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Abstract: In this paper, we study large sample properties of smoothly clipped

absolute deviation (SCAD) penalized maximum likelihood estimation for high-

dimensional parameters. First, we prove that the oracle maximum likelihood es-

timator (MLE) asymptotically becomes a local maximizer of the SCAD-penalized

log-likelihood, even when the number of parameters is much larger than the sam-

ple size; the oracle MLE is an ideal non-penalized MLE obtained by deleting all

irrelevant parameters in advance. Second, we prove that if the log-likelihood is

strictly concave, the oracle MLE asymptotically becomes the global maximizer of

the SCAD-penalized log-likelihood with a diverging number of parameters that is

less than the sample size. Various numerical experiments on simulated data sets

are presented to verify the theoretical results, and two data examples are analyzed.
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1. Introduction

Variable selection is an important issue in high-dimensional statistical mod-

eling. Traditionally, stepwise subset selection procedures have been adopted to

select an appropriate number of predictive variables. However, such procedures

have drawbacks such as intensive computation, difficulties in obtaining sampling

properties, and unstableness, see Breiman (1996) for further details. Meth-

ods for overcoming these problems have been developed via sparse penalized

approaches such as bridge regression (Frank and Friedman (1993)), the least ab-

solute shrinkage and selection operator (LASSO) (Tibshirani (1996)), and the

smoothly clipped absolute deviation (SCAD) penalty (Fan and Li (2001)). All

these methods have common advantages over subset selection procedures; they

are computationally simpler, the derived sparse estimators are stable, and they

facilitate higher prediction accuracies.

Theoretical properties of the sparse penalized approaches have been stud-

ied by many authors. For a finite number of parameters, Knight and Fu (2000)

studied the properties of LASSO-type estimators. Fan and Li (2001) proved that
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there exists a local maximizer of the SCAD-penalized log-likelihood that achieves

the oracle property. Here, the oracle property means that a penalized maximum

likelihood estimator (MLE) is asymptotically equivalent to the oracle MLE that

is an ideal non-penalized MLE obtained by deleting all irrelevant parameters

in advance. Zou (2006) proposed the adaptive LASSO that achieves the oracle

property by varying the weights on the tuning parameter. For a diverging num-

ber of parameters, Fan and Peng (2004) proved that the results of Fan and Li

(2001) hold when the number of parameters is less than the sample size. Kim,

Choi, and Oh (2008) studied the asymptotic properties of the SCAD-penalized

least square estimator (LSE) in linear regression when the number of parame-

ters exceeds the sample size. They proved that the oracle LSE asymptotically

becomes a local minimizer of the SCAD-penalized residual sum of squares. They

also proved that the oracle LSE asymptotically becomes the global minimizer of

the SCAD-penalized residual sum of squares when the design matrix is nonsingu-

lar. Zhao and Yu (2006) and Meinshausen and Bühlmann (2006) proved the sign

consistency of the LASSO when the number of parameters exceeds the sample

size. The sure independence screening method, a type of correlation learning,

was proposed by Fan and Lv (2008) for ultra high-dimensional model selection

problems. For a detailed overview of current research on variable selection in

high-dimensional models, see Fan and Lv (2010).

In this paper, we study large sample properties of the SCAD-penalized maxi-

mum likelihood estimation for high-dimensional parameters. First we show that,

under regularity conditions, the oracle MLE asymptotically becomes a local max-

imizer of the SCAD-penalized log-likelihood even when the number of parameters

is larger than the sample size. Most of the asymptotic properties of the SCAD

including Fan and Li (2001), Fan and Peng (2004), and Kim, Choi, and Oh

(2008) are special cases of our results. Second, we study cases in which the log-

likelihood is strictly concave. We specify sufficient conditions to ensure that the

oracle MLE asymptotically becomes the global maximizer of the SCAD-penalized

log-likelihood for a diverging number of parameters that is less than the sam-

ple size. Thus, we can find the oracle MLE asymptotically by maximizing the

SCAD-penalized log-likelihood.

The results of this paper can be considered as extensions of those obtained by

Kim, Choi, and Oh (2008) from the LSE to the MLE. These extensions, however,

are more technically involved. In the case of the LSE, the oracle LSE has a closed

form solution hence its asymptotic properties are studied by directly investigating

the estimator itself, an approach adopted by Kim, Choi, and Oh (2008). In

contrast, the MLE is defined implicitly as a local maximizer of the log-likelihood.

The main contribution of this paper is to establish sufficient conditions on the

log-likelihood instead of the estimator itself so that the SCAD-penalized MLE
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has the desired asymptotic properties. Moreover, the established conditions are

sufficiently general to include most generalized linear regression models, such as

the logistic and Poisson regressions; this significantly expands the applicability

of the SCAD penalty for high-dimensional data.

The remainder of this paper is organized as follows. In Section 2, we briefly

review the SCAD penalty. In Section 3, we present sufficient conditions for

the oracle MLE to be a local maximizer of the SCAD-penalized log-likelihood

asymptotically. In Section 4, we prove that the oracle MLE becomes the global

maximizer of the SCAD-penalized log-likelihood asymptotically when the log-

likelihood is strictly concave. Results of numerical studies, including simulated

and data sets, are presented in Section 5. The concluding remarks and technical

details are provided in Section 6 and the Appendix, respectively.

