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Abstract: The main result of this paper is a theorem which says that, in some settings,

MV-optimal designs cannot have maximum trace of the information matrix. An

application of this theorem to proper block designs results in in�nite series of MV-

optimal non-binary block designs that are MV-superior to all binary block designs of

the same parameters; the same ordering is also shown to hold with respect to the �p-

criterion for all su�ciently large p. The issue is one of symmetry of the information

matrix versus maximization of its trace, and the implications of balancing these two

commonly employed devices are discussed.
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1. Introduction

The optimality of block designs mentioned in the abstract is just one aspect

of the much larger class of problems of optimally designing experiments for the

comparison of treatments when the experimental units at one's disposal are sub-

ject also to the e�ects of other nuisance factors. Nuisance, or blocking, factors,

are factors of no experimental interest per se but which nonetheless a�ect obser-

vations and hence must be accounted for in the model and design. Speci�cally,

suppose there are n experimental units, or plots, available. Each unit is a�ected

by some level of each of t nuisance factors, the jth of which has bj levels. To

each unit one of the v experimental treatments will be applied, after which a

measurement will be made. The design optimality question is \What assignment

of treatments to units will give the highest quality information for treatment

comparisons?". If both treatment and blocking factors a�ect the mean response

in an additive fashion, and if responses are otherwise subject to homoscedastic

random variation that is uncorrelated from one unit to another, then a commonly

employed model for the yield yu on unit u is

yu = �+

vX
i=1

aui�i +

tX
j=1

bjX
w=1

lujw�jw + eu;
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where �i is the e�ect of treatment i, �jw the e�ect of level w of blocking factor j,

� an overall mean term, and eu the centered random component with variance

�
2. Also the aui and lujw are 0-1 variables, the latter given to the experimenter by

the nature of the experimental material, the former subject to
Pv

i=1 aui = 1 being

fully at his or her control and being the heart of the design question. Written in

the obvious matrix form, this additive model is

Y = �1 +Ad� + L� + e; (1:1)

in which L = ((lujw))u;(j;w) is n�
P

j bj , 1 is a vector of ones, and Ad = ((aui))u;i
is n � v, the subscripted d denoting that A depends on the particular design d

chosen from the class of available designs D. Using least squares estimation, the

information matrix for � is

Cd = A
0

dAd �A
0

dL(L
0
L)�L0Ad: (1:2)

The design optimality question thus translates as, for a chosen optimality func-

tional � : Cd ! <, \What d (choice of Ad) optimizes �(Cd)?". While historically

the subject of design was much more concerned with ease of analysis and inter-

pretability, criteria not necessarily at odds with this approach, the two decades

since the publication of Kiefer's (1975) work on optimality of Youden designs

has seen an explosion of papers speci�cally concerned with optimizing �(Cd)

for various �, to the extent that it is now largely viewed as the foundation on

which the subject rests (a trend described early by Kiefer (1980, page 226), as

a \motivational reversal"). The recent book by Shah and Sinha (1989) provides

an excellent overview and introduction to the �eld, including in Chapter 1 a

discussion of the various criteria � typically employed.

For the model (1.1), r(Cd) � v � 1 with equality if and only if every treat-

ment contrast h0� (h01 = 0) is estimable, and only d with r(Cd) = v � 1 will be

considered. Let �d1 � �d2 � � � � � �d;v�1 be the nonzero eigenvalues of Cd. One

class of criteria to be considered here are the �p-criteria of Kiefer (1975), de�ned

as

�p(Cd) =
hX

�
�p

di =(v � 1)
i 1
p

;

0 < p <1; a design is �p-optimum if it minimizes �p(Cd) over d 2 D. For p = 1

this is called the A-criterion, and (aside from a constant) is the average variance

of all normalized treatment contrasts. As p ! 1 one gets the E-criterion: the

maximum variance over all treatment contrasts. Both A- and E- appear widely

in the literature. Another criterion of great practical appeal is the MV-criterion,

introduced by Takeuchi (1961) and later given this name by Jacroux (1983). Let
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H be the set of normalized v � 1 contrast vectors that di�er from 0 in only two

coordinates; then

�MV(Cd) = max
h2H

h
0
C
�

d h

which is minimized by an MV-optimal design. This is a natural criterion for

experiments in which no elementary contrast �i� �i0 should be poorly estimated.

