 4.2. Suppose that model (1.2) and Assumptions (A1)–(A5) hold, and
A is positive definite. Fix α with 0 < α < 1, let wn

1−α = inf{t; P ∗(∆∗
n ≤ t) ≥

1 − α}, where P ∗ stands for the bootstrap probability under G̃ or H̃. Then as
n→ ∞,

lim
n→∞P (∆n ≥ wn

1−α) = lim
n→∞P

(
sup

−∞≤t≤∞

√
n|G̃(t) − Ĝ(t)| ≥ wn

1−α

)
= α.

Theorem 4.2 immediately implies the following bootstrap decision rule: reject
model (1.2) at level α if ∆n > wn

1−α. We now apply the proposed goodness-of-fit
test procedure to two real data sets.

Example 4.1. The data set in Hosmer and Lemeshow (1989, p.3) gives age
and the status of coronary heart disease for 100 subjects who participated in a
study. Hosmer and Lemeshow analyzed the relationship between age and the
status of coronary heart disease by employing the standard logistic regression
model. Qin and Zhang (1997) also analyzed this data set by testing the validity
of the logistic regression model. Their analysis supports the goodness-of-fit for
the logistic regression model. Here we analyze this data set from a different
prospective on the basis of the following odds-linear model:

P (Y = 1|X = x)
1 − P (Y = 1|X = x)

= α0 + α1x1 + · · · + αpxp. (4.3)

Let θ∗ = α0 and βk = αk/α0 for k = 1, . . . , p. Then it is seen that model (4.3)
is a special case of model (1.1) with r(x;β) = 1 + xβ and is equivalent to model
(1.2) with θ = log θ∗ + log 1−π

π = logα0 + log 1−π
π and s(x;β) = log r(x;β) =

log(1 + xβ). Here we consider the case p = 1. Let X denote age and Y = 1 or
0 represent the presence or absence of coronary heart disease. Since the sample
data (Xi, Yi), i = 1, . . . , 100, can be thought of as being drawn independently
from the joint distribution of (X,Y ), Remark 2.4 implies that we can use the
statistic ∆n in (2.4) to test the validity of model (4.3). The system of score
equations in (2.3) yields (θ̃, β̃) = (−7.62, 47.47). A plot (not shown here) of the
estimated profile semiparametric log-likelihood function �̃(β) = �(θ̃, β) of β for
β ∈ [10, 100] indicates that β̃ indeed maximizes �̃(β) with �̃(β̃) + n log(n0) =
−50.26353. Furthermore, the proposed test statistic ∆n in (2.4) is identical to
∆n = 1.55. Moreover, the observed P-value is found to be 0.005 based on 1000
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bootstrap replications of ∆∗
n. Consequently, we can conclude that the odds-linear

model (4.3) is not appropriate for studying the relationship between age and the
status of coronary heart disease for this data set.

Figure 1 shows the curves of G̃ and Ĝ along with the curves H̃ and Ĥ based
on this data set. The plot clearly supports our conclusion.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

20 30 40 50 60 70

Age (years)

P
ro

ba
bi

lit
y

Figure 1. Example 4.1: Estimated cumulative distribution functions G̃, Ĝ, H̃
and Ĥ. The solid curve and dashed curve on the upper left represent G̃ and
Ĝ, respectively, whereas the solid curve and dashed curve on the lower right
stand for H̃ and Ĥ, respectively.

Example 4.2. Bliss (1935) reported the number of beetles killed after five
hours’ exposure to gaseous carbon disulphide at various concentrations. The
data are also listed in Table 4.7 of Agresti (1990, p.106). Agresti (1990) analyzed
the relationship between beetle mortality and the log dosage by employing the
model with complementary log-log link:

P (Y = 1|X = x) = 1 − exp[− exp(β1 + β2x)]. (4.4)

He reported a good fit with a P-value of 0.744. Let X denote log dosage and let
Y = 1 if the beetle dies and Y = 0 if the beetle survives. Then model (1.2) holds
with θ = log 1−π

π and s(x;β) = log{1 − exp[− exp(β1 + β2x)]} + exp(β1 + β2x).
Since the sample data (Yi,Xi), i = 1, . . . , 481, can be thought of as being drawn
independently from the joint distribution of (Y,X), Remark 2.4 implies that we
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can use the statistic ∆n in (2.4) to test the validity of model (4.4). Under model
(1.2), we found (θ̃, β̃1, β̃2) = (−3.21090,−18.47785, 10.96803) and ∆n = 0.24856
with the observed P-value 0.667 based on 1000 bootstrap replications of ∆∗

n,

closely agreeing with Agresti’s (1990) conclusion.
Figure 4 shows the curves of G̃ and Ĝ along with the curves H̃ and Ĥ based

on this data set. Figure 4 demonstrates that the curve of G̃ (H̃) bears a strong
resemblance to that of Ĝ (Ĥ), thus further indicating a good fit of model (4.4)
or (1.2) to these data.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.70 1.75 1.80 1.85

P
ro

ba
bi

lit
y

Log Dosage

Figure 4. Example 4.2: Estimated cumulative distribution functions G̃, Ĝ, H̃
and Ĥ. The solid curve and dashed curve on the upper left represent G̃ and
Ĝ, respectively, whereas the solid curve and dashed curve on the lower right
stand for H̃ and Ĥ, respectively.

