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Abstract: In this paper, we study saturated two-level main effects designs which are

commonly used for screening experiments. The QB criterion, which incorporates

experimenters’ prior beliefs about the probability of factors being active is used to

compare designs. We show that under priors with more weight on models of small

size, p-efficient designs should be recommended; when models with more param-

eters are of interest, A-optimal designs would be better. We identify new classes

of saturated main effects designs between these two designs under different priors.

The way in which the choice of designs depends on experimenters’ prior beliefs

is demonstrated for the cases when the number of runs N ≡ 2 mod 4. A novel

method of construction of QB-optimal designs using conference matrices is intro-

duced. Complete families of optimal designs are given for N = 6, 10, 14, 18, 26, 30.

Key words and phrases: Conference matrix, model uncertainty, prior information,

QB-criterion, screening, weighing design.

1. Introduction

Saturated two-level main effects designs, which allow the estimation of the

main effects of N−1 factors in N runs, are useful for screening experiments where

the goal is to identify the set of “active factors”. These designs have been subject

to study since Plackett and Burman (1946) gave designs for N any multiple of 4

up to 88. Since these designs allow all main effects to be estimated orthogonally

with maximum efficiency, they are optimal according to any reasonable criterion.

In other cases, when N is not a multiple of 4, the optimal design depends on the

criterion of optimality used.

When N is not a multiple of 4, the construction of first-order designs is

often based on the maximization of a design criterion, such as D- or A-efficiency,

which is related to the saturated full main effects model. On the other hand,

Lin (1993) discussed in detail the construction of saturated p-efficient two-level

designs, which are efficient for fitting submodels containing only a subset of the

factors.

http://dx.doi.org/10.5705/ss.202015.0084


606 PI-WEN TSAI AND STEVEN GILMOUR

The existing literature on saturated two-level designs for N ≡ 2mod 4 con-

centrates on the choice between alphabetic-optimal designs and p-efficient de-

signs. Using the QB-criterion, Tsai and Gilmour (2010) showed in one small

example that there is a smooth transition from alphabetic-optimal designs to

p-efficient designs as experimenters’ prior beliefs about the importance of the

factors change. Generalizing this idea, we now derive the explicit relations be-

tween experimenters’ priors and the choice of design. A simple and effective

approach to construct these QB-optimal designs using conference matrices is in-

troduced and a secondary criterion is suggested to select the best among multiple

QB-optimal designs.

In a two-level main effects design, the treatment factors, X1, . . . , XN−1, have

levels labeled −1 and 1, sometimes shortened to − and +, and both factors and

their levels are assumed to be exchangeable in that there is no prior knowledge

about which factors are likely to be important or which level is likely to give

the higher response. It is assumed that the treatment combinations will be

completely randomized to the experimental units (runs). The appropriate full

linear model for the data y is E(y) = Xβ + ε where y is a N × 1 vector

of responses, β = [β0 β1 · · · βN−1]
t is a vector of unknown parameters and

X = [1 X1 · · ·XN−1] is an N ×N model matrix. Here X has all elements either

−1 or 1, and we refer to it as a (−1, 1) matrix of order N . A factor is said to

be level-balanced if the corresponding column has the same number of 1s and

−1s. We say Xi is a non-level-balanced factor if in the corresponding column

the numbers of occurrences of 1s and −1s differ by 2. Without loss of generality,

we require that 1 appears N/2 + 1 times and −1 appears N/2 − 1 times in the

column.

The paper is organized as follows. Some known results and the QB-criterion

for the two-level saturated screening designs are presented in Section 2. Section

3 gives the conditions for new families of QB-optimal designs to exist, and the

construction of these designs using conference matrices is suggested in Section 4.

Some concluding remarks are made in Section 5.

2. Known Results and Designs

For N ≡ 2mod 4, Ehlich (1964) showed that if there exists a N ×N (-1, 1)

matrix such that

XtX =

[
M1 0

0 M1

]
, (2.1)

where M1 = (N − 2)IN/2 + 2 JN/2, then X maximizes |XtX|. We modify these

matrices to be in a standard format with the first column being 1s and note
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that the resulting designs have N/2 level-balanced factors and N/2−1 non-level-

balanced factors. Jacroux, Masaro, and Wong (1983) showed that these designs,

when they exist, are also optimal over all N × N (−1, 1) designs with respect

to a wide class of Φp-optimality criteria, such as the A-, D- and E-criteria, for

the saturated first-order model. Cheng (2014) showed that such designs are also

As-optimal taking account of all the parameters except the intercept.