A celebrated result due to Kiefer (1975) unites these and many other criteria.

Let d� 2 D be such that

(i) tr(Cd�) = maxd2D tr(Cd),

(ii) Cd� = �I + �110 for some �, �.

Then d
� is universally optimum over D; in particular it is �p-optimum for all p

and MV-optimum. The condition (ii) is called complete symmetry of Cd, and is

also a condition for variance balance: a design d is said to be variance balanced if

every normalized treatment contrast is estimated with the same variance. Vari-

ance balanced designs give results that are particulary easy to interpret and allow

for simple implementation of techniques such as decomposition of the treatment

sum of squares via orthogonal contrasts. For these reasons variance balance is

itself a desirable quality in a design, though it is typically not taken as an opti-

mality goal in and of itself. Indeed, Shah and Sinha (1989, page 53) state that

since \this is not directly related to optimality aspects of designs, we will not

pursue the topic further." Nevertheless, Kiefer's result clearly implicates balance

as playing an important role, and when (i) and (ii) can both be satis�ed there ap-

pears to be no plausible argument within the context of the stated model against

use of the universally optimal d�. What then if (i) and (ii) cannot be simulta-

neously satis�ed? The major thrust in the literature clearly says, at least for

the block design setting (discussed below), that good designs will be of maximal

trace (satisfy (i)) that are as close to symmetry as possible (approximate (ii)).

It is the priority here that our main result questions: it says that sacri�cing (i)

in favor of (ii) can be necessary for MV-optimality. A major exception to this

priority outside of the block design setting is Kiefer's (1975) result (extended

by Cheng (1978)) on optimality of generalized Youden designs, where variance

balance takes precedence over trace maximization.

Having set the stage for the main result, let us brie
y review the situation as

regards block designs. The proper block design setting is that of a single nuisance

factor \blocks" with b levels, each level occurring on exactly k of the units, and

each unit receiving exactly one level of the block factor. The information matrix

(1.2) is Cd = r
�
d�(1=k)NdN

0
d, where r

�
d = diag(rd1; : : : ; rdv) is the diagonal matrix

of treatment replication numbers, Nd = ((ndij)), and ndij is the number of units

treatment i is assigned to in block j. Assuming for simplicity that k < v, then

tr(Cd) is maximized by any design d with ndij = 0 or 1 for all i; j, that is, by
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any binary design. Writing �dii0 =
Pb

j=1 ndijndi0j for the o�-diagonal elements of

NdN
0
d, a design d is said to be (M,S)-optimal if among all maximum trace (i.e.

binary) designs it minimizes
PP

i6=i0�
2

dii0 . (M,S)-optimality requests the priority

alluded to above: �rst maximize trace, then approximate complete symmetry as

closely as possible. In Section 3.6 of Shah and Sinha (1989) a summary of known

optimality results for proper block designs is given, and the reader is referred

there for a more detailed discussion of this topic; for k > 2 all involve (M,S)-

optimality as a property of A-, E-, MV-optimal, etc. designs. The only listed

exception is the non-binary E-optimal designs of Bagchi (1988), the question of

whether these are superior to binary designs having not been addressed. Thus do

Shah and Sinha (1989, page 60) raise the plausibility of the following conjecture:

\Binary (or generalized binary) designs form an essentially complete class." That

the conjecture fails for generalized binary designs (the maximum trace block

designs when k > v) follows from Jacroux and Whittinghill (1988), who show

otherwise with respect to the E-criterion, and the proof of their Lemma 2.4

implies otherwise for the MV-criterion. The conjecture's �rst 
aw for k < v has

recently appeared in Shah and Das (1992), who prove that the particular Bagchi

(1988) design with v = 6, b = 7, k = 3 is E-better than any binary competitor.