5. Confidence Bands for G

In this section we demonstrate that the results of Theorems 3.2 and 4.1 can
be adapted to construct confidence bands on G under model (1.2). To this end,
we first establish the weak convergence of the stochastic process

√
n(G̃−G) and

its bootstrap counterpart.
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Theorem 5.1. Suppose that model (1.2) and Assumptions (A1)–(A4) hold, and
A is positive definite.
(a) As n→ ∞,

√
n(G̃−G) D−→ U in D[−∞,∞]p, where U is a Gaussian process

with continuous sample paths and satisfies, for −∞ ≤ s, t ≤ ∞,

EU(t) = 0, EU(s)U(t) =

(1+ρ)
[
G(s ∧ t)−G(s)G(t)−ρA11(s ∧ t)+ρ(A11(s), Aτ

21(s))A
−1

(
A11(t)
A21(t)

)]
.

(b) With probability one as n→ ∞,
√
n(G̃∗ − G̃) D−→ U in D[−∞,∞]p.

Theorem 5.1 indicates that the limit process of
√
n(G̃∗ − G̃) agrees with that

of
√
n(G̃ − G), and thus forms the basis for constructing confidence bands for

G under model (1.2). According to the Continuous Mapping Theorem, we have
sup−∞≤t≤∞

√
n|G̃(t)−G(t)| d−→ sup−∞≤t≤∞ |U(t)| and sup−∞≤t≤∞

√
n|G̃∗(t)−

G̃(t)| d−→ sup−∞≤t≤∞ |U(t)| almost surely. As a result, we can approximate
the quantiles of the distribution of sup−∞≤t≤∞

√
n|G̃(t) − G(t)| by those of

the distribution of sup−∞≤t≤∞
√
n|G̃∗(t) − G̃(t)|. For 0 < α < 1, let un

1−α =
inf{t; P ∗(sup−∞≤t≤∞

√
n|G̃∗(t) − G̃(t)| ≤ t) ≥ 1 − α}, then a level 1 − α boot-

strap confidence band for G under model (1.2) is given by(
G̃(·) − un

1−α√
n
, G̃(·) +

un
1−α√
n

)
. (5.1)

The bootstrap confidence bands in (5.1) are forced to be symmetric and
will have the same width at all points regardless of the amount of data-support.
Alternatively, non-forced symmetric bootstrap confidence intervals can be calcu-
lated as follows. For each bootstrap replicate, estimate the covariance matrix of
U in part (a) of Theorem 5.1, so that we have an estimate of Var(G̃(Ti))j for
each i = 1, . . . , n. Then for each i we average these variance estimates across the
bootstrap samples to get an overall estimate of each Var(G̃(Ti)). Then a 1 − α

bootstrap pointwise confidence interval for G(Ti) is(
G̃(Ti) − z1−α

2

√
Var(G̃(Ti)), G̃(Ti) + z1−α

2

√
Var(G̃(Ti))

)
, (5.2)

where z1−α
2

satisfies P (Z ≤ z1−α
2
) = 1− α

2 with Z ∼ N(0, 1). Another alternative
is the 1−α Bonferroni simultaneous confidence intervals (Johnson and Wichern
(1998, p.250)) for {G(Ti) : i = 1, . . . , n} given by(
G̃(Ti)−t1− α

2n
(n−1)

√
Var(G̃(Ti)), G̃(Ti)+ t1− α

2n
(n−1)

√
Var(G̃(Ti))

)
, i = 1, . . . , n,

(5.3)



852 BIAO ZHANG

where t1− α
2n

(n − 1) satisfies P (T ≤ t1− α
2n

(n − 1)) = 1 − α
2n with T ∼ tn−1.

We adopt the convention that when the left endpoint in (5.1), (5.2), or (5.3) is
negative, it is replaced by 0, and when the right endpoint in (5.1), (5.2), or (5.3)
is greater than 1, it is replaced by 1.
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Figure 2. Example 4.1: Estimated cumulative distribution function G̃ (solid
curve), 95% confidence band (5.1) (dashed curve), 95% pointwise confidence
interval (5.2) (dotted curve), and 95% Bonferroni simultaneous confidence
intervals (5.3) (thick curve).

For the odds-linear model and the data set described in Example 4.1, Figure
2 shows the curve of G̃ along with the 95% confidence band (5.1), 95% point-
wise confidence interval (5.2), and the 95% Bonferroni simultaneous confidence
intervals (5.3), whereas Figure 3 shows the curve of Ĝ together with the 95%
standard confidence band and pointwise and Bonferroni confidence intervals for
G constructed from the control data X1, . . . ,Xn0 . Similarly, Figures 5 and 6 dis-
play these curves, bands, and intervals for model (4.4) and the data set described
in Example 4.2. The confidence bands and intervals in Figures 2, 3, 5, and 6 are
constructed based on 1000 bootstrap samples. In both examples, we found that
500 bootstrap samples or more are needed to get reliable variance estimates and
confidence bands.
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Figure 3. Example 4.1: Estimated cumulative distribution function Ĝ (solid
curve), 95% standard confidence band (dashed curve), 95% standard point-
wise confidence interval (dotted curve), and 95% standard Bonferroni simul-
taneous confidence intervals (thick curve).