2. Review of SCAD-penalized Methods

Let zi, i ≤ n, be independent and identically distributed random variables

with a density f(z,θ), where θ ∈ Θ and Θ is an open subset of Rp. The penalized

MLE is

θ̂ = argmax
θ

( n∑
i=1

log f(zi,θ)− n

p∑
j=1

Jλ(θj)

)
(2.1)

for some penalty Jλ(θ). The bridge penalty (Frank and Friedman (1993)) is of

the form Jλ(θ) = λ|θ|r, r > 0, and when r = 1, the penalty is known as the

LASSO (Tibshirani (1996)). If Jλ(θ) = λ2 − (|θ| − λ)2I(|θ| < λ), we obtain the

hard thresholding estimator (Antoniadis and Fan (2001)). Fan and Li (2001)

suggested the SCAD penalty as

∂

∂θ
Jλ(θ) = λsign(θ)

{
I(|θ| ≤ λ) +

(aλ− |θ|)+
(a− 1)λ

I(|θ| > λ)

}
(2.2)

for some a > 2. The SCAD penalty is a continuously differentiable function that

improves the properties of the LASSO and the hard thresholding penalty, so that

the SCAD-penalized estimator satisfies the unbiasedness, sparsity and continuity

discussed by Fan and Li (2001).

For the SCAD-penalized MLE, Fan and Li (2001) and Fan and Peng (2004)

proved the oracle property when p = O(nk) for some k < 1. In the case of linear

regression, Kim, Choi, and Oh (2008) obtained more definitive results than those

obtained by Fan and Li (2001) and Fan and Peng (2004). They proved that the

oracle LSE asymptotically becomes a local minimizer of the SCAD-penalized

residual sum of squares when p = O(nk) for some k ≥ 1. In addition, they

showed that the oracle LSE asymptotically becomes the global minimizer of the

SCAD-penalized residual sum of squares when the design matrix is nonsingular.
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This global property of the oracle LSE is the strongest result since it indeed gives

a way to identify the oracle LSE.

In this paper, we follow the approaches adopted by Kim, Choi, and Oh

(2008) to study the asymptotic properties of the SCAD-penalized MLE. First,

we prove that the oracle MLE is a local maximizer of the SCAD-penalized log-

likelihood asymptotically when p = O(nk) for some k ≥ 1. Second, we show that

the oracle MLE is the SCAD-penalized MLE asymptotically if the log-likelihood

is strictly concave. These results are extensions of the results obtained by Fan

and Li (2001) and Fan and Peng (2004), and they include the results of Kim,

Choi, and Oh (2008) as special cases.

3. Large Sample Property of Oracle MLE

In this section, we give sufficient conditions on the log-likelihood so that

the oracle MLE becomes a local maximizer of the SCAD-penalized log-likelihood

when p = O(nk) for some k ≥ 1, where k depends on the moments of the

derivatives of the log-likelihood.

For each n, let zni, i ≤ n, be independent and identically distributed random

variables with a density fn(zn1,θ
∗
n), where θ∗

n ∈ Θn and Θn is an open subset

of Rpn . Without loss of generality, we assume that the first qn elements of the

true parameter vector θ∗
n are nonzero and the remaining pn − qn elements are

zero. The following regularity conditions are to be imposed, where M1,M2, · · ·
are some positive constants.

Condition A1. For any constants c1 and c2 satisfying 0 < 5c1 < c2 ≤ 1,

qn = O(nc1), min
1≤j≤qn

n(1−c2)/2|θ∗nj | ≥M1.

Condition A2. The first and second derivatives of the log-likelihood log fn(zn1,θn)

satisfy

Eθ∗
n

{
∂ log fn(zn1,θ

∗
n)

∂θnj

}
= 0,

Eθ∗
n

{
∂2 log fn(zn1,θ

∗
n)

∂θnj∂θnl

}
= −Eθ∗

n

{
∂ log fn(zn1,θ

∗
n)

∂θnj

∂ log fn(zn1,θ
∗
n)

∂θnl

}
for all 1 ≤ j, l ≤ pn, and n ≥ 1.

Condition A3. The first qn × qn submatrix I
(1)
n (θ∗

n) of the Fisher information

matrix

In(θ
∗
n) = Eθ∗

n

[{
∂ log fn(zn1,θ

∗
n)

∂θn

}{
∂ log fn(zn1,θ

∗
n)

∂θn

}T
]
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is positive definite such that

0 < M2 < λmin{I(1)n (θ∗
n)} ≤ λmax{I(1)n (θ∗

n)} < M3 <∞

for all n ≥ 1. Here, λmin(D) and λmax(D) denote the smallest and largest

eigenvalues of the given matrix D, respectively.

Condition A4. There exists a sufficiently large open subset Bn ⊂ Θn that

contains the true parameter θ∗
n such that for almost all zni, the density admits a

third derivatives for all θn ∈ Bn. Furthermore, there are functions Unjlm(·) such
that ∣∣∣∣∂3 log fn(zni,θn)

∂θnj∂θnl∂θnm

∣∣∣∣ < Unjlm(zni)

for any θn ∈ Bn, for all 1 ≤ j, l,m ≤ pn, and n ≥ 1.

