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Abstract: Empirical likelihood based tests for the presence of uniform stochastic or-

dering (or hazard rate ordering) among two univariate distributions functions (DFs)

are developed when the data are right censored in the one- and two-sample cases.

The proposed test statistics are formed by taking the supremum of some functional

of localized empirical likelihood test statistics. The null asymptotic distributions of

these test statistics are distribution-free and have simple representations in terms

of a standard Brownian motion. Simulations show that the tests we propose out-

perform, in terms of power, the one sided log-rank test at many distributions. The

stochastic ordering case is shown to be a special case of our procedure. We illustrate

our theoretical results with an example.
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1. Introduction

The concept of ordering univariate random variables according to their DFs

is an important area of statistics and applied probability. Many orders are

discussed extensively in the literature and they include in increasing order of

strength: stochastic ordering, uniform stochastic ordering, and likelihood ratio

ordering. Such orderings arise in the biomedical sciences and reliability engineer-

ing. For a broad overview of these and other stochastic orders, see Shaked and

Shanthikumar (2006).

Let X1 and X2 be two nonnegative random variables with DFs F1 and F2,

respectively. F1 is said to be stochastically smaller than F2 (F1 ≼SO F2) if F̄1 ≤
F̄2 where F̄i = 1 − Fi is the survival function (SF) corresponding to Fi. On the

other hand F1 is said to be uniformly stochastically smaller than F2 (F1 ≼USO F2)

if the ratio F̄1(t)/F̄2(t) is nonincreasing for t in (−∞, F−1
2 (1)). When F1 and F2

are absolutely continuous with hazard rates λ1 and λ2, respectively, uniform

stochastic ordering is equivalent to λ1(t) ≥ λ2(t) and hence, uniform stochastic

ordering is sometimes called hazard rate ordering. This ordering is also equivalent

to

P [X1 > t+ s|X1 > t] ≤ P [X2 > t+ s|X2 > t], for all s ≥ 0, t.
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That is, the conditional distribution of X1, given that X1 > t, is stochastically

smaller than that corresponding to X2. For this reason, uniform stochastic order-

ing is a more useful concept than the usual stochastic ordering, in applications.

As Dykstra, Kochar and Robertson (1991) point out, uniform stochastic order-

ing is especially of interest when the populations correspond to survival times

for different medical treatments. Even if the corresponding survival times are

stochastically ordered initially, they may not be when the patients are exam-

ined at a later time. However, if they are uniformly stochastically ordered, then

clearly one treatment is better than the others.

Estimation of DFs under uniform stochastic ordering has been considered in

the literature. Dykstra, Kochar and Robertson (1991) derived the nonparametric

maximum likelihood estimators (NPMLE) of k uniformly stochastically ordered

DFs when k ≥ 2. They also studied the likelihood ratio test (LRT) for equality of

multinomial distributions against the alternative that they are uniformly stochas-

tically ordered. In the one-sample case, Rojo and Samaniego (1991) obtained the

NPMLE of the DF F1 when F1 ≼USO F2 with F2 known, continuous, and strictly

increasing, and showed that it is not consistent. Mukerjee (1996) showed that

this is also the case in the two-sample problem. Alternative estimators that are

consistent have since been developed in the one- and the two-sample cases. For

more on this, see Mukerjee (1996) and Rojo and Samaniego (1993). The weak

convergence of these new estimators was studied by Arcones and Samaniego

(2000). Recently, El Barmi and Mukerjee (2015) developed consistent estimators

in the k−sample case, and El Barmi and McKeague (2016) developed EL-based

tests for the presence of this ordering in the uncensored case.

This paper develops EL-based one- and two-sample tests for the presence of

uniform stochastic ordering under right censoring. The EL method was originally

used by Owen (1988, 1990) to construct confidence regions for parameters defined

by general classes of estimating equations. The EL approach has been extended

to many areas in statistics, references can be found in Owen (2001). Einmahl and

McKeague (2003) developed a localized version of EL to allow nonparametric

hypothesis testing. The EL approach was extended in the uncensored case to

testing for the presence of stochastic ordering and uniform stochastic ordering

in the k−sample case in El Barmi and McKeague (2013) and El Barmi and

McKeague (2016), respectively. Chang (2014) extended their test for stochastic

ordering to the censored case, and in the present paper we do the same for

uniform stochastic ordering.

In Section 2, EL-based tests are developed for the presence of uniform

stochastic ordering in the one- and the two-sample cases, and in Section 3 we

show that a test for stochastic ordering is obtained as a special case of our test for

uniform stochastic. Chang (2014) also treated the stochastic ordering problem
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and our results improve on hers. In Section 4 we give the results of simulations

that compare our tests in Section 2 with the one sided log-rank test, and in Sec-

tion 5 we discuss an example. Some concluding remarks are given in Section 6.

Throughout the paper,
d→,

P→ and
w⇒ are used to denote convergence in distribu-

tion, convergence in probability, and weak convergence, respectively. The proofs

are relegated to the Appendix.

2. Uniform Stochastic Ordering

In this section we confine attention to uniform stochastic ordering. We first

introduce the one-sample case and then extend the results to the two-sample

case. To derive the asymptotic distributions of our test statistics, we appeal to

some elegant results obtained by Præstgaard and Huang (1996) who developed

the asymptotic theory for the NPMLE of two stochastically ordered DFs.

2.1. One-sample case

Suppose X1, X2, . . . , Xn are independent lifetimes with a common but un-

known DF F and SF F̄ , and independent hereof, C1, C2, . . . , Cn is a random sam-

ple of censoring times with DF G and SF Ḡ. What we observe are the n indepen-

dent and identically distributed pairs {(Zi, δi) ≡ (min{Xi, Ci}, I[Xi ≤ Ci]), i =

1, . . . , n}. We assume the setting as Dykstra (1982) in that complete observations

(which we call deaths) occur on a subset of the times T1 < T2 < . . . < Tm, and

let T0 = 0 and Tm+1 = ∞ for convenience. Let

di = number of complete observations atTi;

li = number of observations censored in [Ti, Ti+1);

ni =

n∑
j=i

(dj + lj) = the number of observations at risk at timeTi;

θi =
F̄ (Ti)

F̄ (Ti−1)
, i = 1, 2, . . . ,m.