For Example 4.1, the pointwise confidence interval (5.2) is narrower than
the Bonferroni simultaneous confidence intervals (5.3), which in turn are nar-
rower than the confidence band (5.1). For Example 4.2, the pointwise confidence
interval (5.2) is narrower than the Bonferroni simultaneous confidence intervals
(5.3) and the confidence band (5.1), and yet the Bonferroni simultaneous con-
fidence intervals (5.3) are wider (narrower) than the confidence band (5.1) for
lower (higher) log dosage.

6. A Simulation Study

We now assess, via simulation, the finite sample performance of the maxi-
mum semiparametric likelihood estimator (θ̃, β̃) in (2.3) for the odds-linear model
described in Example 4.1 with s(x;β) = log(1 + xβ). Considering that there are
other methods that could be used to estimate (θ, β,G), we may, for example,
estimate G by Ĝ(x) = 1

n0

∑n0
i=1 I[Xi≤x] based on the control sample X1, . . . ,Xn0 ,
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and then estimate (θ, β) by the case sample Z1, . . . , Zn1 . This approach is ad
hoc but is computationally simple. Specifically, if we equate the sample mean of
Z1, . . . , Zn1 to the population mean of H with G replaced by Ĝ along with the
fact that

∫
dH(x) =

∫
exp[θ+s(x;β)]dG(x) = 1, we may estimate (θ, β) by (θ̂, β̂)

defined to be a solution to the following system of equations:

1
n0

n0∑
i=1

exp[θ + s(Xi;β)] = 1,
1
n0

n0∑
i=1

Xi exp[θ + s(Xi;β)] = Z̄.

Then θ̂ = − log(1 + β̂X̄) and β̂ = Z̄−X̄
S2−X̄Z̄

, where S2 = 1
n0

∑n0
i=1X

2
i . It can

be shown that
√
n(θ̂ − θ) d−→ N(0, σ2

θ ) and
√
n(β̂ − β) d−→ N(0, σ2

β), where

σ2
θ = µ2

1e
2θσ2

β and σ2
β = 1+ρ

ρ
ρσ2

X+σ2
Z

(µ2−µ1µZ )2 with µk =
∫
xkdG(x) for k = 1, 2, 3,

µZ = eθ(µ1 + βµ2), σ2
X = Var(X1), and σ2

Z = Var(Z1) = eθ(µ2 + βµ3) − µ2
Z . In

our simulation study, we assume that g(x) is the standard exponential density
function. Let β = 0.1 be fixed so that θ = −0.09531. Our aim is to compare
the performance of (θ̃, β̃) with that of (θ̂, β̂) by examining their biases, variances,
and relative efficiencies.
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Figure 5. Example 4.2: Estimated cumulative distribution function G̃ (solid
curve), 95% confidence band (5.1) (dashed curve), 95% pointwise confidence
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interval (5.2) (dotted curve), and 95% Bonferroni simultaneous confidence
intervals (5.3) (thick curve).
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Figure 6. Example 4.2: Estimated cumulative distribution function Ĝ (solid
curve), 95% standard confidence band (dashed curve), 95% standard point-
wise confidence interval (dotted curve), and 95% standard Bonferroni simul-
taneous confidence intervals (thick curve).

In our simulations, we considered sample sizes of (n0, n1) =(80, 80), (80, 120),
(120, 80), (120, 120). For each pair (n0, n1), we generated 1000 independent sets of
combined random samples from g(x) and h(x). Simulation results are summarized
in Tables 1 and 2.

In Table 1, Bias(θ̂) and Var(θ̂) stand for, respectively, the average of 1000
biases of θ̂ and the sample variance of 1000 estimates θ̂, whereas Bias(θ̃) and
Var(θ̃) stand for, respectively, the average of 1000 biases of θ̃ and the sample
variance of 1000 estimates θ̃. In addition, we use V̂ar(θ̂) and V̂ar(θ̃) to represent,
respectively, the averages of 1000 estimated asymptotic variances of θ̂ and that
of θ̃. The estimated asymptotic variances of θ̃ are obtained from Σ in Theorem
3.3 with G̃ in place of G, whereas the estimated asymptotic variances of θ̂ are
obtained from σ2

θ with G replaced by Ĝ. Moreover, e(θ̂, θ̃) stands for the relative
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efficiency of θ̂ relative to θ̃, i.e., e(θ̂, θ̃) = Var(θ̃)/Var(θ̂). In Table 2, the notations
for β̂ and β̃ are similar to those of θ̂ and θ̃ in Table 1.

Tables 1 and 2 reveal that the biases and variances of (θ̃, β̃) are all smaller
than those of (θ̂, β̂), with relative efficiencies ranging from 0.48 to 0.80. In ad-
dition, both tables indicate that the estimated asymptotic variances of θ̃ and β̃

work well on average.

Table 1. Biases, variances, and efficiencies of θ̃ and θ̂.

(n0, n1) ρ Bias(θ̂) Bias(θ̃) Var(θ̂) Var(θ̃) V̂ar(θ̂) V̂ar(θ̃) e(θ̂, θ̃)

(80, 80) 1.00 −0.05746 −0.03489 0.05250 0.03756 0.02877 0.03965 0.71533
(80, 120) 1.50 −0.04994 −0.02670 0.04648 0.02975 0.02537 0.03161 0.64004
(120, 80) 0.67 −0.05288 −0.03745 0.04125 0.03297 0.02407 0.03361 0.79928
(120, 120) 1.00 −0.04671 −0.02879 0.03609 0.02529 0.01886 0.02535 0.70094

Table 2. Biases, variances, and efficiencies of β̃ and β̂.