Condition A5. There exists an integer k ≥ 1 such that

Eθ∗
n

{
∂ log fn(zn1,θ

∗
n)

∂θnj

}2k

<M4, Eθ∗
n

{
∂2 log fn(zn1,θ

∗
n)

∂θnj∂θnl

}2k

< M5,

E
(
Ujlm(zni)

)2k
<M6

for all 1 ≤ j, l,m ≤ pn, and n ≥ 1.

Remark 1. The condition A1, employed by Zhao and Yu (2006) and Kim,

Choi, and Oh (2008), allows the number of true relevant parameters to diverge to

infinity and their values to converge to 0. The conditions A2 to A4 are standard

assumptions for maximum likelihood estimation (Fan and Peng (2004)). In the

case of linear regression, A3 has the design matrix corresponding to the relevant

covariates as nonsingular.

Remark 2. The condition A5 specifies the tail behavior of fn(zn1,θ
∗
n), which

determines the order of pn with respect to some integer k ≥ 1. It is the same

as the condition Eε2k < ∞ in Kim, Choi, and Oh (2008) in linear regression.

Another example is logistic regression, where

pr(y = 1|x) = exp(xTθ∗
n)

1 + exp(xTθ∗
n)

.

Suppose that the covariate x is bounded such that max1≤j≤pn |xj | ≤ b for some

constant b > 0. Since

∂ log fn(y,θ
∗
n|x)

∂θn
=

(
y − exp(xTθ∗

n)

1 + exp(xTθ∗
n)

)
x,
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it is easy to see that

max
1≤j≤pn

Eθ∗
n

{
∂ log fn(y,θ

∗
n|x)

∂θnj

}2k

≤ max
1≤j≤pn

x2kj ≤ b2k <∞.

The other two inequalities in condition A5 can be checked similarly.

Let the empirical log-likelihood be

Ln(θn) =

n∑
i=1

log fn(zni,θn).

Then, the corresponding SCAD-penalized log-likelihood is

Qn(θn) = Ln(θn)− nJλn(θn), (3.1)

where Jλn(·) =
∑pn

j=1 Jλn(·) and Jλn(·) is the SCAD penalty given by (2.2). The

oracle MLE θ̂
o

n is defined as any local maximizer of Ln(θn) subject to θnj = 0

for qn < j ≤ pn such that

∥θ̂o

n − θ∗
n∥ = Op(

√
qn
n
). (3.2)

It is an ideal MLE and its estimated coefficients of the irrelevant parameters are

set to be exactly zero. Under the regularity conditions A1 to A5, we can prove

that the oracle MLE exists asymptotically and satisfies
√
n/qn-consistency in

(3.2) with a Gaussian limiting distribution (see the proofs of Theorems 1 and 2

in Fan and Peng (2004)). Further, if Ln(θn) is strictly concave with respect to

θnj for j ≤ qn, we can define the oracle MLE as the unique global maximizer

of Ln(θn) subject to θnj = 0 for qn < j ≤ pn. For example, if the underlying

distribution is Gaussian, the oracle MLE is the same as the oracle LSE studied

by Kim, Choi, and Oh (2008).

Let An(λn) denote the set of all local maximizers of (3.1). The following

theorem states that the oracle MLE is a local maximizer of (3.1) asymptotically,

even when pn ≥ n.

Theorem 1. If A1−A5 hold, we have

pr
(
θ̂
o

n ∈ An(λn)
)
→ 1

provided λn = o(n−(1−c2+c1)/2) and pn/(
√
nλn)

2k → 0 as n→∞.

Note that Theorem 1 is satisfied for pn = o(n(c2−c1)k) so that equality holds

even when pn is much larger than n, provided k is sufficiently large. If the
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distributions of the corresponding random variables (the first, second, and third

derivatives of the log-likelihood) have exponentially decaying tails, we can show

that Theorem 1 holds when pn = O(exp(nc3)) for some constant c3 > 0, e.g.,

linear regression with Gaussian errors as studied by Kim, Choi, and Oh (2008)

and logistic regression with bounded covariates as described in Remark 2.

4. Asymptotic Equivalence of SCAD-penalized MLE and Oracle MLE

Theorem 1 does not tell us which local maximizer is the oracle MLE. How-

ever, when the log-likelihood is strictly concave, we can show that the SCAD-

penalized MLE (the global maximizer of the SCAD-penalized log-likelihood) is

exactly the same as the oracle MLE asymptotically, as stated in Theorem 2.

Note that pn ≤ n for the log-likelihood to be strictly concave. In addition to

conditions A1 to A5, the following condition is required.

Condition A6. There exists a positive constant M7 and a convex open subset

Ωn ⊂ Θn such that θ̂
o

n as well as θ∗
n belong to Ωn and

min
θn∈Ωn

λmin(θn) > M7 (4.1)

for all sufficiently large n, where λmin(θn) is the smallest eigenvalue of the second

derivatives of the negative log-likelihood (Hessian matrix)

− 1

2n

n∑
i=1

∂2 log fn(zni,θn)

∂θ2
n

at θn.

Since the log-likelihood is strictly concave on Ωn, the oracle MLE is uniquely

defined as the maximizer of Ln(θn) subject to θnj = 0 for qn < j ≤ pn on Ωn.

The following theorem states that the SCAD-penalized MLE on Ωn is exactly

the same as the oracle MLE asymptotically.

