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COMPUTATIONAL ISSUES IN THE BAYESIAN
ANALYSIS OF CATEGORICAL DATA:

LOG-LINEAR AND GOODMAN’S RC MODEL
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Abstract: The Baysian analysis of loglinear models requires the evaluation of high-
dimensional integrals. Such an evaluation is frequently computationally prohibitive
even with modern computers. We provide a parameterization of the loglinear model
which renders these integrations amenable to the numerical methods of adaptive im-
portant sampling. This approach is applied in the analysis of two-way contingency
tables using Goodman’s RC model. We base the analysis on the full posterior distribu-
tion for the loglinear model and obtain the posterior distribution of a goodness-of-fit
measure for Goodman’s RC model.
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1. Introduction

Bayesian analysis (of categorical data) may involve the evaluation of high-
dimensional integrals which can be (see Evans, Gilula and Guttman (1989)) com-
putationally prohibitive, even for modern computers. Growing interest in the
analysis of categorical data by Bayesian methods (as is evident from Leonard
(1975), Leonard, Hsu and Tsui (1989), Agresti and Chuang (1989) and Epstein
and Fienberg (1990), to mention a few) provides strong motivation for the devel-
opment of relatively simple evaluation methods to overcome the above mentioned
computational difficulties. The derivation of such methods is the purpose of this
paper. Effective computational approaches are provided here for the Bayesian
analysis of log-linear models with prior structure as in random effects models. A
method is proposed for analyzing submodels which prescribe a specific structure
for the interaction terms, based on the full posterior distribution of the log-linear
model. This method has some advantages over the more common method of
Bayesian analysis where a prior distribution is placed on the parameters of the
submodels. Our method is then implemented on the important Goodman’s RC
model (Goodman (1979, 1981, 1985)).
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The approach to the computational issues here is similar in spirit to that used
in Evans, Gilula and Guttman (1989), which is based on a useful reparametriza-
tion of the underlying model and the use of importance sampling. Again we
reparametrize the basic model so that importance sampling is easily implemented.
The importance sampling approach is seen to be necessary, not only for situations
where a normal approximation to the posterior may perform poorly, but generally
for the computation of the posterior distributions of the parameters associated
with Goodman’s RC model and the assessment of fit.

2. The Log-Linear Model

Consider the case of a 2-way table given by categorical variables 4 and B
and note that everything we say can be generalized to the k-way table in a
straightforward way. Suppose then that A takes I values, B takes J values,
pi; is the probability of a response being categorized in the (,7)-th cell, {pi.},
1 <i<1TIand {p;}, 1< j < J denote the marginal distributions of 4 and B,
respectively. Hence we are assuming multinomial sampling, but note that with
minor adjustments all our discussion applies to the product multinomial case as
well. The notations used hereafter are similar to those used in Haberman (1974
a,b).

The problem of interest is to offer parametric structures for the association
between the variables A and B. Such parametric structures should be both
relatively easy to interpret and parsimonious at the same time. For instance, as-
sociation between variables in Table 1, which is thoroughly analyzed in Section 6,
can be described by a saturated model having 23 parameters. The model we offer
for this table (the RC model) contains much fewer parameters (11), which are
shown in Section 3 to have an attractive interpretation.

We first describe, in some necessary length, the way of writing the general
saturated model for a two-way contingency table. The meaning of the parameters
of such a model are addressed, and then we proceed to consider the parsimonious
and interpretable RC model. :

Now let p = (p11,p12,---,217), Ca € RI*! Cp € R’*J be arbitrary or-
thogonal matrices whose first columns are constant, i.e., contrast matrices, and
put C = C4 ® Cp where ® denotes the Kronecker product. We shall denote the
columns of C using double subscripts, applying the same ordering as that used in
p above. We then have ¢;; = ¢;4®c;p where ¢4, c;p are the ¢th and jth columns
of C4 and Cp respectively. Putting D = (¢24...¢14) and Dp = (c2B...¢yB)
we write the loglinear model as

Inp=Ca=aca®c15+(Daas)®cip+c14®(Dpap)+Da®Dpasp (1)

where ag = (a21,...,an), ap = (ai2,... ,a17) and asp = (a22,003,...)"
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The parameterization in terms of the a;; is necessary for the computational
techniques used in Section 5. In particular oj; isolates the single degree of free-
dom lost in the log-linear model due to the constraint on the pi;. The remaining
a;; are free to vary (mathematically) independently on R (see the discussion after
Equation (6)). This is a useful property for importance sampling, as there is no
need to build any mathematical dependencies into the algorithm, and it is not
shared, to the same extent, by some of the more standard methods of parameteriz-
ing this model. This remark applies with even greater force for multidimensional
tables.