In addition, we let n0 = n, d0 = 0 and nm+1 = 0. We note that

F̄ (Tj) =

j∏
i=1

θi, j = 1, . . . ,m. (2.1)

Suppose we want to test

H0 : F = F0 against H1 : F ≺USO F0,

where F0 is a known DF and ≺USO denotes ≼USO with equality excluded. The

DF F0 may, for instance, be some reference DF or a DF available from demo-

graphical studies.
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Let π(t) = F̄ (t)Ḡ(t) denote the probability of remaining under study at time
t. The approach we adapt is based on testing a family of “local” hypotheses of
the form

Hs,t
0 :

F̄ (t)

F̄0(t)
=

F̄ (s)

F̄0(s)
versus Hs,t

1 :
F̄ (t)

F̄0(t)
<

F̄ (s)

F̄0(s)

for fixed 0 ≤ s < t ≤ b for some b with π(b) > 0. The test statistic for H0

against H1 is some functional of the test statistics corresponding to these local
hypotheses. The local EL procedure rejects Hs,t

0 for small values of

R(s, t) =
sup

{
L(F̄ ) : ϕ = ϕ0

}

sup
{
L(F̄ ) : ϕ ≤ ϕ0

} , (2.2)

where ϕ = ϕ(F ; s, t) ≡ F̄ (t)/F̄ (s), ϕ0 = ϕ(F0; s, t) ≡ F̄0(t)/F̄0(s) and

L(F̄ ) =
∏

uncensored

[F̄ (Zi)− F̄ (Zi−1)]
∏

censored

F̄ (Zi)

=

m∏
i=1

[F̄ (Ti)− F̄ (Ti−1)]
di

m∏
i=0

[F̄ (Ti)]
ni−ni+1−di

=
m∏
i=1

[
1− F̄ (Ti)

F̄ (Ti−1)

]di [ F̄ (Ti)

F̄ (Ti−1)

]ni−di

=
m∏
i=1

θni−di
i (1− θi)

di .

We have suppressed the argument (s, t) in ϕ for simplicity. The suprema in (2.2)
are taken over DFs F that are supported by the data points and by convention
we tale sup ∅ = 0 and 0/0 = 1. Kaplan and Meier (1958) showed that, under no
restrictions, the NPMLE of F̄ is the maximizer of L(F̄ ) and is given by

ˆ̄F (t) =
∏

{Ti≤t}

θ̂i,

where

θ̂i =
ni − di

ni
, i = 1, 2, . . . ,m, (2.3)

and
∏

∅ ≡ 1.

By (2.1), the parameter of interest ϕ =
∏n(t)

i=n(s)+1θi, where for u > 0, n(u) ≡∑n
i=1I[Ti ≤ u] is the number of distinct uncensored observations in the time

interval [0, u]. Write

L(F̄ ) =
{ n(s)∏

i=1

θni−di
i (1− θi)

di
}
×
{ n(t)∏

i=n(s)+1

θni−di
i (1− θi)

di
}

×
{ n∏

i=n(t)+1

θni−di
i (1− θi)

di
}
.
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The three terms in braces in L(F̄ ) can be maximized individually under Hs,t
j , j =

0, 1. Since the constraints on ϕ under both hypotheses have no effect on the first

and the third factors, these two factors make no contribution to R(s, t) and hence

they cancel out. The remaining term

n(t)∏
i=n(s)+1

θni−di
i (1− θi)

di (2.4)

is then maximized under Hs,t
0 and Hs,t

1 . Let ψi = log(θi). In terms of this new

parametrization, to compute R(s, t), it suffices to maximize

n(t)∑
i=n(s)+1

{(ni − di)ψi + di log(1− eψi)} (2.5)

subject to the constraint
∑n(t)

i=n(s)+1ψi = log(ϕ0) under Hs,t
0 or

∑n(t)
i=n(s)+1ψi ≤

log(ϕ0) under H
s,t
1 . A simple Lagrangian argument shows that, under Hs,t

0 , (2.5)

is maximized by a vector whose ith component is

ψ̄i ≡ log(θi) = log

(
ni + βn(s, t)− di

ni + βn(s, t)

)
, i = n(s) + 1, n(s) + 2, . . . , n(t),

and βn(s, t) is the unique solution for β in the equation

H(β) ≡
n(t)∏

i=n(s)+1

ni + β − di
ni + β

− ϕ0 = 0. (2.6)

Let (ψ̂n(s)+1, ψ̂n(s)+2, . . . , ψ̂n(t)) = (log(θ̂n(s)+1), log(θ̂n(s)+2), . . . , log(θ̂n(t))) where

θ̂i is defined in (2.3). Clearly, under no constraints, (2.4) is maximized by

(θ̂n(s)+1, θ̂n(s)+2, . . . , θ̂n(t)). So when
∑n(t)

i=n(s)+1ψ̂i ≤ log(ϕ0), (ψ̂n(s)+1, ψ̂n(s)+1, . . .,

ψ̂n(t)) maximizes (2.5) under Hs,t
1 and this occurs if and only if βn(s, t) ≥ 0 where

βn(s, t) is defined as before. On the other hand, if
∑n(t)

i=n(s)+1ψ̂i > log(ϕ0), strict

concavity of the objective function in (2.5) implies that the maximum occurs at

(ψ̄n(s)+1, ψ̄n(s)+1, . . . , ψ̄n(t)). These steps together imply that

R(s, t) =




∏n(t)
i=n(s)+1

θ
ni−di
i (1−θi)

di

∏n(t)
i=n(s)+1

θ̂
ni−di
i (1−θ̂i)di

, βn(s, t) ≥ 0,

1, otherwise.

