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SOME RESULTS ON BURN-IN
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Abstract: Some recent modeling results on burn-in are given. Results for mixed pop-
ulations are discussed and burn-in at the system and component levels for coherent
systems is studied. In particular, conditions are given on the underlying distribution
so that the mixed distribution satisfies a strong type of aging property. Furthermore
the questions of in what order or whether or not to burn-in the components and the
system are discussed.

Key words and phrases: Burn-in, bathtub failure rate, mixed populations, reverse
regular of order 2 (RR2), exponential family, cost function.

1. Introduction

Burn-in is a widely used engineering method to eliminate weak items from a
standard population. To burn-in a component or system means to subject it to
a period of use prior to the time when it is to actually be used. An introduction
to this important area of reliability can be found in the book of Jensen and
Peterson (1982). A particular cost function is studied by Clarotti and Spizzichino
(1990) who determine optimal burn-in times for this function. Block, Mi and
Savits (1993) consider a generalization of this paper. Finally, Mi (1991) provides
a comprehensive study of burn-in for a variety of criteria, with and without
cost structures, and with particular emphasis on lifetimes having bathtub-shaped
failure rates.

In Section 2 we consider a generalization of Clarotti and Spizzichino (1990),
focusing on general mixtures. We give conditions for the monotonicity of the
ratio of such mixtures (Theorem 2.1), a result on the limiting behavior of such
mixtures (Theorem 2.3), an application of these results for the cost structure of
Clarotti and Sprizzichino (1990), and a result on the ordering of optimal burn-in
times (Theorem 2.4).

We also consider, in Section 3, burning-in components and systeras for co-
herent systems in various combinations. We conclude that if we burn-in the
components and assemble a system with these burned-in components, it is not
necessary to burn-in the system (Theorem 3.1).
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2. Burn-In for Mixed Populations

In this section we consider burn-in for mixed populations. We assume the
population has density f(t) and that this distribution results from subpopulations
having density f(t,A\) where each A represents a different subpopulation and S
is the collection of all these A. The subpopulations are weighted according to a
probability P and consequently

£ = [ £t )P@N).

Clarotti and Spizzichino (1990) have considered similar problems where f(t, A) is
exponential. We first give conditions such that for a fixed mission time 7 > 0, the
function g,(t) = f(t+7)/f(t) is increasing. For a population which is a candidate
for burn-in, this is a reasonable property, since it is, in a sense, improving or
undergoing beneficial aging.

We require the condition of reverse regular of order two (RR,). Recall that
a nonnegative function k(z,y) on A x B is said to be RR, if

k(xla yl)k(m% y2) S k(xh yZ)k(:B?) yl)

whenever z; < 7, in A and y; < y, in B. This is a type of reverse TP, inequality.
(See Block, Savits and Shaked (1982) for a discussion.)

The following is a preservation theorem for a monotonicity property given a
fixed mission time 7. Since 7 is fixed, we simply write g(t) instead of g, (t).

Theorem 2.1. Let the family of positive densities {f(t,\); A € S} be RR, on
(0,00) x S and let 7 > 0 be a fized mission time. Suppose the ratio

ot = L5

is increasing int > 0 for each A € S. Then

_ [ ft+ T, A)P(dN)
98) = =7 Ft PN

(2.1)

s tncreasing in t > 0.
Proof. See Block, Mi and Savits (1993).

The previous result is concerned with the monotonicity of f(t + 7)/f(t) in
t > 0 for a fixed 7 > 0. If the monotonicity is assumed for all 7 > 0, i.e.,
f(t+ 7)/f(t) is increasing in t > 0 for all 7, this condition is the reverse of a
condition called PF; by Barlow and Proschan (1981). It is equivalent to the
statement that f is log convex.
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Theorem 2.2. Let {f(t,\); X € S} be a family of densities such that

fE+7,X)
f(t, )

is increasing in t > 0 for each A € S and for each T > 0. Then

[+ 7, 0)P(dN)
98 = =F e N P@

g(t,A) =

is increasing i t > 0.