While these results certainly dampen the conjecture's strength and the extent of

its reach, they also open at least two further questions. First, does the conjecture

fail for other than the E-criterion when k < v, and more generally for other than

the E- and MV-criteria? And second, for k < v, is the v = 6, b = 7, k = 3

counterexample more than an isolated case? This paper gives an a�rmative

answer to both. In�nitely many designs are found that are both MV-superior,

and �p-superior for all su�ciently large p, to all binary designs.

2. A Theorem on MV-Optimality

The following inequality, �rst proven by Takeuchi (1961) in the block design

context, will be needed. Writing Cd = ((cdii0)),

Var( [�i � �i0)

�2
�

4

cdii + cdi0i0 � 2cdii0
(2:1)

for any design d in any setting covered by the model (1.1). This is one of the key

tools involved in MV-optimality arguments (see, e.g., Jacroux (1983) for block

designs and Jacroux (1987) for row-column designs). Our main result is

Theorem 1. Let d� 2 D satisfy

(i) Cd� is completely symmetric,

(ii) mini
P

i0 6=i cd�i0i0 = maxd2Dmini
P

i0 6=i cdi0i0 .

Then d
� is MV-optimal in D. Moreover, if d 2 D and Cd 6= Cd�, then d

� is

MV-superior to d.

Proof. Since Cd� is completely symmetric, the variance of an elementary treat-

ment contrast when estimated from d
� is 2(v� 1)=(vc�), where c� is the common
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diagonal element of Cd� . Let d be any other design in D, and let the treatments

be ordered so that maxi cdii = cdvv. If cdvv < c
� then clearly d

� is MV-better

than d, since the information matrix of d� is completely symmetric of higher

trace. In fact if cdvv � c
� and Cd is not constant on the diagonal, then d will be

MV-inferior since

min
1�i�v�1

(cdii + cdvv � 2cdiv) �

v�1X
i=1

(cdii + cdvv � 2cdiv)

v � 1
=

tr(Cd) + vcdvv

v � 1
<

2vcdvv

v � 1

and so by (2.1)

max
i 6=i0

Var( [�i � �i0)

�2
>

2(v � 1)

vcdvv
�

2(v � 1)

vc�
:

If cdvv = c
� and Cd is constant on diagonal but not completely symmetric,

�nd i, i0 such that cdii0 > �c
�
=(v � 1). Then (2.1) gives

Var( [�i � �i0)

�2
�

4

2c� � 2cdii0
>

4

2c� + 2c�

v�1

=
2(v � 1)

vc�
:

So d� is MV-better than any design with cdvv � c
�, provided Cd 6= Cd�.

Now suppose that cdvv > c
�. Then

min
1�i6=i0�v�1

(cdii + cdii0 � 2cdii0) �

v�1P v�1P
i 6=i0

(cdii + cdi0i0 � 2cdii0)

(v � 1)(v � 2)

=

2(v � 1)

v�1X
i=1

cdii � 2cdvv

(v � 1)(v � 2)

�
2(v � 1)2c� � 2cdvv

(v � 1)(v � 2)
<

2(v � 1)2c� � 2c�

(v � 1)(v � 2)
=

2vc�

v � 1

and the result follows upon another application of (2.1).

When the conditions of the theorem can be met without simultaneously

meeting Kiefer's requirements for universal optimality, maximum trace designs

cannot be MV-optimum: the asymmetry they necessarily entail results in higher

variances for some elementary treatment contrasts.

3. Non-Binary, Variance Balanced, MV-Optimal Block Designs

As an application of Theorem 1 we turn to the proper block design setting.

Let the total number of experimental units n be n = bk = vr + 1. Then

min
i

X
i0 6=i

cdi0i0 �
(v � 1)r(k � 1)

k
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with equality if and only if v � 1 treatments are binarily replicated r times each

and one treatment, say treatment v, is replicated r + 1 times in any fashion

that makes cdvv � r(k � 1)=k. If d� has cd�ii = r(k � 1)=k for all i and cd�ii0 =

�r(k � 1)=(k(v � 1)) = ��=k, say, for all i 6= i
0, then d

� is MV-optimal.