To derive the asymptotic distribution of the test statistic that we propose for

testing H0 against H1, we assume that the DF F has density f on ]0, b[ with a
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bounded, continuous, and strictly positive hazard rate λ(t) = f(t)/F̄ (t) on [0, b].
Define

c(t) =

∫ t

0

λ(u)du

π(u)

and note that c(b) < ∞ since π(b) > 0. For (s, t) ∈ [0, b]2, let

Bn(s, t) =
(c(t)− c(s))βn(s, t)√

n
.

This process has been studied extensively in Præstgaard and Huang (1996). They
showed in particular that, under H0 and the assumptions we made about F, this
process converges weakly to a Gaussian process on [0, b]2, specifically,

Bn
w

=⇒ U (2.7)

in ℓ∞[0, b]2 where U(s, t) = W (c(t)) − W (c(s)) and W is a standard Brownian
motion. It can be shown using a Taylor expansion of log(1+y) about y = 0 that,
under H0 (see proof of Theorem 1),

− 2 log(R(s, t)) = [βn(s, t)
+]2

n∑
i=1

di
ni(ni − di)

I(s < Ti ≤ t)

= (ĉ(t)− ĉ(s))
[β+

n (s, t)]
2

n
+ op(1),

where a+ = max(a, 0) and

ĉ(t) = n
∑
Ti≤t

di
ni(ni − di)

. (2.8)

Since ĉ(t) is a consistent estimator of c(t),

−2 log(R(s, t))
d→ [U+(s, t)]2

c(t)− c(s)
≡ [(W (c(t))−W (c(s)))+]2

c(t)− c(s)

d
= Z+2

using (2.7), Slutsky’s, and Continuous Mapping Theorems, where Z ∼ N(0, 1).
To test H0 against H1 we propose to use

Tn = sup
0≤s<t≤b

√
−2(ĉ(t)− ĉ(s)) log(R(s, t))

ĉ(b)
.

An appealing aspect of this test is that it is an asymptotically similar test under
H0, its null asymptotic distribution does not depend on the underlying DF F or
the censoring DF G.

Theorem 1. Under H0, if π(b) > 0, then

Tn
d→ sup

0≤u≤1
|W (u)|,

where W is a standard Brownian motion.
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The distribution of sup0≤u≤1 |W (u)| has been extensively studied in the lit-

erature (see Billingsley (1968, p.79)). In particular,

P (Tn>t) → P ( sup
0≤u≤1

|W (u)>t)=1− 4

π

∞∑
k=0

(−1)k

2k + 1
exp

{
− π2(2k + 1)2

8t2

}
(2.9)

as n → ∞. Hall and Wellner (1979) have shown that the approximation of the

right hand side of (2.9) by 4(1 − Φ(t)) gives a three decimal place accuracy

for t > 1.4. Here Φ is the standard normal DF. Using this approximation, the

asymptotic 0.90, 0.95 and 0.99 quantiles of Tn are 1.96, 2.241 and 2.807.

Remark. Clearly a similar test for H0 : F = F0 against H1 : F0 ≺USO F can be

developed using the same technique. In this case

−2 log(R(s, t)) =−2
n(t)∑

i=n(s)+1

[
(ni−di) log

(
θi

θ̂i

)
+di log

(
1−θi

1−θ̂i

)]
I[βn(s, t) ≤ 0],

where βn(s, t) is as defined in (2.6). The proposed test statistic is again Tn defined

above, and its null asymptotic distribution is given in Theorem 1.

2.2. Two-sample case

In this section we assume that we have sets of right censored survival data

from two populations. Specifically, we assume that the standard setting of right

censoring holds in that we only observe

(Zij , δij) ≡ (min{Xij , Cij}, I[Xij ≤ Cij ]), i = 1, 2, j = 1, 2, . . . , ni,

where (Xi1, Xi2, . . . , Xini) and (C1i, Ci2, . . . , Cini) are independent nonnegative

random samples and Xij(Cij) has DF Fi(Gi) and SF F̄i(Ḡi).

Let πi(t) = F̄i(t) Ḡi(t) denote the probability of remaining under study at

time t in the ith population. Henceforth we consider the setting as in Dykstra

(1982) and assume that complete observations occur on a subset of the times

T1 < T2 < . . . < Tm, and let T0 = 0 and Tm+1 = ∞ for convenience. Let

n = n1 + n2 and assume that limn→∞ n1/n → α where 0 < α < 1. Define, for

j = 1, . . . ,m,

dij = number of complete observations from the ith sample atTj ;

lij = number of observations censored from the ith sample at [Tj , Tj+1);

nij =

ni∑
l=j

(dil + lil)

= the number of observations at risk from the ith sample at timeTj
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bounded, continuous, and strictly positive hazard rate λ(t) = f(t)/F̄ (t) on [0, b].
Define

c(t) =

∫ t

0

λ(u)du

π(u)

and note that c(b) < ∞ since π(b) > 0. For (s, t) ∈ [0, b]2, let

Bn(s, t) =
(c(t)− c(s))βn(s, t)√

n
.

This process has been studied extensively in Præstgaard and Huang (1996). They
showed in particular that, under H0 and the assumptions we made about F, this
process converges weakly to a Gaussian process on [0, b]2, specifically,

Bn
w

=⇒ U (2.7)

in ℓ∞[0, b]2 where U(s, t) = W (c(t)) − W (c(s)) and W is a standard Brownian
motion. It can be shown using a Taylor expansion of log(1+y) about y = 0 that,
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− 2 log(R(s, t)) = [βn(s, t)
+]2

n∑
i=1

di
ni(ni − di)

I(s < Ti ≤ t)

= (ĉ(t)− ĉ(s))
[β+

n (s, t)]
2

n
+ op(1),

where a+ = max(a, 0) and

ĉ(t) = n
∑
Ti≤t

di
ni(ni − di)

. (2.8)

Since ĉ(t) is a consistent estimator of c(t),

−2 log(R(s, t))
d→ [U+(s, t)]2

c(t)− c(s)
≡ [(W (c(t))−W (c(s)))+]2

c(t)− c(s)

d
= Z+2

using (2.7), Slutsky’s, and Continuous Mapping Theorems, where Z ∼ N(0, 1).
To test H0 against H1 we propose to use

Tn = sup
0≤s<t≤b

√
−2(ĉ(t)− ĉ(s)) log(R(s, t))

ĉ(b)
.