In saturated designs, we often assume that some factors’ main effects are neg-

ligible, based on factor sparsity. Thus it is important to look at the performance

of a design when it is projected onto lower dimensions. To study the projection

efficiencies of saturated first-order designs, Lin (1993) discussed p-efficient de-

signs by finding designs which minimize E(s2) among designs in which all factors

are level-balanced when N is even (or near-level-balanced when N is odd). Lin

provided a list of p-efficient designs for 3 ≤ N ≤ 30. Dean and Draper (1999)

used a computer search to construct saturated designs from cyclic generators

for the cases N ≡ 2mod 4 for N = 6, . . . , 30 runs, which are similar to, or an

improvement over, Lin’s designs for the full main effects model and for the pro-

jected main effects models. Here we restrict attention to p-efficient designs which

achieve the form of information matrix

M =

[
N 0T

0 (N ∓ 2)IN−1 ± 2JN−1

]
. (2.2)

In this setting, the first-order model is the maximal linear model of inter-

est. It is assumed that some factors’ main effects are negligible and thus one

of the submodels of the first-order model will end up being fitted, but we do

not in advance know which one. To incorporate experimenters’ prior knowledge

about the model or about the importance of each factor into the design selec-

tion procedure, Tsai, Gilmour, and Mead (2007) suggested that minimizing the

weighted average of the As-criterion functions (taking account of all parameters

except the intercept) over all possible candidate models of the maximal model is

useful. If a model is more likely to be the best model, then the model has more

weight. They further defined a criterion, called QB, which is the minimization of

an approximation to the weighted average of the As-criterion. Tsai and Gilmour

(2010) showed that QB converges to As when the prior probability of each main

effect being active tends to 1, and to E(s2) when the prior probability of each

main effect being active tends to zero.

Letting ||∆|| be the number of possible submodels of the maximal model in

an N -run two-level design, Ml denote the lth candidate submodel and wl be the
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prior probability of that model being the best model, the QB-criterion function

is defined as

QB(d) =

||∆||∑
l=1

wl

N−1∑
i=1

Ṽl(β̂i), (2.3)

where Ṽl(β̂i) is the approximate variance (Tsai, Gilmour, and Mead (2000)) for

the estimation of βi under model Ml, taken to be zero for a model that does

not include βi. For a two-level design the full first-order model is the maximal

model, and the estimation for the intercept β0 is excluded from the criterion. Let

ai,j , i, j = 0, . . . , (N − 1), denote the (i, j)th element of the XtX matrix for the

first-order model, which is a measure of non-orthogonality between terms i and

j. Using the same arguments as in Tsai, Gilmour, and Mead (2000), we have

Ṽl(β̂i) =

N−1∑
j=0

a2i,jI{(i,j)∈Ml}

N3
,

where I{(i,j)∈Ml} is an indicator variable that is 1 if model Ml contains both

terms i and j, indicating that ai,j appears in the approximate variance for the

estimation of βi in model Ml, and is 0 otherwise. Thus, the QB-criterion selects

a design that minimizes

QB(d) =

||∆||∑
l=1

wl

N−1∑
i=1

N−1∑
j=0

a2i,j I{(i,j)∈Ml}

N3
. (2.4)

In practice it might not be easy to specify directly the prior probability of

each model being the best, but simplification is possible if we assume that the

prior probability of each factor being in the best model can be specified. Although

the QB criterion is more flexible, here we have assumed exchangability among

the factors as is usual in screening experiments, so that this prior probability is

the same for each factor and is denoted by π. Then the prior probability for

model Ml being the best depends only on the number of factors included in the

model. For models containing the same number of factors’ main effects, say k

factors, the probability for each of these models being the best is πk(1−π)N−1−k,

1 ≤ k ≤ (N − 1). We then re-group and summarize the ai,js in (2.4) by the

number of factors in each model. Then the ai,js can be divided into two groups

with ai,0 being a measure of non-orthogonality between a factor and the intercept

and ai,j , i, j ̸= 0, being a measure of pairwise non-orthogonality between factors

i and j. Using the idea of balanced incomplete block designs, we see that ai,0
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and ai,j appear
(
N−2
k−1

)
and

(
N−3
k−2

)
times over models with k factors, respectively.