(n0, n1) ρ Bias(β̂) Bias(β̃) Var(β̂) Var(β̃) V̂ar(β̂) V̂ar(β̃) e(β̂, β̃)

(80, 80) 1.00 0.12544 0.08277 0.15621 0.09059 0.04883 0.10724 0.57994
(80, 120) 1.50 0.11383 0.06801 0.14207 0.06885 0.06201 0.07605 0.48464
(120, 80) 0.67 0.10423 0.07756 0.10114 0.06826 0.03894 0.07667 0.67497
(120, 120) 1.00 0.09333 0.06114 0.08542 0.04713 0.02867 0.05206 0.55175

7. Proofs

We present six lemmas which will be used in the proof of the main results.
The proofs of Lemmas 7.1 and 7.3 are straightforward and are omitted. Lemma
7.2 can be proved by employing Example 2.10.10 of van der Vaart and Wellner
(1996, p.192). Throughout this section, the norm of a n1 × n2 matrix D =
(dij)n1×n2 is defined by ||D|| = (

∑n1
i=1

∑n2
j=1 d

2
ij)

1/2 for n1, n2 ≥ 1. Further, write

sn11 = −∂
2�(θ0, β0)
∂θ2

=
n∑

i=1

ρ exp[θ + s(Ti;β)]
{1 + ρ exp[θ + s(Ti;β)]}2 ,

sn21 = −∂
2�(θ0, β0)
∂θ∂β

=
n∑

i=1

ρ exp[θ + s(Ti;β)]
{1 + ρ exp[θ + s(Ti;β)]}2 s1(Ti;β),

sn22 = −∂
2�(θ0, β0)
∂β∂βτ

=
n∑

i=1

ρ exp[θ + s(Ti;β)]
{1 + ρ exp[θ + s(Ti;β)]}2 s1(Ti;β)sτ

1(Ti;β)

+
n∑

i=1

ρ exp[θ + s(Ti;β)]
1 + ρ exp[θ + s(Ti;β)]

s2(Ti;β)−
n1∑
j=1

s2(Zj ;β), Sn =

(
sn11 sτ

n21

sn21 sn22

)
,
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H0(t; θ, β) =
1
n0

n∑
i=1

ρ exp[θ + s(Ti;β)]
{1 + ρ exp[θ + s(Ti;β)]}2 I[Ti≤t], H0(t) = H0(t; θ0, β0),

H3(t; θ, β) =
1
n0

n∑
i=1

ρ exp[θ + s(Ti;β)]
{1 + ρ exp[θ + s(Ti;β)]}2 s1(Ti;β)I[Ti≤t],

H3(t) = H3(t; θ0, β0),

H4(t) =
1
n0

n0∑
i=1

ρ exp[θ0 + s(Xi;β0)]
1 + ρ exp[θ0 + s(Xi;β0)]

I[Xi≤t],

H12(t) =
1
n1

n1∑
j=1

ρI[Zj≤t]

1 + ρ exp[θ0 + s(Zj ;β0)]
. (7.1)

Lemma 7.1. Suppose that model (1.2) holds and A is positive definite. If B =
1
n Var

[( ∂�(θ0,β0)

∂θ
∂�(θ0,β0)

∂β

)]
, then

B =
ρ

1+ρ
A−ρ

(
A11

A21

)
(A11, A

τ
21), S−1BS−1 =

1+ρ
ρ

[
A−1−

(
1+ρ 0

0 0

)]
= Σ.

Lemma 7.2. Let Y1, . . . , Yn be independent p-dimensional random vectors with
distribution FY . Suppose that q is a real function such that E|q(Y1)| < ∞. Let
Λn(y) = 1

n

∑n
i=1 q(Yi)I[Yi≤y] and Λ(y) = E[q(Y1)I[Y1≤y]]. Then sup−∞≤y≤∞

|Λn(y) − Λ(y)| a.s.−→ 0.

Lemma 7.3. Suppose that model (1.2) holds and A is positive definite. For
−∞ ≤ s, t ≤ ∞, we have

Cov(
√
n[H1(s) − Ĝ(s)],

√
n[H1(t) − Ĝ(t)])

= ρ(1 + ρ)A11(s ∧ t) − ρ(1 + ρ)2A11(s)A11(t),

Cov(
√
n[H1(s) − Ĝ(s)],

√
nH2(t)) = Cov(

√
nH2(s),

√
nH2(t))

= ρ(1 + ρ)(A11(t), Aτ
21(t))A

−1

(
A11(s)
A21(s)

)
− ρ(1 + ρ)2A11(s)A11(t),

where H1(t) and H2(t) are defined in (3.3).

Lemma 7.4. Suppose that model (1.2) and Assumption (A2) hold. If A is
positive definite, then the stochastic process {√n[H1(t) − Ĝ(t) −H2(t)], −∞ ≤
t ≤ ∞} is tight in D[−∞,∞]p.

Proof. First, it is easy to see from (7.1) that
√
n[H1(t) − Ĝ(t) − H2(t)] =√

n[H12(t)−ρA11(t)]−
√
n[H4(t)−ρA11(t)]−

√
nH2(t). Let F = {I(−∞,t] : t ∈ Rp}

be the collection of all indicator functions of lower rectangles (−∞, t] in Rp.
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According to classical empirical process theory, F is a PX -Donsker class as well
as a PZ -Donsker class, where PX is the law of X1 and PZ is the law of Z1. Let

f0(y) =
ρ exp[θ0 + s(y;β0)]

1 + ρ exp[θ0 + s(y;β0)]
and f1(y) =

ρ

1 + ρ exp[θ0 + s(y;β0)]
.