An appealing aspect of this test is that it is an asymptotically similar test under
H0, its null asymptotic distribution does not depend on the underlying DF F or
the censoring DF G.

Theorem 1. Under H0, if π(b) > 0, then

Tn
d→ sup

0≤u≤1
|W (u)|,

where W is a standard Brownian motion.
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and ni0 = ni and di0 = 0. In addition, define

θij =
F̄i(Tj)

F̄i(Tj−1)
, j = 1, 2, . . . ,m,

and note that

F̄i(Tj) =

j∏
l=1

θil, i = 1, 2.

We develop an EL-based test for H0 : F1 = F2 versus H1 : F1 ≺USO F2. We again

test a family of “local” null hypotheses of the form

Hs,t
0 :

F̄1(t)

F̄2(t)
=

F̄1(s)

F̄2(s)
versus Hs,t

1 :
F̄1(t)

F̄2(t)
<

F̄1(s)

F̄2(s)

for a given (s, t) where 0 ≤ s < t ≤ b for some b with πi(b) > 0, i = 1, 2. The

local EL procedure rejects Hs,t
0 for small values of

R(s, t) =
sup

{
L(F̄1)L(F̄2) : ϕ1 = ϕ2

}

sup
{
L(F̄1)L(F̄2) : ϕ1 ≤ ϕ2

} ,

where ϕi = ϕ(Fi; s, t) ≡ F̄i(t)/F̄i(s) and

L(F̄i) =

m∏
j=1

θ
nij−dij
ij (1− θij)

dij , i = 1, 2.

Clearly, under no constraints, L(F̄i) achieves its maximum value at a vector

whose jth component is

θ̂ij =
(nij − dij)

nij
, j = 1, 2, . . . , ni and i = 1, 2. (2.10)

Write

L(F̄i) =
{ ni(s)∏

j=1

θ
nij−dij
ij (1− θij)

dij
}
×
{ n(t)∏

j=n(s)+1

θ
nij−dij
ij (1− θij)

dij
}

×
{ n∏

j=n(t)+1

θ
nij−dij
ij (1− θij)

dij
}
,

where n(u) is defined as before. Here Hs,t
0 : ϕ1 = ϕ2 is equivalent to

∏n(t)
j=n(s)+1 θ1j

=
∏n(t)

j=n(s)+1 θ2j , while Hs,t
1 : ϕ1 < ϕ2 is equivalent to

∏n(t)
j=n(s)+1 θ1j <

∏n(t)
j=n(s)+1

θ2j . As the constraints for the first and the third terms of L(F̄i), i = 1, 2, are the

same under both hypotheses, these terms make no contribution to R(s, t) and

cancel out. The remaining term

TESTING FOR UNIFORM STOCHASTIC ORDERING 9

2∏
i=1

n(t)∏
j=n(s)+1

θ
nij−dij
ij (1− θij)

dij (2.11)

is then maximized under Hs,t
0 and Hs,t

1 . Take ψij = log(θij) and, in terms of this
new parametrization, to compute R(s, t), it suffices to maximize

2∑
i=1

n(t)∑
j=n(s)+1

{(nij − dij)ψij + dij log(1− eψij )}, (2.12)

subject to the constraint
∑2

i=1

∑n(t)
j=n(s)+1(−1)i−1ψij = 0 under Hs,t

0 or
∑2

i=1∑n(t)
j=n(s)+1(−1)i−1ψij ≤ 0 under Hs,t

1 . Again, a Lagrangian argument shows that

under Hs,t
0 , (2.12) is maximized by {ψ̄ij , j = n(s)+1, n(s)+2, . . . , n(t), i = 1, 2},

where

ψ̄1j ≡ log(θ̄1j) = log

(
n1j + βn(s, t)− d1j

n1j + βn(s, t)

)
,

ψ̄2j ≡ log(θ̄2j) = log

(
n2j − βn(s, t)− d2j

n2j − βn(s, t)

)

and βn(s, t) is the unique solution for β in the equation

H(β) ≡
n(t)∏

j=n(s)+1

n1j + β − d1j

n1j + β
−

n(t)∏
j=n(s)+1

n2j − β − d2j

n2j − β
= 0. (2.13)

For i = 1, 2, let (ψ̂i,n(s)+1, ψ̂i,n(s)+2, . . . , ψ̂i,n(t)) = (log(θ̂i,n(s)+1), log(θ̂i,n(s)+2), . . .,

log(θ̂i,n(t))) where θ̂ij is defined in (2.10). Under no constraints, (2.11) is max-

imized by {θ̂ij , j = n(s) + 1, n(s) + 2, . . . , n(t), i = 1, 2}. As a result, when∑2
i=1

∑n(t)
j=n(s)+1(−1)i−1ψ̂ij ≤ 0, {ψ̂ij , j = n(s) + 1, n(s) + 2, . . . , n(t), i = 1, 2}

maximize (2.12) under Hs,t
1 and this occurs if and only if βn(s, t) ≥ 0 where

βn(s, t) is defined in (2.13). Otherwise, strict concavity of the objective func-
tion in (2.12) implies that the maximum occurs at {ψ̄ij , j = n(s) + 1, n(s) +
2, . . . , n(t), i = 1, 2}. Consequently, we have

R(s, t) =




∏2
i=1

∏n(t)
j=n(s)+1

θ̄
nij−dij
ij (1−θ̄ij)

dij

∏2
i=1

∏n(t)
j=n(s)+1

θ̂
nij−dij
ij (1−θ̂ij)

dij
, βn(s, t) ≥ 0,

1, otherwise.