Theorem 2. Let θ̂n be the global maximizer of (3.1) on Ωn. If A1-A6 hold, we

have

pr
(
θ̂n = θ̂

o

n

)
→ 1

provided λn = o(n−(1−c2+c1)/2) and pn/(
√
nλn)

2k → 0 as n→∞.

In the case of linear regression, it is easy to see that Ωn = Rpn provided the

design matrix has a smallest eigenvalue that is sufficiently large, in which case

Theorem 2 is equivalent to Theorem 3 of Kim, Choi, and Oh (2008). For general

cases, however, the Hessian matrix and its smallest eigenvalue depend on the

parameters. Theorem 2 only guarantees that the oracle MLE is the optimum
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among the solutions whose Hessian matrices are well-posed. In practice, we

expect this of Hessian matrices of reasonable estimators. For example, in the

logistic regression described in Remark 2, if the design matrix is orthonormal,

λmin(θn) = mini≤n pi(θn)(1− pi(θn)), where

pi(θn) =
exp(xT

i θn)

1 + exp(xT
i θn)

for i ≤ n. Hence, for θn to belong to Ωn, pi(θn) should be neither too large

nor too small, which is expected to hold for the true parameter θ∗
n. When the

covariates are bounded, we can take Ωn = {θn :
∑pn

j=1 |θnj | ≤ η} for any η > 0,

in which case

λmin(θn) ≥
1

(exp(ηb) + 1)(exp(−ηb) + 1)
.

Hence, it is not unreasonable to expect that θ∗
n ∈ Ωn for sufficiently large values

of η.

At this point, we do not know how to determine the global maximizer of the

SCAD-penalized log-likelihood. In the case of linear regression, Kim and Kwon

(2011) gave sufficient conditions for the uniqueness of a local minimizer of the

nonconvex penalized residual sum of squares. We believe that a similar result

can be obtained for the SCAD-penalized maximum likelihood estimation when

the log-likelihood is strictly concave.

5. Numerical Studies

In this section, we investigate the finite sample performance of the SCAD-

penalized MLE via simulations and the analysis of data sets. We obtained the

SCAD-penalized MLE using the concave-convex procedure algorithm of Kim,

Choi, and Oh (2008); the algorithm of Park and Hastie (2007) was applied to

solve the LASSO problem in the inner loop of the concave-convex procedure.

5.1. Simulation studies

For simulation studies, we considered three generalized linear models:

• Linear Regression:

y|x ∼ N
(
xTθ∗, τ2

)
. (5.1)

• Logistic Regression:

y|x ∼ B

(
1,

exp(xTθ∗)

1 + exp(xTθ∗)

)
. (5.2)
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• Poisson Regression:

y|x ∼ Poisson
(
exp(xTθ∗)

)
. (5.3)

We constructed a sequence θ∗j = 1.2e−v(j−1), j ≤ 5, for the nonzero true param-

eter values, and v was chosen such that θ∗5 = 0.6. We set the covariate vector

x = (x1, · · · , xp)T to be a multivariate Gaussian random vector with mean zero

and the covariance of xk and xl to be σ2r|k−l| for r ∈ [0, 1). We let τ2 = 1 for

linear regression and selected various values of n, p, r, and σ2 for the simulations.

5.1.1. Optimality of oracle MLE

First, consider the local optimality of the oracle MLE. Among 100 simula-

tions, we calculated the frequencies of those cases where there exists a λ such that

the oracle MLE belongs to the set of local maximizers of the SCAD-penalized

log-likelihood. The results are summarized in Table 1. As expected, the fre-

quency of the oracle MLE being a local maximizer tends to be large when the

sample size n is large and/or the number of covariates p is small. The correlation

r between the covariates does not seem to be an important factor relatively.

A rather unexpected observation in Table 1 is that the frequencies of the

models differ significantly according to σ2 and r. In particular, the frequencies of

the oracle MLE being a local maximizer are very small for the Poisson regression

models as compared to those for the logistic regression models. This observation

can be partially explained as follows. By the KKT conditions (see (A.4) and

(A.5) in the Appendix), the oracle MLE becomes a local maximizer when

min
j≤qn
|θ̂onj | ≥ aλ (5.4)

and

max
qn<j≤pn

∣∣∣ 1
n

n∑
i=1

(
yi − µ̂i

)
xij

∣∣∣ ≤ λ, (5.5)

where µ̂i = Eθ̂n
(yi|xi). Loosely speaking the scales of yi − µ̂i and xij are pro-

portional to Var(yi − µ̂i|xi) and σ2, respectively. Therefore, the probability of

(5.5), or equivalently the oracle MLE being a local maximizer, is large when

Var(yi − µ̂i|xi) and σ2 are small. Note that Var(yi − µ̂i|xi) is the largest in the

case of the Poisson regression and smallest in the case of the logistic regression,

and hence the probability of the oracle MLE being a local maximizer is reversed.

Also, Var(yi − µ̂i|xi) increases most rapidly for the Poisson distribution as r in-

creases, which explains the extremely low frequencies for σ2 = 1/2 and r = 0.5

compared to the other cases.
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Table 1. Frequencies of oracle MLE being a local maximizer of SCAD-
penalized log-likelihood among 100 simulations.