Specialize now to k = 3. If rdv = r + 1 then cdvv = r(k � 1)=k = 2r=3 i�Pb

j=1 n
2

dvj = r+3, which says that v should appear twice in one block and once in

each of r blocks. This also implies that �dvi � 2 for some i, so � � 2. Fixing � = 2

for the smallest design, then r = v�1 and bk = vr+1) 3b = v(v�1)+1) v � 2

(mod 3). We have arrived at the series

v = 3t+ 2; r = 3t+ 1; k = 3; b = 3t2 + 3t+ 1; t � 1; (3:1)

the existence of which will shortly be demonstrated. First, two examples.

Example 1. An MV-optimum design for 5 treatments in 7 blocks of size 3.

5 5 5 5 4 4 4

5 1 1 2 1 1 2

4 2 3 3 2 3 3

Example 2. An MV-optimum design for 8 treatments in 19 blocks of size 3.

8 8 8 8 8 8 8 7 7 7 1 2 1 2 3 4 5 6 7

8 1 3 5 1 2 4 1 2 3 4 3 2 3 4 5 6 7 1

7 2 4 6 3 5 6 6 4 5 5 6 4 5 6 7 1 2 3

Aside from �
2, any elementary contrast �i��i0 estimated with the example 1

design has variance :600. As a comparison, changing the �rst block by replacing

one occurrence of 5 with 3 gives a near balanced, binary design for which the

worst variance of an elementary contrast is :667. These same values for the

example 2 design are :375 and :400.

The construction of the designs (3.1) can be accomplished via Bose's (1939,

Section 3) second fundamental theorem of di�erences. Here the initial blocks

will be speci�ed without further proof; the veri�cation that these do generate

the desired designs is straightforward though perhaps a bit tedious. To begin

with, the series (3.1) is divided into two cases as t is odd or even. All blocks are

given as columns of 3.

Case 1. v = 6s + 5, b = 12s2 + 18s + 7. There are 6(s + 1) initial blocks mod

(2s+ 1), two copies of each of the 3s blocks

11 21 : : : s1

2s1 (2s� 1)1 : : : (s+ 1)1
02 02 : : : 02

;

12 22 : : : s2

2s2 (2s� 1)2 : : : (s+ 1)2
03 03 : : : 03

;
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and
13 23 : : : s3

2s3 (2s� 1)3 : : : (s+ 1)3
01 01 : : : 01

;

and the 6 blocks
11 11 11 12 12 12

01 01 02 01 01 02
02 03 03 02 03 03

:

A single block containing 11, 11, and 12 completes the design.

Case 2. v = 6s+2, b = 12s2+6s+1. This case is further subdivided according

to values of s. To the blocks given in each subcase below, a BIBD with � = 1,

on all the treatments except 11, is added, along with a single block containing

11, 11, and 12.

Case 2a. s = 2w + 1 ) v = 12w + 8. The v treatments are the integers mod

(12w + 6) and 11, 12. There are 2w+ 3 initial blocks mod (12w +6), given by

0

5w + 3� i

5w + 2 + i

and

0

3w + 1� i

3w + 1 + i

for i = 1; : : : ; w

and
11 12 0

0 0 4w + 2

3w + 1 6w + 3 8w + 4

the latter two of which are taken through 1=2- and 1=3-cycles, respectively.

Case 2b. s = 4w ) v = 24w+2. The v treatments are the integers mod (24w)

and 11, 12. There are 4w + 2 initial blocks mod (24w), given by

0

10w � i

10w + i� 1

i = 1; : : : ; 2w�1; and

0 0

6w � 2i 6w � 2i� 1

6w + 2i 6w + 2i� 3

i = 1; : : : ; w�1;

and
0 0 11 12 0

8w � 1 4w � 2 0 0 8w

12w � 1 8w � 3 6w 12w 16w

the latter two of which are taken through 1=2- and 1=3-cycles, respectively.

Case 2c. s = 4w + 2 ) v = 24w + 14. The v treatments are the integers mod

(24w + 14) and 11, 12. There are 4w + 4 initial blocks mod (24w + 12), given

by

0

10w � i+ 5

10w + i+ 4

i=1; : : : ; 2w; and

0 0

6w � 2i+ 4 6w � 2i+ 1

6w + 2i+ 2 6w + 2i+ 1

i=1; : : : ; w�1;
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and
0 0 0 11 12 0

4w + 4 4w 8w + 3 0 0 8w + 4

8w + 2 8w + 1 12w + 5 6w + 1 12w + 6 16w + 8

the latter two of which are taken through 1=2- and 1=3-cycles, respectively.