To derive the null asymptotic distribution of the test statistic that we pro-
pose, we rely on results in Præstgaard and Huang (1996). To this end we assume
that under H0, the DF, F , has density f on ]0, b[ with a bounded, continuous
and strictly positive hazard rate λ(t) = f(t)/F̄ (t) on [0, b]. Define

ci(t) =

∫ t

0

λ(u)du

πi(u)
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and note that ci(b) < ∞. Let

c(t) = α−1c1(t) + (1− α)−1c2(t) and Bn(s, t) = (c(t)− c(s))
βn(s, t)√

n
.

Under these assumptions, Præstgaard and Huang (1996) showed that

Bn
w

=⇒ U (2.14)

on ℓ∞[0, b]2 where U(t, s) = V (t)− V (s),

V (t) = α−1/2W1(c1(t)) + (1− α)−1/2W2(c2(t))

for all t and W1 and W2 are independent standard Brownian motions. Using

a Taylor expansion of log(1 + y) about y = 0, we get under H0 (see proof of

Theorem 2)

− 2 log(R(s, t)) = (ĉ(t)− ĉ(s))
[β+

n (s, t))]
2

n
+ oP (1),

where

ĉ(t) =
n

n1
ĉ1(t) +

n

n2
ĉ2(t),

ĉi(t) = ni

∑
Tj≤t

dij
nij(nij − dij)

, i = 1, 2. (2.15)

Since ĉ(t) is a consistent estimator of c(t), (2.14) and the Continuous Mapping

Theorem imply that

−2 log(R(s, t))
d→ [(V (t)− V (s)+]2

c(t)− c(s)

d
= Z+2,

where Z ∼ N(0, 1). Analogously to the one-sample case, we propose

Tn = sup
0≤s<t<b

√
−2(ĉ(t)− ĉ(s)) log(R(s, t))

ĉ(b)

as a test for H0 against H1.

Theorem 2. Under H0, if πi(b) > 0, i = 1, 2,

Tn
d→ sup

0≤u≤1
|W (u)|,

where W is a standard Brownian motion.
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3. Stochastic Ordering

This section discusses how to extend our tests to test H0 : F = F0 against

H1 : F ≺SO F0 where F0 is a (pre-)specified DF in the one-sample and H0 : F1 =

F2 against H1 : F1 ≺SO F2 in the two-sample case. Here ≺SO is used to denote

≼SO with equality excluded. We show that the stochastic ordering problem is a

special case of the uniform stochastic ordering problem. Assuming the settings

of Sections 2.1 and 2.2 hold in the one- and the two-sample cases, respectively,

the results are easily modified to handle this situation since F̄1(0) = F̄2(0) = 1,

F̄1(t) ≤ F̄2(t) ⇐⇒ ϕ1(0, t) =
F̄1(t)

F̄1(0)
≤ ϕ2(0, t) =

F̄2(t)

F̄2(0)
.

As a consequence, by considering only “local” hypotheses of the form H0,t
0 and

H0,t
1 , t > 0, or equivalently, by setting s = 0 throughout the previous section, the

test Tn reduces to a test for the presence of the classical stochastic ordering. In

this case, the test statistic, now denoted Sn, is

Sn = sup
0<t<b

√
−2ĉ(t) log(R(0, t))

ĉ(b)
,

where R(s, t) and ĉ are defined in Section 2.1 for the one-sample and in Section

2.2 in the two sample case. A careful inspection of the proofs of Theorems 1 and

2 shows that, under H0,

Sn
d→ sup

0≤t≤1
W (t)

d
= |N(0, 1)| (3.1)

since W (0) = 0 in the proof of Theorem 1 and V (0) = 0 in the proof of Theorem

2, with probability 1. The last equality follows from Billingsley (1968).

4. Simulations

In this section we report on a simulation study to compare the performance

of our test Tn with the standard log-rank test denoted Rn. In each simulation

run, 10,000 data sets were used to approximate the rejection probabilities at a

nominal level of α = 0.05; the critical value for Tn was taken to be 2.241. We take

b to be a number less than the minimum of the largest uncensored observation(s)

from the one-(two-) sample(s).

In the one-sample case, the known DF, F0, is a Weibull distribution with

shape and scale parameters equal to 2 and
√
2, respectively. The data were

simulated from a DF, F, with hazard rate λ(t) = tI(0 < t < 1) + atI(t ≥ 1) for

various choices of a ≥ 1. The censoring DF was taken to be Weibull with shape
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n (s, t))]
2

n
+ oP (1),

where

ĉ(t) =
n
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n
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dij
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Since ĉ(t) is a consistent estimator of c(t), (2.14) and the Continuous Mapping

Theorem imply that

−2 log(R(s, t))
d→ [(V (t)− V (s)+]2

c(t)− c(s)

d
= Z+2,

where Z ∼ N(0, 1). Analogously to the one-sample case, we propose

Tn = sup
0≤s<t<b

√
−2(ĉ(t)− ĉ(s)) log(R(s, t))

ĉ(b)

as a test for H0 against H1.

Theorem 2. Under H0, if πi(b) > 0, i = 1, 2,

Tn
d→ sup

0≤u≤1
|W (u)|,

where W is a standard Brownian motion.
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3. Stochastic Ordering

This section discusses how to extend our tests to test H0 : F = F0 against

H1 : F ≺SO F0 where F0 is a (pre-)specified DF in the one-sample and H0 : F1 =

F2 against H1 : F1 ≺SO F2 in the two-sample case. Here ≺SO is used to denote

≼SO with equality excluded. We show that the stochastic ordering problem is a

special case of the uniform stochastic ordering problem. Assuming the settings

of Sections 2.1 and 2.2 hold in the one- and the two-sample cases, respectively,

the results are easily modified to handle this situation since F̄1(0) = F̄2(0) = 1,

F̄1(t) ≤ F̄2(t) ⇐⇒ ϕ1(0, t) =
F̄1(t)

F̄1(0)
≤ ϕ2(0, t) =

F̄2(t)

F̄2(0)
.