An alternative parameterization is also useful for interpretative purposes;

namely
Inp = Acia ® €18 + pada ® c1B + $BC1aA @ AB + PaBAAB (2)

where A = a1 and

1 ' - 1 11/2 I
da = E ociall = Z 01121 , Aa= ¢:41 Z Q31CiA, (3)
1=2 -i=2 - 1=2
I r I 11/2 I
o5 = | aijcp| = > ol , Ap= ¢35 > aijciB, (4)
1=2 - 1=2 - 1=2
and
I I J 1/2 I J
daB = Z a;icij|l = [Z Z a?jJ , AAB = (}5213 Z Q45Cij. (5)
1=2 1=2 j=2 1=2 j=2

These quantities have useful interpretations.
Since 1'p = 1 we have for given ¢4, A4, 9B, AB, $4B, A4B

A=-V1JIn [}17 ZZexp {qSAAAi/\/j + ¢B>\Bj/\/f+ ¢AB)\ABij}} (6)

and the vectors dadg € £{ca2,...,car}, $8AB € £{cBa, .. .,cpy}tand ¢apAap
€ £{cij|i,7 # 1} are free in their respective spaces. Hence the ay; are free in R
for (4,7) # (1,1).

The ¢ and ) parameters represent quantities of inferential interest in the
analysis. For example, A and B are statistically independent if and only ifInp;; =
6; + ¢; for some §;, €;, and for all 7 and j. This is easily seen to be true if and
only if @;; = 0 whenever ¢« # 1 and j # 1. Hence A and B are statistically
independent if and only if ¢4 = 0. Clearly ¢4p is a measure of association
while the A4p;; give information as to the form of the nonindependence when
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éa #0. If pap = 0, then ¢4 = 0 if and only if p;. = --- = p;. and hence ¢4 is
a measure of homogeneity with the ) 4;, giving information as to the form of the
nonhomogeneity when ¢4 # 0. Similar arguments hold for ¢p and Ap;.

Note that the ¢ and ) parameters are independent of the choice of C4 and Cp.
For, if C%, C} are two different contrast matrices, then £(C4®1;) = £(C}3®1,),
£(1; ® Cp) = £(1; ® C%); hence £(D4g ® Dg) = £+(Ca® 15,1 ® Cp) =
£4HC4, ®1;,1; ® Cp) = £(D% ® Dy). Then, for example, ¢parq ® 1 is the
orthogonal projection of Inp onto £(C4 ® 1;) and this is independent of the
basis. The argument is the same for the other quantities.

A more usual notation for the log-linear model (see Fienberg (1989)) is to
write Inp;; = u + uy(y + ug(j) + Ura;)- These quantities relate to those defined
above as follows: u = au/\/ﬁ, Uy = ¢A)\Ai/\/j, Ug(j) = ¢B)\Bj/\/f and
U13(3i5) = PABAABi;-

3. Goodman’s RC Model

Goodman (1979, 1981, 1985) introduced a family of log-multiplicative models
which are especially suitable for contingency tables with ordered categories. The
basic model of that family known as “the RC model” is given by

pij = a;f; exp[du;vj).

Here p; and v; are parametric scores assigned to the categories of the table while
a; and (; are nuisance parameters. The RC model implies the following appealing
interaction form given by log odds

log 2B = g(s — ) (vs —we), i#k, j#e
DiePkj
A variety of models can be obtained from the RC model. If for instance the scores
are restricted to be equally spaced then the model states that the interaction
between adjacent rows and adjacent columns is independent of the specific choice
of such rows and columns. Further interpretation of the parameters of the RC
model is given by Gilula (1986) and Gilula, Krieger and Ritov (1988).