So we have an in�nite series of non-binary designs which are MV-optimal,

and Theorem 1 assures that any binary design is MV-inferior. It also turns out

that the designs here constructed are �p-optimal for all su�ciently large p. Easy

to see is that they are �p-optimal among non-binary designs for all p, as their

information matrices are completely symmetric of maximal trace over that class.

To compare to binary designs, a bound for the �p-value within the binary class

is needed, which is the goal of the following lemmas. The elementary counting

argument which proves Lemma 1 is omitted. The symbol r is int(bk=v), which

for the design parameters being considered is v � 1.

Lemma 1. Let d be a binary block design for v treatments in [v(v � 1) + 1]=3

blocks of size 3. If rdi = v � 1 for 1 � i � v � 1 then �dii0 � 1 for some pair i,

i
0 2 f1; : : : ; v � 1g.

Lemma 2. A binary block design d for v treatments in [v(v � 1) + 1]=3 blocks

of size 3 satis�es �d1 � (2r + 1)=3.

Proof. Suppose some treatment is replicated rp < r times. Then (Jacroux

(1980), Theorem 3.1)

�d1 �
rp(k � 1)v

(v � 1)k
�

2(r � 1)v

3(v � 1)
=

2(r2 � 1)

3r
<

2r + 1

3
:

So suppose rd1 = � � � = rd;v�1 = r and rdv = r+1. By Lemma 1 one may assume

that �d12 � 1. Write h0 = (1;�1; 0; : : : ; 0) and Tdx = kCd � x(I � (1=v)110). The

spectral decomposition of Tdx is Tdx =
Pv�1

i=1 (k�di� x)eie
0
i where e

0
i1 = 0 for all i

and the �di are the eigenvalues of Cd. If there exists x such that h0Tdxh � 0 then

certainly �d1 � x=k; x = (rd1 + rd2) + �d12 satis�es this inequality and the result

is established.

Lemma 3. (Jacroux (1985), Kunert (1985)) If a design d is E-optimal over a

class D, has maximum tr(Cd) over D, and nonzero eigenvalues �d1 < �d2 =

� � � = �d;v�1, then d is �p-optimal over D for all p.

A binary design d of the series (3.1) has tr(Cd) = 2(r2 + r + 1)=3 and, by

Lemma 2, �d1 � (2r + 1)=3. By Lemma 3 a lower bound for the �p criterion for

d is found by setting �d2 = � � � = �d;v�1 = (tr(Cd)� (2r + 1)=3)=(v � 2); it is

(v � 1)[�p;d]
p
�

�
3

2r + 1

�p

+ (r � 1)

�
3(r � 1)

2r2 + 1

�p

: (3:2)
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The common eigenvalue for the MV-optimal design d
� is �d�i = 2(r + 1)=3 so

(v � 1)[�p;d� ]
p = r

�
3

2(r + 1)

�p

: (3:3)

Comparing (3.2) and (3.3) gives

Theorem 2. Su�cient for an MV-optimal design in the series (3:1) to be

�p-optimal is p � p0, where p0 satis�es�
3

2r + 1

�p0

� r

�
3

2(r + 1)

�p0

+ (r � 1)

�
3(r � 1)

2r2 + 1

�p0

= 0:

Proof. It has already been noted that d
� is �p-optimum among non-binary

designs, and d
� is as good as any binary design for p = p0. But a design with

completely symmetric C-matrix which is �p0-optimum is �p-optimum for all

p > p0 (Kiefer (1975)).

In particular, binary designs are E-inferior.

It is worth re-emphasizing that the condition of Theorem 2 is su�cient; we

do not think that there exist binary designs which achieve the bound (3.2). Using

that bound, a lower bound for the A-e�ciency of the MV-optimal designs is

2(r + 1)(2r3 � r
2 + 2)

r(2r + 1)(2r2 + 1)
:

By way of comparison, the A-e�ciency of the example 1 design to d obtained by

changing the �rst block as indicated immediately following Example 2 is :970.