As a consequence, by considering only “local” hypotheses of the form H0,t
0 and

H0,t
1 , t > 0, or equivalently, by setting s = 0 throughout the previous section, the

test Tn reduces to a test for the presence of the classical stochastic ordering. In

this case, the test statistic, now denoted Sn, is

Sn = sup
0<t<b

√
−2ĉ(t) log(R(0, t))

ĉ(b)
,

where R(s, t) and ĉ are defined in Section 2.1 for the one-sample and in Section

2.2 in the two sample case. A careful inspection of the proofs of Theorems 1 and

2 shows that, under H0,

Sn
d→ sup

0≤t≤1
W (t)

d
= |N(0, 1)| (3.1)

since W (0) = 0 in the proof of Theorem 1 and V (0) = 0 in the proof of Theorem

2, with probability 1. The last equality follows from Billingsley (1968).

4. Simulations

In this section we report on a simulation study to compare the performance

of our test Tn with the standard log-rank test denoted Rn. In each simulation

run, 10,000 data sets were used to approximate the rejection probabilities at a

nominal level of α = 0.05; the critical value for Tn was taken to be 2.241. We take

b to be a number less than the minimum of the largest uncensored observation(s)

from the one-(two-) sample(s).

In the one-sample case, the known DF, F0, is a Weibull distribution with

shape and scale parameters equal to 2 and
√
2, respectively. The data were

simulated from a DF, F, with hazard rate λ(t) = tI(0 < t < 1) + atI(t ≥ 1) for

various choices of a ≥ 1. The censoring DF was taken to be Weibull with shape

655



12 HAMMOU EL BARMI

Table 1. Power comparison of Tn and Rn (log-rank), 10% censoring.

n = 30 n = 50

a Tn Rn Tn Rn

1.00 0.055 0.059 0.053 0.046
1.20 0.184 0.140 0.209 0.174
1.40 0.272 0.239 0.347 0.335
1.60 0.393 0.354 0.546 0.514
1.80 0.541 0.467 0.696 0.674
2.00 0.670 0.583 0.801 0.797
2.20 0.761 0.684 0.905 0.882
2.40 0.845 0.759 0.935 0.930
2.60 0.890 0.817 0.976 0.966
2.80 0.936 0.866 0.983 0.780
3.00 0.960 0.902 0.996 0.990

parameter 2, and scale parameter specified in a way that produces 10% , 25% or

50% censoring. The results are given Tables 1, 2, and 3 and they show that the

new tests outperform, in terms of power, the one-sample one-sided log-rank test

Rn.

In the two-sample case, we considered two scenarios. In the first, we took

F1 to be the uniform(0, 1) and F2 to be the uniform(0, a), for various choices

of a ≥ 1. The censoring DF in each sample was taken to be exponential with

scale parameter specified in a way that produces 10%, 25% or 50% censoring.

The results are given in Tables 4, 5, and 6, and they indicate that the test Tn
has greater power than the one-sided log-rank test Rn. In the second scenario

we specified each DF, Fj , in terms of its hazard function λj(t), t ≥ 0, setting

λ1(t) = tI(0 < t < 1) + atI(t ≥ 1) and λ2(t) = t, for various choices of a ≥ 1.

The censoring distribution in each sample is taken to be Weibull with shape

parameter 2, and scale parameter specified in a way that produces 10%, 25% or

50% censoring. The results are given in Tables 7, 8, and 9. The results show

that the log-rank test Rn has slightly greater power than the proposed test Tn
when close to the null hypothesis and that Tn has substantially greater power

otherwise. The reason for this could be that, close to the null hypothesis, the

hazard rates are almost proportional and it is well known that the log-rank test

performs well when the hazard rates are proportional.

5. Example

To illustrate the results discussed in earlier sections, we consider Data Set

II from Kalbfleisch and Prentice (1980). The data consists of survival times for
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Table 2. Power comparison of Tn and Rn (log-rank), 25% censoring.

n = 30 n = 50

a Tn Rn Tn Rn

1.00 0.058 0.064 0.055 0.059
1.20 0.168 0.122 0.196 0.146
1.40 0.273 0.194 0.343 0.251
1.60 0.337 0.271 0.464 0.381
1.80 0.474 0.341 0.639 0.497
2.00 0.575 0.434 0.749 0.621
2.20 0.666 0.507 0.864 0.709
2.40 0.764 0.565 0.908 0.782
2.60 0.851 0.618 0.938 0.839
2.80 0.887 0.677 0.970 0.877
3.00 0.933 0.718 0.985 0.911

Table 3. Power comparison of Tn and Rn (log-rank), 50% censoring.

n = 30 n = 50

a Tn Rn Tn Rn

1.00 0.058 0.056 0.055 0.046
1.20 0.184 0.097 0.209 0.174
1.40 0.272 0.149 0.347 0.335
1.60 0.393 0.224 0.546 0.514
1.80 0.541 0.299 0.696 0.674
2.00 0.670 0.347 0.801 0.797
2.20 0.761 0.413 0.905 0.882
2.40 0.845 0.506 0.935 0.930
2.60 0.890 0.576 0.976 0.966
2.80 0.936 0.590 0.983 0.780
3.00 0.960 0.610 0.996 0.990

patients with carcinoma of the oropharynx and several covariates. These pa-

tients had been diagnosed with squamous carcinoma of the oropharynx and were

classified by the degree to which the regional lymph nodes were affected by this

disease into four populations. Because lymph node deterioration is an indica-

tion of the seriousness of the carcinoma, one would expect the corresponding

four distributions to be stochastically ordered. Dykstra, Kochar and Robertson

(1991) used the LRT they developed for the presence of uniform stochastic or-

dering in the multinomial case to analyze these data. They grouped it into seven

arbitrarily chosen groups (intervals) and obtained a p-value of .04 in their LRT.