Thus, the QB-criterion in (2.4) is rewritten as

N−1∑
k=1

πk(1− π)N−1−k

[
N−1∑
i=1

(
N − 2

k − 1

)
a2i,0
N3

]

+

N−1∑
k=2

πk(1− π)N−1−k

[
N−1N−1∑∑
i=1 j=1

j ̸=i

(
N − 3

k − 2

)
a2i,j
N3

]

= π

N−1∑
i=1

a2i,0
N3

+ π2
N−1N−1∑∑
i=1 j=1

j ̸=i

a2i,j
N3

, (2.5)

which is a linear combination of the overall measures of non-orthogonality be-

tween a factor and the intercept and between every pair of factors.

For As-optimal designs with N/2 level-balanced factors, N/2− 1 non-level-

balanced factors, and an information matrix of the form in (2.1), the value of the

QB-criterion function is

2(N − 2)π + 2(N − 2)2π2

N2
.

For p-efficient designs withN−1 level-balanced factors and an information matrix

of the form in (2.2), the value of the QB-criterion function is

4(N − 1)(N − 2)π2

N2
.

When comparing the two, whenever the experimenters’ prior probability of the

importance of each factor π is less than 1/N we should use the p-efficient design

and when π > 1/N the As-optimal design is better. That is, when experimenters’

prior beliefs lead to models with few parameters, one should use a p-efficient

design since it provides better projection efficiencies but, if we expect to use

models with more factors, then As-optimal designs should be preferred.

3. New Classes of QB-optimal Designs

In considering As-optimal designs and p-efficient designs, different designs

should be recommended depending on the prior probability of each factor being

in the best model. It is reasonable to conjecture that there might be designs

between these two which might be better for less extreme priors.

We first consider the properties of the proposed new designs and then, in the

next section, come back to consider how to find them when they exist. The simple
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result used above to compare the QB-efficiencies of As-optimal and p-efficient

designs can be generalized and extended to show the global QB-optimality of

designs in the new classes. First we require the following result.

Lemma 1. For N ≡ 2mod 4, let X be a (−1, 1)-matrix of order N and, without

loss of generality, suppose that all the entries in the first column are 1. Consider

the class of designs such that each of the following N − 1 − n1 columns has an

even number of 1s, and each of the last n1 columns has an odd number of 1s,

where N/2 ≤ n1 ≤ (N − 1). If there exists a matrix X such that the information

matrix M has the form

M =

[
B 0

0 D

]
, (3.1)

where B = (N ∓ 2)IN−n1 ± 2JN−n1 and D = (N ∓ 2)In1 ± 2Jn1, then X is

QB-optimal for a given n1 within this class of designs.

Proof of Lemma 1. For an N ×N (−1, 1)-matrix X as given above, write the

information matrix as

[
B C

Ct D

]
. From the definition of QB in (2.5), QB is the

linear combination of the squares of the off-diagonal elements of the information

matrix. To minimize QB, we would like the off-diagonal blocks C to be 0, and

thus the value of QB for the block diagonal matrix

[
B 0

0 D

]
is smaller than or

equal to that for the general information matrix. Additionally, Jacroux, Masaro,

and Wong (1983) showed that, for a pair of columns which both have even or

both have odd numbers of 1, inner product of these two columns has absolute

value greater than or equal to 2. Thus for a given n1, designs having the pattern

of the information matrix in (3.1), with the entries of the off-diagonal elements

of B and D having absolute values equal to 2, are QB-optimal.