Proof. This is similar to the proof that mixtures of DFR distributions are DFR.
See Barlow and Proschan (1981).

Remark 2.1.

(a) The condition in the above theorem is too strong for our purposes, since
it implies that each mixture density is DFR. For burn-in, however, we are
often interested in distributions with bathtub-shaped failure rates, that is,
decreasing, then constant, then increasing failure rate.

(b) For densities f(t,)) belonging to an exponential family it is easy to give
conditions on its parameters so that the hypotheses of Theorem 2.1 holds.
See Theorem 3.3 of Block, Mi and Savits (1993).

One other result which is useful for burn-in concerns the limiting behavior
of g(t) in (2.1) as t — oco. In the following theorem we show, under certain
technical conditions, that if each member (designated by \) of the population
has a failure rate which approaches a constant a(}), then the failure rate of the
mixed population converges to a constant o which is the limiting failure rate
of the strongest component (in the asymptotic sense) in the population, i.e.,
o = inf a()X). We first give some technical conditions.

Conditions:

(A) Let a = inf{a(X) : A € S}. For every ¢ > 0, assume P(A.) > 0, where
A, ={) e S:a()) La+el

(B) There exist nonnegative constants L and T such that r(¢,A) = f(t, 1)/ F(t, )
< elt for all t > T on the set {\ € S : a(\) = co} where F(t,A) = [~ f(u,A)
du.

Theorem 2.3. Under conditions (A) and (B) if
f(t,A)

r(t,\) ==—= — a(X) uniformly ast — oo

T F(t, )
then
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T()_fF(t,)\)P(d)\)—)aaSt“)oo'

Proof. See Block, Mi and Savits (1991).

Corollary. Under the assumptions in Theorem 2.3 if 0 < a < oo, then g(t) =
f@+7)/f(t) = e ® ast — oo.

Proof. Straightforward.

Remark. The main assumption of Theorem 2.3 is not unreasonable. For exam-
ple, the failure rate of a gamma distribution with scale parameter A converges to
A as t — oo; moreover, the convergence is uniform for 0 < a < A < b.

"The previous two results can be used to give conditions for obtaining a
unique optimal burn-in time for a reasonable cost function due to Clarotti and
Spizzichino (1990). We first give the cost function and interpret conditions under
which the optimal burn-in time is obtained.

Let T be the lifetime of a component with distribution function F(t) and
survival function F(t) = 1 — F(t). The component is burned-in for a time period
b before it is put into operation. It is desired that the component lasts for a
mission time 7 > 0. The cost function is given by

k(b) = cF(b) + C[F(b+ ) — F(b)] - K[1 — F(b+ 7)), (2.2)

where c is the cost of a component failing before burn-in time b, C is the cost if
the component survives burn-in but failing before the mission time and K is the
gain of successfully completing the mission. We assume 0 < ¢ < C and K > 0.
As shown by Clarotti and Spizzichino (1990), under the conditions of our
previous two theorems, (which guarantee that g(t) increases and g(co) = e=o"
where o = inf a())) there exists a unique optimal burn-in time b* which mini-

C—c

mizes k(b). Also for v = F=¢,

(i) b* = o0 if €727 < v,

(ii) b* = 0 if g(0+) > v,

(iii) 0 < b* < 00 if g(0+) < v < €®7 and, in this case, g(b*) = v.

In Mi (1991) various other cost structures are considered as well as the loca-
tion of the optimal burn-in time under a variety of criteria. Special attention is
given to the case when the failure rate has a bathtub-shape.

One other result which we mention is the comparison of optimal burn-in
times based on the comparison of mixture distributions. Consider

/f(t, A)P;(dX) for i =1,2.
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As before we are interested in optimal burn-in times b and b5 which minimize

the cost function k;(b). It seems reasonable to conjecture that if P1i<iP2 (i.e., P is
stochastically less than P,) then b} < b3, but this is not true. A counterexample
is given in Mi (1991). A stronger condition is needed and is given in the following
theorem. This generalizes a result of Clarotti and Spizzichino (1990).