The Goodman RC model is also a restricted form of (2) where Aap is no
longer permitted to be a general unit vector in £{¢;;|i # 1,7 # 1} but is required
to be of the form Agp = u ® v where u and v are unit vectors in £1{1;} and
£+{1;}, respectively. Thus the interaction term is assumed to have a specific
mutliplicative structure. Hence the RC model is

Inp=XNc14a®cip+ daras®cip + ¢pci1a @ Ap + dapu Qv. (7)

These parameters relate to those defined above as Ina; + Ing; = A*/VIJ +
barai/VJ + é8rp;j/VI, ¢ = ¢pap and ui, v; are the same. Note we can also
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write qﬂéu = Daay, ¢i/év = Dya¥y for o’ € R!-1 and a} € R’/-! and in
parallel with (1) we can write the model as

Inp = aIlclA®clB+(DA0’-A)®CIB+c1A®(DBaB)+DA®DBa*B®a*B- (8)

An obvious adjustment to (6) leads to a formula for aj; = A*. Further restrictions
are sometimes placed on the u and v vectors; e.g. we might require g3 < -+ < p1
and 1 < --- < vy (see Ritov and Gilula (1991) for further discussion).

It should be noted here that originally the RC model was presented with
no particular restrictions on p and v. Later, for identifiability and compara-
tive purposes concerning the canonical correlation model, these parameters were
restricted to have zero mean and unit variance with respect to the marginal dis-
tributions {p;.} and {p.;} respectively. Becker and Clogg (1989) correctly argued
that making the restrictions depend upon marginal distributions induces some
limitations when more than one contingency table is analyzed. Following their
argument we choose here the two constraints of zero sum and unit length instead
of the above expectations and variance constraints.

Suppose we specify a general Aap € £{cij|li # 1,7 # 1}; then there are
unique unit vectors u € £+{1;} and v € £ +{1;} which minimize

[rsz - oo ©)

where || - || denotes Euclidean length, as is proven next.

Lemma 1. For given Aap the vectors p and v specified above minimize (9)
when they are respectively left and right singular vectors associated with the first
singular value of the matriz

M1AB - A1JAB

AI1AB “*° AIJAB

Proof. The proof follows straightforwardly from Eckart and Young (1936) and
Householder and Young (1938).

Suppose we have specified ¢4, A4, ¢B, AB, dap and Ayp, ie. a particular
log-linear model. Then Lemma 1 gives a method of fitting the Goodman RC
model which is, in a certain sense, closest to this particular loglinear model.
Further ||Aap — u®v||? gives a measure of fit. Note that 0 < IAap—p®v|? < 2.
As evident in the following section, these results are useful for the Bayesian
analysis of the Goodman RC model. It should be noted, however, that, in the
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so-called classical (“frequentist”) approach, the above mentioned measure of fit
would be considered inferior because the estimates of p and v obtained by the
singular value decomposition are inefficient in the multinomial framework. Such
singular value estimates can be used, however, in obtaining maximum likelihood
estimates as is reported by Gilula and Haberman (1986, 1988).

A simple algorithm like the power method is available to compute p and v. If
we wish to find p and v which minimize (9) and also satisfy additional constraints
beyond ||| = ||v]| =1 and I'p = v = 0 then a different optimizing algorithm
is required. For example, if we add the order constraints then we must solve a
nonlinear programming problem with a quadratic objective function and linear
and quadratic constraints. For an alternative approach to a Bayesian analysis to
tables with ordered variables see Agresti and Chuang (1989).

4. Bayesian Analysis

We begin by discussing the analysis of the full loglinear model. Let F' =
(fi;) be the matrix of observed frequencies. The likelihood function for the full
multinomial model is then

I J
L(Fip) < [T [] »% (10)

i=1j=1

where p ranges in the IJ — 1 dimensional simplex. A Bayesian analysis then
proceeds by placing a prior on p, or some reparameterization, and then computing
relevant posterior quantities. We discuss the choice of prior here.

The choice of parameterization materially affects the ease with which pos-
terior calculations can be carried out. For example, a natural choice of a class
of priors is given by the Dirichlet family which is conjugate. Hence with such
a choice we can sample directly from the posterior and then do the necessary
posterior computations for the ¢ and A parameters.