Linear regression

n p r σ2 = 1 σ2 = 1/2 σ2 = 1/3

200 1000 0 0 37 73
0.5 0 30 57

2000 0 0 39 55
0.5 0 21 57

400 1000 0 32 96 99
0.5 36 94 99

2000 0 18 92 99
0.5 18 93 98

Logistic regression

n p r σ2 = 1 σ2 = 1/2 σ2 = 1/3

200 1000 0 91 93 86
0.5 81 75 76

2000 0 84 88 88
0.5 77 70 74

400 1000 0 98 96 100
0.5 99 92 93

2000 0 99 99 98
0.5 97 97 96

Poisson regression

n p r σ2 = 1/2 σ2 = 1/3 σ2 = 1/4

200 1000 0 1 18 58
0.5 0 2 9

2000 0 0 16 52
0.5 0 0 8

400 1000 0 15 89 98
0.5 0 11 74

2000 0 7 78 95
0.5 0 8 60

800 1000 0 90 100 100
0.5 1 81 100

2000 0 87 100 100
0.5 0 72 100

Second, we investigate the global optimality of the oracle MLE. We calcu-

lated the frequencies of the cases among 100 simulations where the oracle MLE is

the global maximizer of the SCAD-penalized log-likelihood. In practice, it is diffi-

cult to check whether a given solution is the global maximizer. Hence, we defined

the oracle MLE as the global maximizer if it achieved the maximum value of the

SCAD-penalized log-likelihood among 300 candidate local maximizers. The set
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of candidate local maximizers was constructed by changing the initial estimators

in the concave-convex procedure, where 50 initial solutions were obtained from

each of the following categories:

• adding noises generated from N(0, 0.5) to the nonzero true parameters;

• adding noises generated from N(0, 0.5) to the nonzero parameters of the

LASSO-penalized MLE;

• adding noises generated from N(0, 0.5) to the nonzero parameters of the

non-penalized MLE;

• adding random numbers generated from U(0.3, 2.4) to the first 5 elements

of the zero vector;

• adding random numbers generated from U(0.3, 2.4) to the last p−5 elements

of the zero vector;

• adding random numbers generated from U(0.3, 2.4) to all the elements of

the zero vector.

The results are summarized in Table 2. The frequency of global optimality of

the oracle MLE increases as the sample size increases, which verifies Theorem 2.

Note that the frequency of the global optimality of the oracle MLE is relatively

small in the case of the logistic regression. This is partly because the smallest

eigenvalue of its Hessian matrix is the smallest among these models.

5.1.2. Finite sample performance of SCAD-penalized MLE

We compared the predictive and selection performance of the SCAD-penalized

MLE with the LASSO penalized MLE and the oracle MLE. We only considered

the logistic and Poisson regression models because linear regression was studied

by Kim, Choi, and Oh (2008). The parameters used for the simulations are the

same as in Section 5.1.1, with σ2 = 1. We used five-fold cross validation to select

the tuning parameter and repeated the simulation 100 times.

Table 3 presents the averages of the negative log-likelihood values and their

standard errors obtained on the basis of N = 5, 000 independent test data sets.

As expected, the oracle MLE had the best performance, and the performance of

the SCAD was better than that of the LASSO for all the cases. In particular,

when n = 300, the performance of the SCAD is almost the same as that of the

oracle MLE.

Table 4 presents the averages of the frequencies of correctly and incorrectly

estimated nonzero coefficients. For the logistic models, the LASSO was better

for selecting relevant variables than the SCAD for all the cases. Simultane-

ously, however, many more noisy variables were included by the LASSO than
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Table 2. Frequencies of oracle MLE being a local maximizer and the global
maximizer of SCAD-penalized log-likelihood among 100 simulations.

Linear regression

σ2 = 1 σ2 = 1/2 σ2 = 1/3
n p r Local Global Local Global Local Gloabl

100 10 0.0 57 57 83 83 89 85
0.5 68 68 83 78 85 74

20 0.0 27 27 63 63 79 71
0.5 25 25 55 47 74 50

300 10 0.0 99 99 99 99 100 99
0.5 99 99 100 100 100 98

20 0.0 93 93 100 100 100 99
0.5 97 97 99 99 99 98

Logistic regression

σ2 = 1 σ2 = 1/2 σ2 = 1/3
n p r Local Global Local Global Local Gloabl

100 10 0.0 85 58 81 35 80 22
0.5 77 14 76 10 87 6

20 0.0 90 47 76 13 77 11
0.5 67 4 69 5 75 3

300 10 0.0 100 97 98 87 98 72
0.5 98 76 96 52 94 41

20 0.0 100 95 98 69 99 58
0.5 100 70 96 32 93 16

Poisson regression

σ2 = 1 σ2 = 1/2 σ2 = 1/3
n p r Local Global Local Global Local Gloabl

100 10 0.0 8 8 50 50 84 84
0.5 4 4 37 37 58 57

20 0.0 0 0 18 18 54 54
0.5 0 0 4 4 35 33

300 10 0.0 31 31 92 92 100 100
0.5 0 0 61 61 92 92

20 0.0 5 5 83 83 99 99
0.5 0 0 27 27 70 70

the SCAD. Second, for increased sample size, the number of correctly estimated

nonzero coefficients increased in each method. However, the number of incor-

rectly estimated nonzero coefficients decreased only in the case of the SCAD.

This observation confirms the well known result that the LASSO selects more

variables than required (Zou (2006)) whereas the SCAD has the oracle property.