Then it is seen that both f0 and f1 are uniformly bounded functions. According
to Example 2.10.10 of van der Vaart and Wellner (1996, p.192), we can conclude
that F · f0 is a PX -Donsker class and F · f1 is a PZ -Donsker class. Let Pn0 =
1
n0

∑n0
i=1 δXi be the empirical measure of X1, . . . ,Xn0 and Pn1 = 1

n1

∑n1
j=1 δZj be

the empirical measure of Z1, . . . , Zn1 , where δx is the measure with mass one at
x. Then it can be shown, after some algebra, that

√
n0(Pn0 − PX)(I(−∞,t]f0) =√

n0[H4(t)−ρA11(t)] and
√
n1(Pn1 −PZ)(I(−∞,t]f1) =

√
n1[H12(t)−ρA11(t)]. As

a result, there exist two zero-mean Gaussian processes B0 and B1 such that

√
n0(H4−ρA11)

D−→ B0 in D[−∞,∞]p,
√
n1(H12−ρA11)

D−→ B1 in D[−∞,∞]p.
(7.2)

Thus, the stochastic processes {√n0[H4(t) − ρA11(t)], − ∞ ≤ t ≤ ∞} and
{√n1[H12(t) − ρA11(t)], − ∞ ≤ t ≤ ∞} are tight in D[−∞,∞]p. To complete
the proof, it suffices to show that the stochastic process {√nH2(t), −∞ ≤ t ≤ ∞}
is tight in D[−∞,∞]p. For k = 0, 1, . . . , p, let

A21k(t) =
∫ exp[θ0 + s(y;β0)]

1 + ρ exp[θ0 + s(y;β0)]
s1k(y;β0)I[y≤t]dG(y),

L1k =
n0∑
i=1

ρ exp[θ0 + s(Xi;β0)]
1 + ρ exp[θ0 + s(Xi;β0)]

s1k(Xi;β0)

−n0

∫
ρ exp[θ0 + s(y;β0)]

1 + ρ exp[θ0 + s(y;β0)]
s1k(y;β0)dG(y),

L2k =
n1∑
j=1

1
1 + ρ exp[θ0 + s(Zj ;β0)]

s1k(Zj ;β0)

−n0

∫
ρ exp[θ0 + s(y;β0)]

1 + ρ exp[θ0 + s(y;β0)]
s1k(y;β0)dG(y).

Then EL1k = EL2k = 0 for k = 0, 1, . . . , p. Furthermore, it is seen from (2.3)
that

(A11(t), Aτ
21(t)) = (A210(t), A211(t), . . . , A21p(t)),

(∂�(θ0,β0)
∂θ

∂�(θ0,β0)
∂β

)
=


L20 − L10

L21 − L11
...

L2p − L1p

 .
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Consequently, if S−1 = (sjk), we can write

√
nH2(t) =

ρ√
n

(A11(t), Aτ
21(t))S

−1

(∂�(θ0,β0)
∂θ

∂�(θ0,β0)
∂β

)

=
ρ√
n

p∑
k=0

p∑
m=0

skmA21k(t)(L2m − L1m).

Let U = {ut(·) : t ∈ Rp} ∪ {Uk(·) : k = 0, 1, . . . , p} and V = {vt(·) : t ∈
Rp} ∪ {Vk(·) : k = 0, 1, . . . , p} be two classes of real functions on Rp, where

Uk(y) =
ρ2 exp[θ0 + s(y;β0)]

1 + ρ exp[θ0 + s(y;β0)]
s1k(y;β0),

k = 0, 1, . . . , p,
Vk(y) =

ρ2

1 + ρ exp[θ0 + s(y;β0)]
s1k(y;β0),

ut(y) =
∑p

m=0 wm(t)Um(t), vt(y) =
∑p

m=0 wm(t)Vm(t), and wm(t) =
∑p

k=0 s
km

A21k(t) for m = 0, 1, . . . , p. Since each member of U can be expressed as a linear
combination of a fixed, finite set of functions U0, U1, . . . , Up in U and each member
of V can be expressed as a linear combination of a fixed, finite set of functions
V0, V1, . . . , Vp in V, both U and V are finite-dimensional vector spaces of dimension
at most p + 1. According to Lemma 2.6.15 of van der Vaart and Wellner (1996,
p.146), both U and V are VC-subgraph classes of index smaller than or equal
to p + 3. Consequently, according to Theorems 2.6.7 and 2.5.2 of van der Vaart
and Wellner (1996, pp.141, 127), we can conclude that U is a PX -Donsker class
and V is a PZ -Donsker class. Since it can be shown, after some algebra, that√
n1(Pn1 −PZ)(vt)−√

n0(Pn0 −PX)(ut) =
√

1 + ρ
√
nH2(t), we can conclude by

employing a similar argument as in (7.2) that the stochastic process {√nH2(t), −
∞ ≤ t ≤ ∞} is tight in D[−∞,∞]p, and this completes the proof of Lemma 7.4.