Alternatively, analogous to random effect models, we can put a prior on the
parameter a. The likelihood function in this parameterization is given by

L(F|e) x exp{a’C'Vec[F']} = exp{a'Vec|(C} FCg)']} (11)

where the Vec operator stacks the columns of a matrix. The constraint 1'p =1
specifies a1, as in (6) while the remaining «;; are completely free. The ay,
i #1, a1j, j # 1 and a;5, i # 1, j # 1 represents row, column and interaction
contrasts respectively. Hence a reasonable choice for the prior is to take the c;,
(3,7) # (1,1) to be mutually statistically independent, ey ~ N(0,0%), ai; ~
N(0,0%) and a;; ~ N(0,0%p) as in a random effects model. The parameters
o4, 0B, 0ap reflect our beliefs with respect to how much of the variability in the
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Inp;; is caused by row, column and interaction effects respectively. Note that
with this choice of prior, ¢aAa, ¢BAp, and dapAap are mutually statistically
independent multivariate normals which are independent of the choice of C4 and
CB; e.g., (f)AAA - N](0,0’%V) where v;; = 1- 1/I and Vi = —1/I when ¢ 75 _7

If we take 02, 0%, and 0% very large then this represents vague knowledge
about column, row and interaction effects and we are effectively carrying out
a likelihood analysis. For a diffuse analysis we consider a sequence of analyses
with 0%, 0%, and 0% 5 becoming progressively larger until the posterior analysis
stabilizes. Alternatively we could use data-dependent techniques for choosing the
o’s. We mention one such approach, via chaining and the marginal likelihood,
in Section 5. Also, we could treat 0%, o%, and o g as hyperparameters, place a
hyperprior on these quantities and integrate them out. This is the approach taken
in Leonard (1975) in the context of the logistic model. An alternative approach
to the analysis of a loglinear model is discussed in Epstein and Fienberg (1990).

With the parameterization of the log-linear model in terms of the a;; and the
above prior structure there is no simple algorithm available for sampling from the
posterior for the log-linear model. An alternative approach for the computation
is discussed in the following section. Note, however, that a diffuse analysis for
the a;; compels something like the above approach, for in choosing a Dirichlet
for p it is not clear what choice should be made due to the change of variable.

If we accept the RC model as true in a given context, then a traditional
approach puts a prior on p, appropriately restricted, and then proceeds to com-
pute various posterior quantities. The difficulty in determining the restrictions
on p and thus an appropriate prior, however, makes this approach intractable.
Perhaps more appropriately, as with the loglinear model, (voiding the problem of
restrictions) is to put a prior on the parameters (a4, @B, &, a’g). The likelihood
function is then given by

L(Flas, ap, oy, op)
X exp {\/J—},_—jan + ——\}—ja’ADlr + %a’BDBc + a*AfD’AFDBa*B} (12)
where N = 1'F1, r = F1 and ¢ = F'1.

This approach is more computationally difficult than with the loglinear model
and this seems to be due to the likelihood function having a much more irregular
shape.

A different approach is taken here for the Bayesian analysis of the RC model.
With this approach computational difficulties are effectively subsumed within
those for the loglinear model. Further, we avoid the assumption that the RC
model is true and we provide a measure of how well the RC model fits when the

full loglinear model is true.
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For this, let (¢a,Aa,®B,AB,daB, Aap) be the parameter for the full log-
linear model and let E[-|F] denote the expectation operator with respect to
the posterior distribution of the full model. Let (¢4,A4, ®B, AB, daB, 1, v) de-
note the parameter of the unique RC model which is closest to the above log-
linear model in the sense described in Section 2. Then the posterior distribu-
tion on (¢4, A4, dB,AB, 4B, Aap) induces a marginal posterior distribution on
(ha, A4, B, A\B, daB, 1, v) and we can use this to make inferences about the RC
model. Further, we can look at

E[|A4p — n@v||F) (13)

to assess how well the RC model fits the data F. A value near 2 indicates a
poor fit while a value near 0 indicates a good fit. Of course, we also have the full
marginal posterior distribution of |[A4p — u ® v||? for this kind of inferences as
well.

5. Computations

Our approach to computing integrals is via Monte Carlo and in particular,
importance sampling and adaptive importance sampling. A Monte Carlo ap-
proach seems necessary for the analysis of the RC model which we presented in
Section 3. Adaptive importance sampling has been discussed by many authors;
in particular see Smith et al. (1987), Evans (1991a,b), Oh and Berger (1989) and
for an implementation in the context of contingency tables see Evans, Gilula and
Guttman (1989).