Theorem 2.4. Let P; (i = 1,2) be two probability measures on R with supports
S.. Assume these probabilities are absolutely continuous with respect to a o-finite
measure Q and denote their Radon-Nikodym derivative dP;/dQ by p; (1 =1,2).
Let {f(t,\) : X € §},S = 5:US,, be an equicontinuous family of densities on
(0,00) which is RR, on (0,00) x S and such that for a fized 7 > 0,

) ot ) = f(;;tr 7/‘\,)/\)

LR

is strictly increasing int > 0 for each A € S. Then if P, < P,(Q) (ie., p1(A)p2(u)
> py(p)pa(A) whenever A < p except possibly on a set of @ x Q measure 0) the
following hold:

(i) 61(t) > g2(t) for all ¢ > 0, where g,(t) = fi(t +7)/fi(8), i =1,2;

(ii) b7 < by where b}, i = 1,2, is the optimal burn-in time for the corresponding
cost function k;(b), 1 = 1,2, given in (2.2).

Proof. See Block, Mi and Savits (1993).

3. System vs. Component Burn-In

Kuo and Kuo (1983) in a comprehensive review noted that little work had
been done concerning burn-in at the system vs. component level. Recently, Whit-
beck and Leemis (1989) considered this problem, but in a very specific parametric
setting. In this section we compare burn-in at the component level and burn-in
at the system level in various combinations for coherent systems.

We consider binary coherent systems as discussed in Barlow and Proschan
(1981). Consider a system with n independent components each of which has
distribution function F;,i = 1,2,...,n. Let h(p) be the associated reliability
function where p = (p1,...,pn) and p; is the probability that the ith component
is working. If we burn-in the ith component for time [;, then the component
surviving this burn-in has distribution function

Fi(ﬁi +z) :
Hz)=1-————,z20,0=1,...,n.
2 F ()
The reliability of the system at time ¢t is given by F(t) = h(Fy(t),..., Fu(t)),
where Fi(t) = 1 — Fy(t) and F(t) = 1 — F(t) is the distribution of the system life

time.
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We now consider three actions which constitute different methods of burning
in the system.

Action BA(B): This action consists of burning-in each of the n components
for time B (i.e., component 7 is burned-in for time 3;,s = 1,...,n, and 8 =
(B1,...,Bn)) and then assembling the system with the burned-in components.

Action BAB(B,b): As above, but the system after assembly is then burned in for
time b.

Action AB(b): The system is first assembled with components which have not
been burned in and then the system is burned in for time b.

We use two criteria to compare such systems. The first of these is maximizing
the probability of surviving a fixed time 7 and the second is maximizing mean
residual life. The result below is based on the first criterion. Here 7 is the length
of a fixed mission time that the system must survive.

Theorem 3.1. In order to mazimize the reliability that a system performs
a mission of length T, the result of using the optimal choice among all ac-
tions BA(B) for all B > O is equivalent to using the optimal among all actions
BAB(B,b) for all B > 0 and b > 0. The 8* = (B},...,8) which mazimizes
BA(B) is obtained by mazimizing F;(B; + 7)/Fy(8;) for i =1,...,n, ie.,

Fz(ﬁ:-i-T) Fi(ﬂi"*‘T)
———— = max ———.
Fi(6r) 620 Fi(B;)
Proof. The reliability of the system at time ¢ given that each component is
burned-in for time G;,t1 =1,...,n, is

= o Fi(6y +1) Fo(Bn+1)
Fﬂ(t)—h{ G Fu(B)

If the system is then burned-in for time b, the probability of surviving a mission
time 7 is