In the case of the Poisson regression models, in contrast to the logistic regression
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Table 3. Averaged test negative log-likelihood values (standard errors)

Logistic regression

n=100 Test negative log-likelihood values

p r SCAD LASSO Oracle
500 0 0.5812 (0.007) 0.5851 (0.003) 0.4720 (0.002)

0.5 0.4150 (0.005) 0.4308 (0.003) 0.3755 (0.004)
2000 0 0.5953 (0.008) 0.6057 (0.003) 0.4736 (0.002)

0.5 0.4315 (0.005) 0.4473 (0.003) 0.3715 (0.003)

n=300 Test negative log-likelihood values

p r SCAD LASSO Oracle
500 0 0.4630 (0.001) 0.4943 (0.001) 0.4457 (0.001)

0.5 0.3542 (0.001) 0.3735 (0.001) 0.3407 (0.001)
2000 0 0.4713 (0.002) 0.5044 (0.001) 0.4463 (0.001)

0.5 0.3564 (0.002) 0.3787 (0.001) 0.3429 (0.001)

Poisson regression

n=100 Test negative log-likelihood values

p r SCAD LASSO Oracle
500 0 1.4814 (0.009) 1.6428 (0.017) 1.4100 (0.004)

0.5 1.5227 (0.011) 1.6451 (0.026) 1.4407 (0.005)
2000 0 1.5079 (0.009) 1.7298 (0.022) 1.4153 (0.007)

0.5 1.5663 (0.012) 1.7296 (0.032) 1.4373 (0.004)

n = 300 Test negative log-likelihood values

p r SCAD LASSO Oracle
500 0 1.4063 (0.002) 1.4435 (0.004) 1.3829 (0.001)

0.5 1.4309 (0.002) 1.4561 (0.004) 1.4051 (0.002)
2000 0 1.4063 (0.002) 1.4497 (0.004) 1.3833 (0.001)

0.5 1.4326 (0.003) 1.4623 (0.007) 1.4061 (0.002)

models, the selectivity of the two methods were similar.

It is worth noting that a positive correlation (r = 0.5) increased the pre-

diction and selection performance of all three estimators in the case of logistic

regression models. We found that introducing a positive correlation decreased

the Bayes-error, which partially explains the results of the simulations. The re-

lation of the correlation between covariates and prediction accuracy appears to

be very complicated (related empirical results can be found in Friedman (2008)).

5.2. Data analysis I: Change point problem

The data set introduced by Jarrett (1979) (British coal-mining data) includes

the point process of the dates of serious coal-mining disasters involving the death

of 10 or more men between 1851 and 1962. Several papers have used this data

set to illustrate new methods for change point analysis. In this subsection, we
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Table 4. Averaged frequencies (standard errors) of correctly and incorrectly
estimated nonzero coefficients.

Logistic regression

n=100 Correct no. of nonzeros Incorrect no. of nonzeros

p r SCAD LASSO SCAD LASSO
500 0 2.28 (0.09) 3.58 (0.09) 0.80 (0.12) 21.16 (1.04)

0.5 2.73 (0.07) 4.10 (0.07) 0.24 (0.04) 18.37 (0.98)
2000 0 1.98 (0.09) 3.15 (0.09) 1.05 (0.14) 22.82 (1.12)

0.5 2.48 (0.08) 3.92 (0.07) 0.39 (0.08) 20.85 (1.13)

n=300 Correct no. of nonzeros Incorrect no. of nonzeros

p r SCAD LASSO SCAD LASSO
500 0 4.23 (0.07) 4.88 (0.03) 0.26 (0.06) 33.63 (1.29)

0.5 4.10 (0.06) 4.91 (0.02) 0.23 (0.06) 27.33 (1.34)
2000 0 3.92 (0.07) 4.74 (0.04) 0.29 (0.06) 42.27 (1.72)

0.5 3.96 (0.06) 4.81 (0.04) 0.17 (0.05) 33.87 (1.51)

Poisson regression

n=100 Correct no. of nonzeros Incorrect no. of nonzeros

500 0 2.32 (0.05) 2.30 (0.05) 14.52 (1.03) 17.85 (1.07)
0.5 2.79 (0.07) 2.93 (0.06) 12.66 (1.10) 16.02 (1.10)

2000 0 2.24 (0.05) 2.17 (0.04) 18.08 (1.20) 21.37 (1.25)
0.5 2.58 (0.06) 2.74 (0.06) 16.27 (1.15) 18.23 (1.13)

n=300 Correct no. of nonzeros Incorrect no. of nonzeros
500 0 2.92 (0.05) 2.93 (0.05) 16.06 (1.07) 19.87 (1.26)

0.5 3.52 (0.06) 3.51 (0.05) 13.66 (0.93) 16.18 (1.12)
2000 0 2.91 (0.05) 2.88 (0.05) 20.58 (1.28) 22.56 (1.40)

0.5 3.34 (0.06) 3.35 (0.05) 18.65 (1.50) 19.68 (1.59)

estimate the mean change points via sparse penalized approaches.

The annual numbers of disasters yi, i ≤ n, are assumed to be independently

distributed as Poisson with mean µi, i ≤ n. Then, the log-likelihood of µ =

(µ1, · · · , µn)
T is

L(µ) =

n∑
i=1

(
yi log(µi)− µi

)
.