For the analysis of the loglinear model we must evaluate ratios of the form

J9(e)L(F|a)h(c)dex

TL(Fla)h(@)da (14)

where the integration is over R//~1, where h is the prior on « for specified values
of 0%, 0% and %, and g is some real-valued function; e.g. g(a) = afj. Hence,
we must approximate the integrals in the numerator and the denominator.
Asymptotically, under quite general conditions, the posterior distribution
can be well approximated by a multivariate normal distribution with mean at
the mode i of the posterior and with variance matrix ¥ equal to the negative of
the inverse of the Hessian matrix of the log-posterior, evaluated at . For a diffuse
analysis these quantities are effectively the maximum likelihood estimates. With
this approximation we can generate X,...,X, from this normal distribution
and estimate E[g|F] by 3 i~ ¢(X:)/n. In many contexts, the tails of the posterior
are longer than normal tails and thus these Monte Carlo estimates will have
infinite variance. Hence a conservative approach is to use a multivariate Student
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density function with mean given by fi, variance matrix given by ¥ and degrees
of freedom given by 7, for the Monte Carlo estimates in place of the multivariate
normal. It is difficult to determine a precise value for 7 but it seems better to err
on the side of conservatism. More generally, the posterior distribution may have
an extremely non-normal shape (see Naylor and Smith (1988) and Smith et al.
(1987)).

Further, for small data sets we can expect the posterior mean vector and
variance matrix to differ from g and 3, respectively. Hence, it makes sense to
estimate these quantities via importance sampling, replace our initial estimates
and to continue this procedure for several steps. This is called adaptive impor-
tance sampling and is more extensively discussed in the references given above.
For example, however, Oh and Berger (1989) show that this method improves
the efficiency of the computation over straight importance sampling.

The above presupposes that we have chosen values for 0%, 0% and 05 5. For a
diffuse analysis we want to choose these quantities to be large. To assess whether
or not we have chosen these values large enough we must do the posterior analysis
for several choices of these parameters and observe how the analysis changes.
If appropriate choices have been made then choosing even larger values should
produce negligible changes in the estimates of the posterior quantities of interest;
e.g. the means and variances of the ¢;;. In other contexts we may wish to choose
the o parameters to depend on the data. For example the denominator in (14)
can be viewed as a marginal likelihood for (0%,0%,0%5), and it is reasonable
then to select the values of these parameters to maximize this quantity. We do
not pursue this approach further here, as our interest is in a diffuse analysis, but
note that the methods discussed in Evans (1991a) may be appropriate in this
context.

6. Examples

Ezample 1. We consider the implementation of the analysis with a specific
data set taken from Goodman (1985, Table 2). The purpose of the analysis is
to examine the relationship between a person’s mental health status and the
parents’ socioeconomic status. The data are recorded in Table 1. Thisis a 4 x 6
table and hence the integrals required for a Bayesian analysis are 23 dimensional.

We carry out a diffuse analysis with 0% = 0% = 0% = 100. In columns 2 and
3 of Table 2 we have recorded the values for the means and standard deviations
for the starting importance sampler. The starting covariances are not given for
reasons of space. As the data set is based on a sample of N = 1660 we might
expect the normal approximation to hold quite well in this example and, indeed,
it does. Hence, we chose 7 = 20 and used straight importance sampling with no
adaptation. The final two columns in Table 2 give the estimated posterior means
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and standard deviations for the c;; based on a Monte Carlo sample of n = 10, 000.
Note that there is very little change in these values. To assess the accuracy of
these estimates we generated a further sample of 50,000 and compared these
estimates. Based on this we are satisfied that the posterior means and standard
deviations have been computed to 2 decimal places of accuracy. The estimates
of Table 2 required about 30 seconds of CPU time. Also using a multivariate
normal importance sampler gave similar results. To check that this was indeed a
diffuse analysis we did the computations with 0% = 0% = 0% 5 = 1000 and again
no significant changes in the results were observed.

The posterior expectation of ¢ 45 was computed to be .133 and the posterior
standard deviation .359. Table 3 records some posterior quantiles for ¢ 45. Hence
we see that the posterior distribution is skewed to the right and there is ample
evidence that ¢4p # 0.