Lemma 7.5. Under the conditions of Theorem 3.1, we have sup−∞≤t≤∞|G̃(t)−
Ĝ(t)| a.s.−→ 0 as n→ ∞.

Proof. Since EH4(t) = EH12(t) = ρA11(t) and (θ̃, β̃) is strongly consistent by
part (a) of Theorem 3.1, applying a first-order Taylor expansion yields

G̃(t) − Ĝ(t) = [H12(t) − EH12(t)] − [H4(t) − EH4(t)] −H0(t; θ0∗, β0∗)(θ̃ − θ0)

−H3(t; θ0∗, β0∗)(β̃ − β0), (7.3)

where (θ0∗, β0∗) satisfies |θ0∗−θ0|2+||β0∗−β0||2 ≤ |θ̃−θ0|2+||β̃−β0||2. According
to Lemma 7.2, we have

sup
−∞≤t≤∞

|H12(t) − EH12(t)| a.s.−→ 0, sup
−∞≤t≤∞

|H4(t) − EH4(t)| a.s.−→ 0. (7.4)
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Furthermore, we have

sup
−∞≤t≤∞

|H0(t; θ0∗, β0∗)(θ̃ − θ0)|≤ (1 + ρ)|θ̃ − θ0| a.s.−→ 0. (7.5)

Moreover, by Assumption (A2), we have

sup
−∞≤t≤∞

|H3(t; θ0∗, β0∗)(β̃−β0)|≤ ||β̃−β0||
(

1
n0

n∑
i=1

Q1(Ti)
)

a.s.= ||β̃−β0||O(1) a.s.−→ 0.

(7.6)
Therefore, Lemma 7.5 follows from (7.3)–(7.6). The proof is completed.

Lemma 7.6. Suppose that conditions of Theorem 3.1 hold.
(a) Let q(t, θ, β) be a function such that ∂q(t,θ,β)

∂θ and ∂q(t,θ,β)
∂β exsit for (θ, β) ∈

Θ1 × Θ0, where Θ1 is some neighborhood of θ0. Suppose that there exists a
function Q such that

|q(t, θ, β)| ≤ Q(t),
∣∣∣∣∂q(t, θ, β)

∂θ

∣∣∣∣≤ Q(t),
∣∣∣∣∂q(t, θ, β)

∂βk

∣∣∣∣≤ Q(t)

for all (θ, β) ∈ Θ1 × Θ0 and k = 1, . . . , p.
Suppose further that

∫
Q(y)[1 + Q1(y)]{1 + ρ exp[θ0 + s(y;β0)]}dG(y) < ∞.

Then EG̃[q(X∗
1 , θ̃, β̃)] a.s.−→ EG[q(X1, θ0, β0)] =

∫
q(y, θ0, β0)dG(y) as n→ ∞.

(b) If
∫ |q(y)|[1+Q1(y)]{1+ρ exp[θ0 +s(y;β0)]}dG(y) <∞, then EG̃[q(X∗

1 )] a.s.−→
EG[q(X1)] =

∫
q(y)dG(y) as n→ ∞.

(c) If
∫
Q2

1(y)Q2(y){1 + ρ exp[θ0 + s(y;β0)]}dG(y) <∞, then An
a.s.= A+ o(1) as

n→ ∞ and An is positive definite for sufficiently large n with probability 1.

Proof. For part (a), since (θ̃, β̃) is strongly consistent by part (a) of Theorem
3.1, applying a first-order Taylor expansion yields

EG̃[q(X∗
1 , θ̃, β̃)] =

n∑
i=1

p̃iq(Ti, θ̃, β̃) =
1
n0

n∑
i=1

q(Ti, θ̃, β̃)
1 + ρ exp[θ̃ + s(Ti; β̃)]

=Dn1 +Dn2 +Dn3, (7.7)

where

Dn1 =
1

n0

n∑
i=1

q(Ti, θ0, β0)

1 + ρ exp[θ0 + s(Ti; β0)]
,

Dn2 =

[
1

n0

n∑
i=1

{
1 + ρ exp[θ0∗ + s(Ti; β0∗)]

}
∂q(Ti,θ0∗,β0∗)

∂θ
− q(Ti, θ0∗, β0∗)ρ exp[θ0∗ + s(Ti; β0∗)]{

1 + ρ exp[θ0∗ + s(Ti; β0∗)]

}2

]
(θ̃ − θ0),

Dn3 =

[
1

n0

n∑
i=1

{
1+ρ exp[θ0∗+s(Ti; β0∗)]

}
∂q(Ti,θ0∗,β0∗)

∂βτ −ρ exp[θ0∗ + s(Ti; β0∗)]q(Ti, θ0∗, β0∗)sτ
1 (Ti; β0∗){

1+ρ exp[θ0∗+s(Ti; β0∗)]

}2

]
(β̃−β0)
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with (θ0∗, β0∗) satisfying |θ0∗−θ0|2+||β0∗−β0||2 ≤ |θ̃−θ0|2+||β̃−β0||2. Applying
part (a) of Theorem 3.1 and the Strong Law of Large Numbers gives

Dn1 =
1
n0

n0∑
i=1

q(Xi, θ0, β0)
1 + ρ exp[θ0 + s(Xi;β0)]