Reparameterizing µ as ν1 = µ1 and νi = µi − µi−1 for 2 ≤ i ≤ n, and adapting

the penalty on ν = (ν1, · · · , νn)T , gives the penalized problem

Q(ν) =

n∑
i=1

(
yi log

i∑
j=1

νj −
i∑

j=1

νj

)
− nJλ(ν). (5.6)

This approach has been investigated by Harchaoui and Lévy-Leduc (2007). The

nonzero estimator ν̂i ̸= 0 can be interpreted as an indication of the change
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Table 5. Change point analysis for coal-mining data (estimated years and
sizes of decrements).

year 1887 1892 1897 1943 1948
SCAD decrement -2.2763 - - - -
LASSO decrement -0.7340 -0.5999 -0.3565 -0.0434 -0.5125

between µi and µi−1. In addition, its value can be used as the estimate of the

difference between two consecutive means.

We applied two sparse penalized methods: the LASSO and the SCAD. The

estimated change points and estimated decrements are listed in Table 5. Five

change points are detected by the LASSO, with the greatest decrement of−0.7340
in the year 1887 and the smallest decrement of −0.0434 in the year 1943. On

the other hand, the SCAD detects only one change point in the year 1887 with a

decrement of −2.2763. Raftery and Akman (1986) and Green (1995) found the

highest posterior mode of the time of change in the year 1890 with 95% credi-

ble intervals of [1887,1895] and [1887,1896], respectively. Chib (1998) reported

the difference of the posterior means in the year 1891 to be −2.162 from each

posterior mean, 0.957 and −3.119, with standard deviations of 0.286 and 0.120,

respectively, similar to the results of the SCAD. In Figure 1, the left panel shows

the estimated means of the two methods. We can see that there are five relatively

small change points in the LASSO, whereas there is a large change point in the

SCAD. The right panel of Figure 1 compares the cumulative means of the two

methods and shows that the SCAD-penalized estimator is much closer to the

cumulative frequencies of the disasters. Note that the LASSO yields a biased

result whereas the SCAD is almost unbiased.

5.3. Data analysis II: Model-based clustering

We analyzed two popular microarray gene expression data sets, Leukemia

and Colon, employed by Dudoit, Fridlyand and Speed (2002) and Alon et al.

(1999), respectively, and applied the penalized model-based clustering method.

• Leukemia: This data set consists of 38 samples and 7,129 corresponding

gene expression measurements, including a label indicating two types of

cancers. Among the samples, 21 indicate acute lymphoblastic leukemia

(ALL) cancer class and the others, acute myeloid leukemia (AML). Follow-

ing the pre-processing steps adopted Dudoit, Fridlyand and Speed (2002),

we ordered the genes by their F -statistics and selected the top 1,000 genes.

• Colon: This data set comes from a gene expression study of 40 tumor and

22 normal colon tissue samples that were analyzed with more than 6,500
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Figure 1. The left panel (a) shows the estimated means by the LASSO
(dashes) and SCAD penalty (solid line) while the dots represent the data
points. The right panel (b) includes the estimated cumulative lines by the
LASSO (dashes) and SCAD penalty (solid line). The change points are
indicated by small bars.

human genes. Following the steps of Alon et al. (1999), a selection of 2,000
genes with the highest minimal intensity across the samples was made. We
selected the top 1,000 F -statistic valued genes.

To apply sparse penalized model-based clustering, it is assumed that the
p-dimensional gene expression levels xi, i ≤ n, are independently drawn from a
K-component Gaussian mixture distribution:

f(x,θ) =

K∑
k=1

πkϕk(x,µk,Σk). (5.7)

Here, the generic notation θ includes all the parameters in (5.7) and ϕk is the p-
dimensional multivariate Gaussian density function with mean µk and covariance
matrix Σk. We assume that the covariance matrix in each component has a
common diagonal matrix such that Σk = diag(σ2) for all k ≤ K, with σ2 =
(σ2

1, · · · , σ2
p)

T . Given the data, the log-likelihood is

L(θ;X) =

n∑
i=1

log

{
K∑
k=1

πkϕk(xi,µk,Σ)

}
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and we get the corresponding penalized log-likelihood:

QP (θ;X) =

n∑
i=1

log

{
K∑
k=1

πkϕk(xi,µk,Σ)

}
− n

K∑
k=1

Jλ(µk).

Using the expectation and maximization (EM) algorithm, we can maximize the

penalized log-likelihood. Let zki be the indicator of whether xi is obtained from

component k. Then, the complete penalized log-likelihood is

QC
P (θ;X,Z) =

n∑
i=1

K∑
k=1

zik

{
log πk + log ϕk(xi,µk,Σ)

}
− n

K∑
k=1

Jλ(µk).

For the given parameters π̂k, µ̂k, and Σ̂, the E-step yields the responsibilities

τ̂ik =
π̂kϕk(xi, µ̂k, Σ̂)∑K
k=1 π̂kϕk(xi, µ̂k, Σ̂)

and the M-step is to maximize

E
(
QC

P (θ|X)
)
=

n∑
i=1

K∑
k=1

τ̂ik

{
log πk + log ϕk(xi,µk,Σ)

}
− n

K∑
k=1

Jλ(µk).