The posterior expectation and standard deviation of ||A g — u ® v||? were
computed to be .137 and .153 respectively. Table 4 records some posterior quan-
tiles for this quantity. Note that the posterior distribution is skewed to the right
in [0, 2] but reasonably concentrated about 0. Hence there is evidence that the
RC model is providing a reasonable fit for this data. This is compatible with
Goodman’s results (Goodman (1985)). Note that Monte Carlo seems to be a
necessity for the computation of this distribution.

Given that the RC model provides a good fit we record the posterior expec-
tations of 1 and v in Table 5. Note that, to a remarkable degree, these scores are
ordered in a way which agrees with the ordering of the categories of the variables.
Hence the RC model does well in explaining the lack of independence in this con-
text. The computations in Tables 3, 4 and 5 are based on a further sample of
size 10,000.

Ezample 2. This example comes from Goodman (1981). Here, 135 subjects
are cross-classified by Periodontal Condition (row variable) and by Calcium intake
level (column variable). These data are given in Table 6 where A denotes the
best condition and 1 is the lowest calcium intake.

The integrals in this problem are all 15-dimensional. Because of the some-
what smaller sample size of N = 135 we chose a 15-dimensional Student distri-
bution with 7 = 5 as the basic kernel and used adaptive importance sampling,
adapting to the mean and variance matrix of the posterior. Thus we started the
importance sampler using a 15-dimensional Student with 5 degrees of freedom,
mean vector given by £ and with variance matrix given by Y. Then we updated
these estimates after each Monte Carlo sample of size 1000. For example, if N,
and D; represent the estimates of the numerator and denominator of (14) at the
1th step of this process, where g(a) = a12 and n;, d; represent the estimates of
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these quantities based on the ith sample of 1000, then N1 = (iN; +n;)/(i + 1),
and similarly for D;.1. Hence, the ith sample was generated from a multivariate
Student whose first coordinate has mean N;/D;, and the (1-+1)-st sample was gen-
erated from a multivariate Student whose first coordinate has mean N;41/D;41.
We update the means, variances and covariances of all the coordinates of the
importance sampling distribution using this technique. Our estimates of the pos-
terior mean and variance matrix are based on 10 steps of this process, or 10,000
generated values.

The starting values and the final estimates are recorded in the first 4 columns
of Table 7. Comparing the results in columns 3 and 4 with a simulation of
size 50,000 we estimate that the largest relative error in the means is about 5%
and the average relative error in the means is about 2%. The corresponding
quantities for the standard deviations are about 8% and 3% respectively. The
changes from strating to final estimates are not dramatic but we note that all
the posterior standard deviations are larger than the starting values indicating
that a multivariate normal importance sampler might not effectively cover the
region where posterior probability lies. Also, note that the changes in the means
pertaining to columns 1 and 3 indicates that the posterior is skewed as the starting
value is the mode.

In the final two columns of Table 7 we give estimates of the posterior means
and standard deviations which were computed using a sample of 10,000 from a
multivariate normal with mean fi and variance ¥. These do not differ substan-
tially from our previous estimates, but an error analysis indicates a maximum rel-
ative error of about 6% and average relative error of about 3% for the means with
12% and 4% being the relevant quantities for the standard deviations. Hence,
the adaptive importance sampling algorithm is more accurate but not greatly
so in this case. In general, however, we feel it is better to be conservative and
use an importance sampler in which we feel confident that its distribution effec-
tively covers a region containing the bulk of the posterior probability and also
to use adaptive techniques. Although adaptation has not produced large im-
provements in computational efficiency in this problem it has done so in other
contexts. Further adaptation adds only a few seconds to our computation times
so it is relatively inexpensive. '

The posterior expectation and standard deviation of ¢ 4p were computed to
be 7.270 and 7.540 respectively. Hence, it would seem that periodontal condition
and calcium intake are not independent; but there is a large degree of uncertainty
in this inference. If we assume they are not independent then it makes sense to fit
a RC model. The posterior expectation and standard deviation of [[Aap— p®@v||?
are .056 and .093 respectively. Hence, it seems clear that an RC model is providing
a good fit. The posterior expectations of p and v are given in Table 8. From this
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we see the scores for periodontal are monotonic but not for calcium intake, as the
last two categories reverse their order. It can be shown (as in Goodman (1981))
that the RC model also fits the collapsed table obtained from the original table
by combining the last two columns (where monotonicity of order is violated). In
the collapsed table both set of scores come out monotone.
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Table 1. Cross-classification of subjects by their mental health status
and by the socioeconomic status of their parents