To obtain designs with the pattern of the information matrix in (3.1), we

note first that each of the N − 1− n1 columns with an even number of 1s is not

orthogonal to the intercept and the non-orthogonality between the factor and the

intercept is ±2. Thus these are non-level-balanced factors with N/2 + 1 entries

equal to 1 and N/2− 1 entries equal to −1. These non-level-balanced factors are

not orthogonal to each other with a measure of non-orthogonality of ±2. Also,

each of the n1 columns with an odd number of 1s is orthogonal to the intercept,

so it has N/2 entries equal to 1 and the other N/2 equal to −1. These are

level-balanced factors. Again, these level-balanced factors are not orthogonal to

each other with a measure of non-orthogonality of ±2, where each level-balanced

factor is orthogonal to each non-level-balanced factor.
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It follows that the value of the QB-criterion function for a design with n1

level-balanced factors, N − 1 − n1 non-level-balanced factors, and information

matrix of the form in (3.1) is

4(N − 1− n1)π + 4[(N − 1− n1)
2 + n2

1 −N + 1]π2

N2
, for N

2 ≤ n1 ≤ (N − 1).

(3.2)

It is easy to see that, when π ≤ 1/(2N − 4), designs with (N − 1) level-

balanced factors, i.e. the p-efficient designs, are optimal among all (−1, 1) designs,

and as we increase the prior probability of a factor being in the model then the

number of level-balanced factors in the QB-optimal design decreases.

Theorem 1. For N ≡ 2mod 4, if there exists an N ×N (−1, 1)-matrix X such

that its information matrix for the saturated first-order model has the form in

(3.1),

(a) if n1 = N − 1, then X is QB-optimal for π ≤ 1/(2N − 4);

(b) if N/2 < n1 < N − 1, then X is QB-optimal for 1/(4n1 − 2N + 4) < π ≤
1/(4n1 − 2N); and

(c) if n1 = N/2, then X is QB-optimal for π > 1/4.

By using this theorem, we can seek an appropriate QB-optimal design with

a given number of level-balanced and non-level-balanced factors to accommodate

the experimenters’ prior belief on how likely their factors are to be active. For

example when N = 10, if the expected number of active factors is about 1 or

2, we would suggest a QB-optimal design with 6 level-balanced factors and 3

non-level balanced factors. On the other hand, if the expected number of active

factors is higher than 2, then the As-optimal design with 5 level-balanced factors

and 4 non-level balanced factors should be recommended.

Example. For the simple example of a 6-run experiment with five factors, the

As-optimal design has 3 level-balanced columns and 2 non-level-balanced columns

and the p-efficient design has 5 level-balanced columns. According to Theorem

1, when π < 1/8, the p-efficient design is the best, when π ≥ 1/4, the As-optimal

is the best, and there is a new design with four level-balanced columns and one

non-level-balanced column which is optimal when 1/8 ≤ π < 1/4. This design is

X(new) =



1 1 1 1 1 1

1 1 1 1 − 1 − 1

1 1 − 1 − 1 1 −1

1 1 −1 −1 −1 1

1 − 1 1 −1 −1 1

1 −1 −1 1 1 −1


.
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Figure 1. The QB-efficiency under different π for the 6-run two-level designs.

The QB-criterion function for this design is (π+12π2)/9. The nature of screening

suggests that π should be small and, for such a small experiment, the expected

number of active factors is likely to be less than one. Figure 1 gives the QB

efficiencies for the three designs for π ∈ (0, 0.5]. It can be seen that the p-

efficient design is the best when the expected number of factors is less than

0.75, the new design is optimal when the expected number of factors is between

0.75 and 1.5 and the As-optimal design is the best when the expected number

of factors is at least 1.5. The new design is worse than the As-optimal design

when π > 1/4, but it is still much better than the p-efficient design. The new

design appears to be potentially useful, as the range of values of π for which it is

optimal seems very realistic in a screening experiment, and it is nearly optimal

if π is somewhat outside this range. Furthermore, if an experimenter is reluctant

to specify a prior probability of effects being active, or if there is disagreement

amongst a team of experimenters, a design that is robust to uncertainty in π

might be preferred. There are different ways to define this robustness, but the

new design has advantages over the p-efficient design and, especially over the

As-optimal design. Except for very small π its efficiency is over 85%.