Wang (1996) used the same grouping , but deleting all censored observations and
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tion of the seriousness of the carcinoma, one would expect the corresponding
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Wang (1996) used the same grouping , but deleting all censored observations and
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Table 4. Power comparison of Tn and Rn (log-rank), 10% censoring.

n1 = n2 = 30 n1 = n2 = 50

a Tn Rn Tn Rn

1.00 0.045 0.047 0.046 0.052
1.05 0.117 0.113 0.199 0.196
1.10 0.233 0.228 0.494 0.447
1.15 0.353 0.380 0.758 0.636
1.20 0.522 0.506 0.923 0.834
1.25 0.645 0.623 0.98 0.926
1.30 0.758 0.724 0.996 0.982
0.35 0.811 0.785 1 0.987
1.40 0.851 0.811 1 0.997

Table 5. Power comparison of Tn and Rn (log-rank), 25% censoring.

n1 = n2 = 30 n1 = n2 = 50

a Tn Rn Tn Rn

1.00 0.046 0.052 0.055 0.054
1.05 0.113 0.108 0.144 0.134
1.10 0.210 0.190 0.369 0.328
1.15 0.467 0.296 0.613 0.503
1.20 0.549 0.381 0.835 0.708
1.25 0.642 0.479 0.934 0.856
1.30 0.739 0.585 0.974 0.917
1.35 0.822 0.658 0.997 0.982
1.40 0.859 0.722 0.999 0.995

Table 6. Power comparison of Tn and Rn (log-rank), 50% censoring.

n1 = n2 = 30 n1 = n2 = 50

a Tn Rn Tn Rn

1.00 0.058 0.054 0.055 0.046
1.05 0.092 0.088 0.123 0.104
1.10 0.139 0.124 0.217 0.189
1.15 0.226 0.169 0.341 0.277
1.20 0.326 0.226 0.515 0.395
1.25 0.378 0.286 0.618 0.573
1.30 0.468 0.338 0.765 0.694
1.35 0.553 0.399 0.849 0.790
1.40 0.632 0.452 0.925 0.895
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Table 7. Power comparison of Tn and Rn (log-rank), 10% censoring.

n1 = n2 = 30 n1 = n2 = 50

a Tn Rn Tn Rn

1.00 0.044 0.056 0.044 0.048
1.20 0.098 0.097 0.099 0.108
1.40 0.167 0.149 0.207 0.216
1.60 0.236 0.224 0.312 0.335
1.80 0.292 0.299 0.400 0.415
2.00 0.360 0.347 0.526 0.515
2.20 0.461 0.413 0.625 0.608
2.40 0.530 0.506 0.741 0.693
2.60 0.591 0.576 0.768 0.745
2.80 0.652 0.590 0.841 0.780
3.00 0.707 0.610 0.899 0.810

Table 8. Power comparison of Tn and Rn (log-rank), 25% censoring.

n1 = n2 = 30 n1 = n2 = 50

a Tn Rn Tn Rn

1.00 0.044 0.058 0.046 0.052
1.20 0.092 0.088 0.108 0.105
1.40 0.137 0.124 0.183 0.180
1.60 0.184 0.176 0.268 0.250
1.80 0.254 0.222 0.346 0.335
2.00 0.317 0.305 0.443 0.420
2.20 0.395 0.336 0.555 0.465
2.40 0.440 0.363 0.627 0.538
2.60 0.491 0.425 0.712 0.594
2.80 0.577 0.445 0.769 0.655
3.00 0.623 0.502 0.819 0.692

deleting the seventh group that had heavy censoring, and applied the LRT he

developed for the presence of stochastic ordering alternative in the discrete case.

He also pooled the populations 0, 1, and 2, and tested this against population 3

to obtain a p-value of .091. In applying the tests described in Sections 2 and 3,

we used the same pooling as Wang (1996). The Kaplan-Meier estimators of the

corresponding SFs are given in Figure 1. In practice, one can take b to be any

number less than the minimum of the largest uncensored observations from the

two-samples. In this case we chose b to be 1,564 days. To test for the presence of

stochastic ordering, the p-value based on (3.1) is 0.016, providing evidence that

the distribution of population 3 dominates that of the others pooled together.
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deleting the seventh group that had heavy censoring, and applied the LRT he

developed for the presence of stochastic ordering alternative in the discrete case.

He also pooled the populations 0, 1, and 2, and tested this against population 3

to obtain a p-value of .091. In applying the tests described in Sections 2 and 3,

we used the same pooling as Wang (1996). The Kaplan-Meier estimators of the

corresponding SFs are given in Figure 1. In practice, one can take b to be any

number less than the minimum of the largest uncensored observations from the

two-samples. In this case we chose b to be 1,564 days. To test for the presence of
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the distribution of population 3 dominates that of the others pooled together.

659



16 HAMMOU EL BARMI

Table 9. Power comparison of Tn and Rn (log-rank), 50% censoring.

n1 = n2 = 30 n1 = n2 = 50

a Tn Rn Tn Rn

1.00 0.039 0.061 0.049 0.050
1.20 0.075 0.073 0.078 0.073
1.40 0.101 0.094 0.127 0.109
1.60 0.116 0.101 0.169 0.160
1.80 0.148 0.126 0.266 0.187
2.00 0.193 0.160 0.313 0.209
2.20 0.234 0.175 0.361 0.257
2.40 0.261 0.185 0.437 0.276
2.60 0.305 0.210 0.483 0.306
2.80 0.344 0.251 0.527 0.339
3.00 0.433 0.238 0.612 0.340

Figure 1. Unrestricted Kaplan Meier estimators of F1 (solid) and F2 (dotted).