Parents’ socioeconomic status

Mental health status A B C D E F
Well 64 57 57 72 36 21
Mild symptom formation 94 94 105 141 97 71
Moderate symptom formation 58 54 65 77 54 54
Impaired 46 40 60 94 78 71

Table 2. Posterior means and standard deviations for the a;; in Example 1

Variable Mean Std. dev. Mean Std. dev.
(Start)  (Start)  (Finish) (Finish)

(1,2) —0.116  0.131 ~0.115  0.130
(1,3) 0.220  0.125 0.222  0.124
(1,4) 0.652  0.112 0.655  0.112
(1,5) —0.214  0.130 -0.217  0.129
(1,6) —0.606  0.149 —-0.612  0.149
(2,1) 1.264  0.130 1.272  0.130
(2,2) 0.059  0.118 0.058  0.118
(2,3) 0.097  0.116 0.097  0.116
(2,4) 0.106  0.106 0.110  0.106
(2,5) 0.284  0.133 0.280  0.133
(2,6) 0.379  0.167 0.384  0.169
(3,1) —0.264  0.130 ~0.265  0.130
(3,2) —0.008  0.128 ~0.007  0.130
(3,3) 0.082  0.124 0.081  0.124
(3,4) -0.009  0.114 ~0.008  0.115
(3,5) 0.124  0.134 0.126  0.134
(3,6) 0.418  0.147 0423  0.148
(4,1) -0.106  0.130 ~0.108  0.129
(4,2)  —0.047  0.146 ~0.047  0.146
(4,3) 0.190  0.133 0.191  0.135
(4,4) 0.206  0.114 0.300  0.112
(4,5) 0452  0.122 0458  0.125
(4,6) 0519  0.131 0525  0.131
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Table 3. Posterior quantiles for ¢ 45 in Example 1

Probability Quantile

.010 .639
.025 713
.100 .894
.200 1.293
.900 1.797
975 2.133
.990 2.310

Table 4. Posterior quantiles for ||[A4p — p ® v||? in Example 1

Probability Quantile

.010 .029
.025 .038
.010 .063
.500 126
.900 225
975 303
.990 339

Table 5. Posterior expectations of u and v in Example 1

p1 = —413 1, = —-.248
o = —.017 v, = —.255
us = .059 vz = —.091
ug = .370 vg = —.009
vs = .202
veg = .401

Table 6. Periodontal condition by calcium intake

Calcium intake

Periodontal condition 1 2 3 4
A 5 3 10 11

4 5 8 6
26 11 3 6
23 11 1 2

Oaow
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Table 7. Posterior means and standard deviations of the a;; in Example 2

Variable Mean Std. dev. Mean Std. dev. Mean Std. dev.
(Start)  (Start)  (Finish) (Finish) (Normal) (Normal)

(1,2) -0.667 0.395 -0.722 0.444 —.712 .408
(1,3) —1.211 0.558 —1.388 0.626 —1.374 .590
(1,4) —0.339 0.481 —0.348 0.514 —.347 .523
(2,1) -0.191 0.428 —0.180 0.458 —.200 .446
(2,2) 0.367 0.496 0.434 0.522 411 .523
(2,3) —0.212 0.396 —0.224 0.419 —.222 421
(2,4) —0.384 0.383 -0.418 0.384 —.407 .410
(3,1) 0.575 0.407 0.596 0.426 .590 432
(3,2) -0.414 0.354 —0.415 0.375 —.403 .358
(3,3) -1.663 0.464 -1.777 0.501 —1.801 .508
(3,4) -0.618 0.398 —0.656 0.415 —.644 .420
(4,1) —0.598 0.592 -0.802 0.682 -.773 .622
(4,2) -0.217 0.311 —0.206 0.326 —-.209 327
(4,3) —-1.909 0.751 —-2.217 0.864 —-2.177 .823
(4,4) —0.955 0.625 —1.043 0.656 —1.028 .680
Table 8. Posterior expectations of u and v in Example 2

p1 = 0.2128452 vy = —0.230028

uo = 0.1572506 v, = —0.161415

ns = —0.102727 vz = 0.2566262

g = —0.267369 vy = 0.1348174
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