4. Construction of QB-optimal Designs

We have shown that designs with the form of information matrix given in

(3.1) are QB-optimal when they exist. Each such design found is QB-optimal
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for some range of π. No such designs are given in the literature and nothing is

known about their existence.

A simple and effective way to construct these designs is by using conference

matrices. A conference matrix is an N × N (0, ±1) matrix C with entries 0

on the diagonal and ±1 elsewhere that satisfies CCt = (N − 1)IN . It is known

that for N ≡ 2mod 4, a conference matrix is symmetric. Conference matrices

were used for effect screening by Elster and Neumaier (1995) in situations where

high-order interactions were thought likely and by Xiao, Lin, and Bai (2012) for

screening for main effects in the presence of suspected two-factor interactions.

The semi-balanced three-level designs of Tsai, Gilmour, and Mead (2000) can

also be constructed using conference matrices. In all these cases, the conference

matrices were used directly as building blocks of larger designs. Here we adapt

them for use in saturated main effects designs with two-levels.

The definition of a conference matrix shows that any two rows of C are

orthogonal and two columns of C are also pairwise orthogonal. Without lost of

generality, we may assume that all the entries of the first row and first column,

except their intersection, are equal to 1 and write the matrix C as

[
0 1T

1 S

]
.

When N − 1 is an odd prime power, a symmetric conference matrix may be

constructed using a general method due to Paley (1933). Here the matrix S has

rows and columns indexed by the finite field of order (N − 1), and the (i, j)th

entry is +1 if j − i is a non-zero quadratic residue in the field, −1 if j − i is a

quadratic nonresidue, and 0 if i = j. We note that any column in S has one

entry of 0 and N/2− 1 entries each of +1 and −1.

To obtain designs with information matrix in the form of (3.1), we replace

the zero diagonal entries of C with an N × 1 vector with the first element always

being 1, N − 1 − n1 entries being 1, and n1 entries being −1. Except for the

first column, those with 0s replaced by +1s correspond to non-level-balanced

factors and those with 0s replaced by −1s correspond to level-balanced factors.

Each level-balanced (non-level-balanced, respectively) factor is not orthogonal

to the others with the pairwise non-orthogonality being ± 2. For any pair of

columns with one 0 replaced with +1 and the other with −1, the two factors

are orthogonal to each other. In general, by replacing the 0 diagonal entries of

the conference matrices with +1 and −1 accordingly, we construct a complete

set of QB-optimal designs, covering all possible values of π. For example, the
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conference matrix of order 6, which has CCt = CtC = 5I6, is

C =



0 1 1 1 1 1

1 0 1 − 1 − 1 1

1 1 0 1 −1 − 1

1 −1 1 0 1 −1

1 − 1 − 1 1 0 1

1 1 −1 −1 1 0


.

When we replace the diagonal entries by (1,−1,−1,−1,−1,−1), we obtain a

design with 5 level-balanced factors. If we replace them by (1, 1,−1,−1,−1,−1)

we obtain a design with 4 level-balanced columns. If we replace them with

(1, 1, 1,−1,−1,−1), we obtain a design with 3 level-balanced factors. These

designs have information matrices with the pattern of (3.1) and each of them

is QB-optimal for a given range of π as discussed in the previous section. We

note that the the resulting design with 3 level-balanced factors is the modified

Ehlich’s design. It is the As-optimal design and the As-criterion function value

for the estimates of the main effects, excluding the intercept, of this design is 1.

The QB-criterion is a first-order approximation of the As-criterion, averaged

over many models. It does not, however, fully discriminate between designs.

For example, for the case of a 6-run design with 3 level-balanced factors, there

are
(
5
3

)
= 10 ways to replace the zero diagonal with a vector with three 1s and

three −1s, with the first element always being replaced by 1. All the resulting

designs have the same value of theQB-criterion, but there are two non-isomorphic

designs. In addition to the modified Ehlich’s design in above paragraph, if we

replace the zero diagonal elements with (1,−1,−1, 1,−1, 1), then we obtain a

design whose As-criterion function value is 1.1250. Clearly, this design is not as

efficient as the As-optimal design, though they are equally good with respect to

the QB-criterion.