This conclusion is also confirmed by the test in El Barmi and Mukerjee (2005)

(p-value=0.024). In applying Tn for the presence of uniform stochastic ordering,

the p-value is 0.033 based on the approximation in Hall and Wellner (1979). The

log rank test in this case yielded a p-value of 0.031 confirming the presence of

uniform stochastic ordering.
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6. Concluding Remarks

In this paper we have developed an EL approach to the problem of nonpara-

metrically testing for the presence of uniform stochastic ordering in the one- and

two-sample cases under right censoring. We obtained a test for the presence of

stochastic ordering as a special case. The null asymptotic distributions of the

proposed tests are distribution-free. In addition, these tests are computationally

efficient to implement and could be used with massive data sets because they do

not rely on the bootstrap or any other simulation technique. We also carried out

simulations to check finite sample performances and, we applied the tests to an

example.
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Appendix

Proof of Theorem 1. We have

−2 log(R(s, t)) ≡ −2

n(t)∑
i=n(s)+1

[
(ni − di) log

(
θ̄i

θ̂i

)
+ di log

(
1− θ̄i

1− θ̂i

)]
I[βn(s, t) ≥ 0]

= −2

n(t)∑
i=n(s)+1

[
(ni−di) log

(
1+

β+
n (s, t)

ni − di

)
−ni log

(
1+

β+
n (s, t)

ni

)]
.

Let Yn(b) be the number of observations at risk at b,

Yn(b) =
n∑

i=1

I[Zi ≥ b].

Since Yn(b) ≤ ni − di for all i and Yn(b)/n → π(b) > 0, we have

0 ≤ max
1≤i≤m

max

{
β+
n (s, t)

ni − di
,
β+
n (s, t)

ni

}
≤ β+

n (s, t)

Yn(b)
= Op(n

−1/2)

as n → ∞ by (2.7). This implies that β+
n (s, t)/(ni − di) = Op(n

−1/2) and

β+
n (s, t)/ni = Op(n

−1/2), uniformly in i = 1, 2, . . . ,m, and since n(t) − n(s) =

O(n), we have using log(1 + y) = y − y2/2 + y3/3 + y4/4 + O(y5) as y → 0 and

the same arguments as those in Li (1995),
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Appendix

Proof of Theorem 1. We have

−2 log(R(s, t)) ≡ −2

n(t)∑
i=n(s)+1

[
(ni − di) log

(
θ̄i

θ̂i

)
+ di log

(
1− θ̄i

1− θ̂i

)]
I[βn(s, t) ≥ 0]
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n(t)∑
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[
(ni−di) log

(
1+

β+
n (s, t)

ni − di
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−ni log

(
1+

β+
n (s, t)

ni
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.

Let Yn(b) be the number of observations at risk at b,

Yn(b) =
n∑

i=1

I[Zi ≥ b].

Since Yn(b) ≤ ni − di for all i and Yn(b)/n → π(b) > 0, we have

0 ≤ max
1≤i≤m

max

{
β+
n (s, t)

ni − di
,
β+
n (s, t)

ni

}
≤ β+

n (s, t)

Yn(b)
= Op(n

−1/2)

as n → ∞ by (2.7). This implies that β+
n (s, t)/(ni − di) = Op(n

−1/2) and

β+
n (s, t)/ni = Op(n

−1/2), uniformly in i = 1, 2, . . . ,m, and since n(t) − n(s) =

O(n), we have using log(1 + y) = y − y2/2 + y3/3 + y4/4 + O(y5) as y → 0 and

the same arguments as those in Li (1995),
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−2 log(R(s, t)) = [β+
n (s, t)]

2

n(t)∑
i=n(s)+1

di
ni(ni − di)

+Op(n
−1/2)

= (ĉ(t)− ĉ(s))
[β+

n (s, t)]
2

n
+Op(n

−1/2)

uniformly on [0, b]2 where ĉ(t) is defined in (2.8). Since ĉ(t) is a uniformly strongly

consistent estimator of c(t), (2.7), the Continuous Mapping Theorem and Slut-

sky’s Theorem imply that the process {−2 log(R(s, t)), (s, t) ∈ [0, b]2} converges

weakly to the process {[U+(s, t)]2 ≡ [W (c(t))−W (c(s))]+2, (s, t) ∈ [0, b]2}. Thus,

Tn ≡ sup
0<s<t<b

√
−2(ĉ(t)− ĉ(s)) log(R(s, t))

ĉ(b)

d→ sup
0≤s≤t≤b

[W (c(t))−W (c(s))]+√
c(b)

= sup
0≤s≤t≤b

W (c(t))−W (c(s))√
c(b)

= sup
0≤u≤1

sup
0≤v≤u

[W (u)−W (v)]

= sup
0≤u≤1

[W (u)− inf
0≤v≤u

W (v)]

d
= sup

0≤u≤1
|W (u)|,

where the last equality follows from Levy (1948).

Proof of Theorem 2. Using (2.14), log(1+y) = y−y2/2+y3/3+y4/4+O(y5)

as y → 0, and the same arguments as those in Li (1995)
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n(t)∑
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[
(nij − dij) log
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)
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j=n(s)+1

(nij − di) log

(
1 + (−1)i−1 β+

n (s, t)
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)

+ 2
2∑

i=1

n(t)∑
j=n(s)+1

nij log

(
1 + (−1)i−1β

+
n (s, t)

nij

)
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i=1




n(t)∑
j=n(s)+1

dij
nij(nij − dij)

[βn(s, t)
+]2 +Op(n

−1/2)




= (ĉ(t)− ĉ(s))
[βn(s, t)

+]2

n
+Op(n

−1/2)

uniformly on [0, b]2 where ĉ(·) is as defined in (2.15). Having established this, it

follows using the Continuous Mapping Theorem that

Tn
d→ sup

0≤s≤t≤b

(V (t)− V (s))+√
c(b)

d→ sup
0≤s≤t≤b

[V (t)− V (s)]+√
c(b)

= sup
0≤s≤t≤b

V (t)− V (s)√
c(b)

d
= sup

0≤u≤1
sup

0≤v≤u≤1
[W (u)−W (v)]
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0≤u≤1

[W (u)− inf
0≤v≤u

W (v)]

d
= sup

0≤u≤1
|W (u)|,

where W is a standard Brownian motion.
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