The similar comparison with Example 2 gives :986. Converting each member of

the constructed series of MV-optimal designs to binarity in this way proves that,

though close, they are never A-optimal. Values of p0 and the A-e�ciency lower

bound for v < 40 are given in Table 1.

Table 1. Comparison of MV-optimal designs to the hypothetically best
binary designs

v A-bound int(p0) + 1

5 .959 7
8 .983 17
11 .991 28
14 .994 39
17 .996 50
20 .997 61
23 .998 73
26 .998 84
29 .998 95
32 .999 107
35 .999 118
38 .999 129
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The application of Theorem 1 is by no means limited to proper block designs

with k = 3. Construction work in other directions is continuing.

4. Discussion

Theorems 1 and 2 clearly establish that binary block designs do not comprise

an essentially complete class under the MV-criterion or the family of �p-criteria.

It still remains to be seen if such a conjecture holds for, say, the A-criterion alone;

perhaps these results cast some doubt in that direction. Regardless, binarity

should not be regarded as a necessary condition for a good design, and while

perhaps a bit of light has been shed on the importance of symmetry in the

optimality argument, we would also like to enter a plea for the pursuit, when

feasible, of completely symmetric and other easily used structures for their own

sake.

Simply stated, we do not believe, as a practical matter, that an A-optimal

design is necessarily to be recommended even when minimum avearage variance

is clearly meaningful. The reasons are simple: not all users possess the statistical

maturity to grasp the small gains that the sacri�ce of structure might entail. For

8 treatments in 19 blocks of 3, the binary design d suggested following Example

2 will gain just over 1% relative to the variance balanced design, at the cost

of �ve distinct variances (:400, :376, :375, :355, :336) for elementary treatment

contrasts. How many clients will �nd the A-gain meaningful, or even worth the

trouble of reporting and interpreting �ve (or more, depending on the contrasts

examined) standard errors? The simplicity of stating a single margin of error for

all normalized contrasts can be a great aid to human understanding. Mathemat-

ical statisticians rightly pursue A- and other optimalities, but practitioners must

also keep in mind that non-mathematical issues will often come to bear. Depend-

ing on the application, symmetric and other simple structures for Cd (such as

group divisible) can be useful even when the designs are somewhat sub-optimal,

as long as they are not grossly so: so are they worthy of our study as well.

Of course, construction of variance balanced designs has received some at-

tention in the literature. Also demanding binarity, once one leaves the BIBDs,

necessitates unequal block sizes. Among recent papers of note, from which other

references can be found, are Gupta and Jones (1983), Pal and Pal (1988), and

Gupta and Kageyama (1992). The idea of relaxing the binarity condition to

achieve variance balance goes back at least as far as Tocher (1952), which in-

cludes a discussion between Tocher and D. R. Cox on e�ciency and applicability

of ternary designs. Examples 1 and 2 (but no other designs from this paper)

�rst appeared there, and Cox's suggestion that all of Tocher's designs could be

dominated by binary designs is now seen to be wrong. Since then, the sporadic
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attention given this topic has focused almost exclusively on equireplicate designs,

be they ternary or n-ary (up to n�1 replications of a treatment within a block),

and unfortunately, with the exception of Saha (1975), e�ciency considerations

have been ignored. A combinatorial overview and many references may be found

in the survey papers of Billington (1984, 1989).

In summary, we do not mean to minimize the importance of single-criterion

optimality work. Quite apart from its undeniable mathematical attraction, a

wealth of important, useful results have and will continue to come from this ap-

proach. But the classical search for symmetry and its various approximations has

much to o�er for the dirty business of real experiments even when the resulting

designs are not optimal in a speci�c sense. Indeed, in many situations an optimal

design will be a judicious combination of e�ciency and nice structure. As op-

timality workers tackle more situations where di�erent criteria lead to di�erent

designs, the pragmatist will wish to think of structure as well.
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Note Added in Proof

An extension of Theorem 1 for the special case of proper block designs, which

covers the generalized group divisible structure, has now been proven and will

be reported elsewhere.
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