Thus in addition to using QB to select designs, we suggest using the As-

criterion for the saturated main effects model as a secondary criterion to distin-

guish among designs with the same values of QB. Table 1 lists the indices for

the columns in which we replace 0s by 1s (other columns having 0s replaced by

−1s) to obtain QB-optimal designs with n1 level-balanced (and N − 1− n1 non-

level balanced) factors from the conference matrix with N = 6, 10, 14, 18, 26, 30.

Each of the designs has the highest value of the As-criterion for the saturated

main effects model among all the QB-optimal designs. These were found by

complete enumeration. Note that for the case with one non-level-balanced fac-

tor, N − 1 − n1 = 1, the choice of a column to be non-level-balanced makes no
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Table 1. The indices for the non-level-balanced columns of the conference
matrices.

N n1 N − 1− n1 Indices for non-level-balanced factors
10 7 2 2 3

6 3 2 3 4
5 4 2 3 6 8

14 11 2 2 3
10 3 2 3 6
9 4 2 3 6 8
8 5 2 3 4 6 8
7 6 2 3 4 6 7 8

18 15 2 2 3
14 3 2 3 4
13 4 2 3 4 9
12 5 2 3 4 7 9
11 6 2 3 4 5 7 9
10 7 2 3 4 5 6 10 11
9 8 2 3 4 5 6 10 11 14

26 23 2 2 3
22 3 2 3 4
21 4 2 3 4 5
20 5 2 3 4 5 8
19 6 2 3 4 5 6 8
18 7 2 3 4 5 7 10 13 (2)

17 8 2 3 4 5 7 10 13 22 (2)

16 9 2 3 4 5 6 7 8 12 18
15 10 2 3 4 5 6 7 8 16 22 25
14 11 2 3 4 5 6 7 8 12 15 18 25
13 12 2 3 4 5 6 7 8 9 15 16 22 25

30 27 2 2 3
26 3 2 3 7
25 4 2 3 7 8
24 5 2 3 4 8 9
23 6 2 3 4 6 8 9
22 7 2 3 4 5 7 8 9
21 8 2 3 4 5 7 8 9 10
20 9 2 3 4 5 6 8 15 22 29
19 10 2 3 4 5 6 7 8 9 29 30
18 11 2 3 4 5 6 7 8 9 10 17 30
17 12 2 3 4 5 6 7 10 11 15 19 23 27
16 13 2 3 4 5 6 7 8 10 13 17 22 26 29
15 14 2 3 4 5 6 7 8 9 13 17 21 25 29 30

difference. We provide a list of these conference matrices in the supplemental

material. Note that there are four conference matrices for N = 26. The number
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in the brackets after the indices indicates which of the four conference matrices

is used for generating the design listed in this table, being (1) if not stated. It is

known that for N ≡ 2mod 4, a conference matrix of order N exists if and only

if N − 1 is the sum of two squares. Using conference matrices, we are able to

construct a complete set of QB-optimal designs for N = 6, 10, 14, 18, 26, 30 by

replacing the 0 diagonal entries of the conference matrices with +1s and −1s

accordingly. However, we cannot use this method for some run-sizes, such as

N = 22 or 34.

5. Discussion

In screening experiments, most factors are assumed to have no important

effect on the response. Here we have shown that incorporating experimenters’

prior beliefs about the importance of factors being in the best model into the

design selection process, different designs would be recommended. This work

greatly expands the available class of optimal designs and the use of conference

matrices gives a simple way to obtain such optimal designs in most practically

useful cases.

Since there are severalQB-optimal designs for any givenN and π, the use of a

secondary criterion is helpful in making a better than random choice. Given that

the QB criterion was originally developed as an approximation to a weighted

average of As-efficiencies over several models, As-efficiency for the full model

seems like a sensible secondary criterion. Then the results in Table 1, along with

the conference matrices in the Supplement give all the information that is needed

for experimenters to use these designs. We recommend them for practical use.

Supplementary Materials

The online supplement contains the following items:

1. the relative efficiencies for an example of 10-run designs with different numbers

of level-balanced factors;

2. an example discussing the secondary criterion forQB-optimal designs obtained

from conference matrices; and

3. the conference matrices that are required for generating the QB-optimal de-

signs in Table 1 of this paper.
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