+ ρ
1
n1

n1∑
j=1

q(Zj , θ0, β0)
1 + ρ exp[θ0 + s(Zj ;β0)]

a.s.−→
∫ ∞

−∞
q(y, θ0, β0)dG(y),

|Dn2| ≤
[

1
n0

n∑
i=1

(∣∣∣∣∂q(Ti, θ0∗, β0∗)
∂θ

∣∣∣∣+|q(Ti, θ0∗, β0∗)|
)]

|θ̃ − θ0|

≤ 2
[

1
n0

n∑
i=1

Q(Ti)
]
|θ̃ − θ0| a.s.−→ 0,

|Dn3| ≤
[

1
n0

n∑
i=1

(∣∣∣∣∣∣∣∣∂q(Ti, θ0∗, β0∗)
∂β

∣∣∣∣∣∣∣∣+|q(Ti, θ0∗, β0∗)| ||s1(Ti;β0∗)||
)]

||β̃ − β0||

=
√
p

[
1
n0

n∑
i=1

Q(Ti)[1 +Q1(Ti)]
]
||β̃ − β0|| a.s.−→ 0. (7.8)

Combining (7.7) with (7.8) completes the proof of part (a). Parts (b) and (c) are
straightforward consequences of part (a). The proof is completed.

Proof of Theorem 3.1. Part (a) can be proved by employing a similar approach
as in the proof of the consistency of (θ̃, β̃) in the logistic regression model in
Prentice and Pyke (1979).

For part (b), since (θ̃, β̃) is strongly consistent by part (a), expanding ∂�(θ̃,β̃)
∂θ

and ∂�(θ̃,β̃)
∂β at (θ0, β0) gives

0 =
∂�(θ̃, β̃)
∂θ

=
∂�(θ0, β0)

∂θ
+
∂2�(θ0, β0)

∂θ2
(θ̃ − θ0) +

∂2�(θ0, β0)
∂θ∂βτ

(β̃ − β0) + op(δn),

0 =
∂�(θ̃, β̃)
∂β

=
∂�(θ0, β0)

∂β
+
∂2�(θ0, β0)
∂θ∂β

(θ̃ − θ0) +
∂2�(θ0, β0)
∂β∂βτ

(β̃ − β0) + op(δn),

where δn = |θ̃−θ0|+||β̃−β0|| = op(1). Thus, Sn
( θ̃−θ0

β̃−β0

)
=
( ∂�(θ0,β0)

∂θ
∂�(θ0,β0)

∂β

)
+op(δn). Since

Sn = nS + op(n) by the Weak Law of Large Numbers and 1√
n

( ∂�(θ0,β0)

∂θ
∂�(θ0,β0)

∂β

)
= Op(1)

by the Central Limit Theorem, it follows that(
θ̃ − θ0
β̃ − β0

)
=

1
n
S−1

(∂�(θ0,β0)
∂θ

∂�(θ0,β0)
∂β

)
+ op(n−1/2)

1√
n

(∂�(θ0,β0)
∂θ

∂�(θ0,β0)
∂β

)
+ op(n−1δn)

=
1
n
S−1

(∂�(θ0,β0)
∂θ

∂�(θ0,β0)
∂β

)
+ op(n−1/2),
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thus establishing (3.1). To prove (3.2), it suffices to show that 1√
n
S−1

( ∂�(θ0,β0)

∂θ
∂�(θ0,β0)

∂β

) d−→
Np+1(0,Σ). Since each term in ∂�(θ0,β0)

∂θ and ∂�(θ0,β0)
∂β has mean 0, it follows from

the Multivariate Central Limit Theorem that 1√
n
B−1/2

( ∂�(θ0,β0)
∂θ

∂�(θ0,β0)
∂β

) d−→Np+1(0, Ip+1),

where B is defined in Lemma 7.1. By Slutsky’s Theorem and Lemma 7.1, we
have

1√
n
S−1

(∂�(θ0,β0)
∂θ

∂�(θ0,β0)
∂β

)
= S−1B1/2 1√

n
B−1/2

(∂�(θ0,β0)
∂θ

∂�(θ0,β0)
∂β

)
d−→ S−1B1/2Np+1(0, Ip+1)

d= Np+1(0,Σ).

The proof is complete.

Proof of Theorem 3.2. Since EH0(t) = ρA11(t), EH3(t) = ρA21(t), and (θ̃, β̃)
is strongly consistent, applying a first-order Taylor expansion and Theorem 3.1
gives, uniformly in t,

G̃(t) =
1
n0

n∑
i=1

I[Ti≤t]

1 + ρ exp[θ̃ + s(Ti; β̃)]

=H1(t) −H0(t)(θ̃ − θ0) −Hτ
3 (t)(β̃ − β0) + op(δn)

=H1(t) − (EH0(t),EHτ
3 (t))

(
θ̃ − θ0
β̃ − β0

)
−Rn1(t) + op(δn)

=H1(t) − ρ

n
(A11(t), Aτ

21(t))S
−1

(∂�(θ0,β0)
∂θ

∂�(θ0,β0)
∂β

)
+ op(n−1/2) −Rn1(t) + op(δn)

=H1(t) −H2(t) +Rn(t),

where δn = |θ̃ − θ0| + ||β̃ − β0|| and

Rn1(t) = [H0(t) − EH0(t),Hτ
3 (t) − EHτ

3 (t)]

(
θ̃ − θ0
β̃ − β0

)
,

Rn(t) = op(n−1/2) −Rn1(t) + op(δn).