‘ [Fl(ﬂ1+b+r) F.(Bn+b+7)
B (T)_F[,(bw)_ Fi(B) 77 Fa(B)
COVIT TR®B) h[ﬁl(ﬁ1+b> Fo(B, +b)
Fi(B) ' Fu(B,)
F(By+b4+7) FoBn+b+7)] | -
Sh{ Fy(Bi+b) "7 Fu(Ba+b) }_F"“"(T)’

where 1 is the vector with 1 in each component. The inequality follows from
Theorem 2.1.3 of Barlow and Proschan (1981).
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This shows that for all 8 > 0 and b > 0, BA(B + b1) is at least as good
as BAB(8,b). Consequently, the maximum BA(8) dominates the maximum of
BAB(3,b). But since BA(8) = BAB(B,0) (actually the limit as b — 07) the
reverse inequality is also true. This gives the first part of the result.

The second part of the result follows from the monotonicity of A.

Remarks.

1. The result establishes that to maximize the system reliability it is enough to
find the optimal burn-in times for the individual components.

2. In the case that the component lifetimes have bathtub-shaped survival, Mi
(1991) shows that optimal burn-in times exist and occur before the first
change point of the bathtub curve.

3. If the reliability function is strictly increasing, a relation between the optimal
burn-in times for BAB(3,b) and BA(B) can be obtained. It can be shown
in this case that if (3,b’) is optimal for BAB(B,b) and 8" is optimal for
BA(B), then Bf = B, + ¥ for ¢ = 1,...,n. In fact, for any 8", b” such
that 8* = g" +bv", (8",b") is optimal for BAB(8,b). Mi (1991) considers
bathtub-shaped failure rate functions to which this applies.

In the previous theorem we were interested in finding burn-in times which
maximized reliability, i.e., maximized the probability of surviving a fixed time
7 > 0. In the following we consider maximizing the mean residual life. Conse-
quently, we consider maximizing the quantity E(T — b|T > b) where T is the
system lifetime and b is the burn-in time which is possibly a function of the
burn-in times B8 = (B, ..., ) for the component lifetimes T3, 73, ..., T,.

Theorem 3.2. For the mean residual life, the optimal choice among all actions
BA(B) (for all B > 0) has the same result among all actions BAB(B,b) for all
B> 0 and b > 0. Then B* which mazimizes BA(B) is obtained by mazimizing
E(T; - Bi|T; > B;) fori=1,...,n,ie.,

E(T; - 3! | T; > 5:) = %’}%E(Tz‘ = Bi | T; > Bi).

Proof. This follows from the method of proof of Theorem 3.1.

Remark. For components with bathtub-shaped failure rate, it can be shown
that the 8*,i = 1,...,n, in Theorem 3.2 occur before the first change point of
the bathtub-shaped curve (see Mi (1991)).

To end our discussion we give an example which shows how the previous

results are useful. Consider a parallel system with two independent exponentially

distributed components with means ;- and 5, respectively.
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For action BA(8), by the lack of memory property of the exponential dis-
tribution we see that this is equivalent to taking 8 = 0, i.e., just using new
components. Thus

Fyt) = F(t) =1— (1 — e M) (1 — e~

and the mean residual system life is given by

_1. 1 1
=%

E - .
(T) )\2 )\1 + Az

Now if we apply action BAB(8, b), again by the lack of memory property,
this-is equivalent to AB(b), i.e.,

1 — (1 _ 6_/\1(6+t))(1 _ e—z\g(b-H))

Fu.(t) =
o(t) 1—(1—eMb)(1— eTrd)
and
1 _—Xib 1 _—Xgb 1 _—(M+A2)b
3\ € +/\_26 2‘m6(+2)

E(T -b|T > b) =2

e-Ab 4 e=Azb _ o—(M1+Az)b

A lengthy calculation shows that the maximum of these two functions is obtained
at b = 0. This is not surprising based on Theorems 3.1 and 3.2 since BAB(83, b)
yields the same maximum as BA(8) which by the lack of memory property is

Fit)=1-(1-e™M)(1 - e"\zbt)

and 1 I 1
FET)=—+—— ,
(T) A1 A A+ A
ie.,, b=0.
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