It follows from part (b) of Theorem 3.1 that δn = Op(n−1/2). Moreover, it
can be shown by Assumption (A2) and Lemma 7.2 that sup−∞≤t≤∞ |Rn1(t)| =
op(n−1/2). As a result, sup−∞≤t≤∞ |Rn(t)| = op(n−1/2). To prove weak conver-

gence, it suffices to show that
√
n(H1−Ĝ−H2)

D−→W in D[−∞,∞]p. According
to (3.4) and Lemma 7.3, we have

E{√n[H1(t) − Ĝ(t) −H2(t)]} = 0,
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Cov(
√
n[H1(s) − Ĝ(s) −H2(s)],

√
n[H1(t) − Ĝ(t) −H2(t)])

= Cov(
√
n[H1(s) − Ĝ(s)),

√
n[H1(t) − Ĝ(t)]) − Cov(

√
nH2(s),

√
nH2(t))

= ρ(1 + ρ)A11(s ∧ t) − ρ(1 + ρ)2A11(s)A11(t)

−ρ(1 + ρ)(A11(s), Aτ
21(s))A

−1

(
A11(t)
A21(t)

)
+ ρ(1 + ρ)2A11(s)A11(t)

= ρ(1 + ρ)A11(s ∧ t) − ρ(1 + ρ)(A11(s), A21(s))A−1

(
A11(t)
A21(t)

)
= EW (s)W (t).

It then follows from the Central Limit Theorem for sample means and the
Cramer-Wold device that the finite-dimensional distributions of

√
n(H1−Ĝ−H2)

converge weakly to those of W . Thus, in order to prove
√
n(H1− Ĝ−H2)

D−→W
in D[−∞,∞]p, it is enough to show that the process {√n[H2(t)−Ĝ(t)−H2(t)], −
∞ ≤ t ≤ ∞} is tight in D[−∞,∞]p. But this has been established by Lemma
7.4. The proof is complete.

Proof of Theorem 4.1. For part (a), since (θ̃, β̃) is strongly consistent for
estimating (θ0, β0) by part (a) of Theorem 3.1, Θ0 in Assumption (A1) will
contain β̃ for sufficiently large n, with probability 1. Furthermore, the Strong
Law of Large Numbers yields q̃1j ≡ ∫∞

−∞Qj
1(y){1 + ρ exp[θ̃ + s(y; β̃)]}dG̃(y) =

1
n0

∑n
i=1Q

j
1(Ti)

a.s.−→ q1j for j = 1, 2, 3. Similarly, we have q̃2j ≡ ∫∞
−∞Qj

2(y){1 +
ρ exp[θ̃ + s(y; β̃)]}dG̃(y) a.s.−→ q2j for j = 1, 2 and q̃3 ≡ ∫∞

−∞Q3(y){1 + ρ exp[θ̃ +
s(y; β̃)]}dG̃(y) a.s.−→ q3. Thus, q̃11, q̃12, q̃13, q̃21, q̃22, and q̃3 are finite for sufficiently
large n, with probability 1, and hence Assumptions (A1)–(A4) hold almost surely
if we replace β0 by β̃ and G by G̃. Moreover, according to part (c) of Lemma 7.6,
An is positive definite for sufficiently large n with probability 1, and Σn

a.s.−→ Σ as
n→ ∞. Consequently, it follows from part (b) of Theorem 3.1 and the Bootstrap
Central Limit Theorem for sample means (Bickel and Freedman (1981) or Singh
(1981)) that (4.1) and (4.2) hold with probability one.

For part (b), the representation with remainder can be proved by employing
Theorem 3.1 and Lemmas 7.5 and 7.6. To prove weak convergence, it is enough
to show that with probability one as n → ∞,

√
n(H∗

1 − Ĝ∗ − H∗
2 ) D−→ W in

D[−∞,∞]p. It can be shown after extensive algebra that

EG̃,H̃{√n[H∗
1 (t) − Ĝ∗(t) −H∗

2 (t)]} = 0, −∞ ≤ t ≤ ∞,

CovG̃,H̃(
√
n[H∗

1 (s) − Ĝ∗(s) −H∗
2 (s)],

√
n[H∗

1 (t) − Ĝ∗(t) −H∗
2 (t)])

= ρ(1 + ρ)
[
An11(s ∧ t) − (An11(s), Aτ

n21(s))A
−1
n

(
An11(t)
An21(t)

)]
, −∞ ≤ s, t ≤ ∞.

Since CovG̃,H̃(
√
n[H∗

1 (s) − Ĝ∗(s) − H∗
2 (s)],

√
n[H∗

1 (t) − Ĝ∗(t) − H∗
2 (t)]) a.s.−→

EW (s)W (t) by (3.4) and Lemma 7.6, it follows from the Bootstrap Central
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Limit Theorem for sample means and the Cramer-Wold device that the finite-
dimensional distributions of

√
n(H∗

1 − Ĝ∗ −H∗
2 ) converge weakly to those of W

almost surely. Thus, in order to show
√
n(H∗

1 − Ĝ∗−H∗
2 ) D−→W in D[−∞,∞]p,

it suffices to show that the process {√n[H∗
1 (t)− Ĝ∗(t)−H∗

2 (t)], −∞ ≤ t ≤ ∞}
is tight in D[−∞,∞]p almost surely. But this can be proved by making use of
a similar approach as in the proof of Lemma 7.4. The proof of Theorem 4.1 is
complete.
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