EM algorithm for SCAD-penalized Gaussian mixture model

Given the initial estimates of π̂k, µ̂k, and Σ̂ = diag(σ̂2), repeat the E and

M-steps until convergence.

(E-Step) Calculate the responsibilities

τ̂ik ←
π̂kϕk(xi, µ̂k, Σ̂)∑K
k=1 π̂kϕk(xi, µ̂k, Σ̂)

for i ≤ n and k ≤ K.

(M-Step) Update the means, variances, and mixing probabilities

µ̂k ← sign(µ̃k)

(
|µ̃k| − nλσ̂2∑n

i=1 τ̂ik

)
+

, σ̂2
j ←

1

n

n∑
i=1

K∑
k=1

τ̂ik(xij − µ̂kj)
2,

π̂k ←
1

n

n∑
i=1

τ̂ik
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for j ≤ p and k ≤ K, where

µ̃k =

n∑
i=1

τ̂ikxi − nΣ̂∆̃k, ∆̃k =
∂Jλ(µ̂k)

∂µk

− λsign(µ̂k).

In this algorithm, with λ = 0, one produces the non-penalized estimator of θ,

and if we put ∆̃k = 0 for all k ≤ K, the derived solutions are the same as those

of the LASSO (Pan and Shen (2007)). To select the tuning parameter λ and

the appropriate number of the components K, we used the modified Bayesian

information criterion (BIC),

BIC(θ̂) = −2L(θ̂;X) + DF(θ̂) log n, (5.8)

with DF(θ̂) = K−1+p+q, where q is number of the nonzero mean components.

Table 6 summarizes the results, which show that the SCAD and LASSO

performed similarly. Note that the SCAD penalty yielded sparser solutions and

smaller BIC values than the LASSO, even though the differences were not signif-

icant. In other words, the solutions obtained by the SCAD penalty represented

the underlying distribution of the given data more compactly. It is interesting to

note that the number of genes selected for clustering was rather large. In fact,

the same clustering structure can be constructed with fewer genes (three or four

hundred genes), even though such models have higher BIC values. An alternative

model selection criterion may be required for the mixture model, which we plan

to investigate in the future.

6. Concluding Remarks

We have only considered the SCAD penalty for easy exposition; it is not

difficult to construct a class of penalty functions that have the same local and

global asymptotic properties. For example, consider the family of penalty func-

tions Jλ(·) that are non-decreasing and continuously differentiable on (0,∞) such

that limθ→0+ ∂Jλ(θ)/∂θ = λ and ∂Jλ(θ)/∂θ = 0 for θ ≥ aλ for some a > 0. Then,

it can be shown that the penalized MLE from this class has the same asymptotic

properties as the SCAD-penalized MLE. This is because the KKT conditions for

the oracle MLE to be a local maximizer are the same as those for the SCAD. For

example, the minimax concave penalty of Zhang (2010) belongs to this penalty

class.

The results of this study can be easily extended to the general penalized

M-estimator as long as the the loss function is sufficiently smooth (e.g., the third

derivative exists). However, there are problems when the loss functions are not

sufficiently smooth. Examples are the hinge loss for the support vector machine

and the Huber loss for robust regression. It would be advantageous to extend

the results of this paper to such non-smooth loss functions.
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Table 6. Model-based clustering results for two gene expression data sets:
Leukemia and Colon.

Cluster number
Leukemia 1 2 3 4 5 Total BIC/n
SCAD ALL 10 11 6 0 - 27 1598.35

AML 0 0 0 11 - 11
No. of nonzeros 894 915 847 905 - 3561

LASSO ALL 10 9 8 0 - 27 1625.21
AML 0 0 0 11 - 11

No. of nonzeros 978 977 960 978 - 3893

Cluster number
Colon 1 2 3 4 5 Total BIC/n
SCAD Normal 11 2 1 7 1 22 1334.49

Tumor 3 2 22 0 13 40
No. of nonzeros 929 767 956 875 937 4464

LASSO Normal 11 2 1 7 1 22 1350.67
Tumor 3 3 21 0 13 40

No. of nonzeros 985 957 992 974 991 4899

Acknowledgement

We are grateful to the anonymous referees, an associate editor, and the Ed-

itor for their insightful comments. Kwon’s research was supported by the Engi-

neering Research Center of Excellence Program of the Korea Ministry of Educa-

tion, Science and Technology (MEST)/Korea Science and Engineering Founda-

tion (KOSEF), grant number R11-2008-007-01002-0. Kim’s work was supported

by the National Research Foundation of Korea grant number 20100012671 funded

by the Korea government.

Appendix

We define some notation. Let Snj(θn) be the jth element of ∇Ln(θn) =

∂Ln(θn)/∂θn and Unjl(θn) be the (j, l)-th element of∇2Ln(θn) = ∂2Ln(θn)/∂θ
2
n

for all j, l ≤ pn. Similarly, ∇1 denotes some partial derivatives of Snj(θn) with

respect to θn1 = (θn1, · · · , θnqn)T , so that ∇1Snj(θn) = ∂Snj(θn)/∂θn1 and

∇2
1Snj(θn) = ∂2Snj(θn)/∂θ

2
n1 for all j ≤ pn.

Lemma A.1. If A2−A5 hold, for any constant α > 0, we have

pr
(
|Snj(θ

∗
n)| >

√
nα
)
= O

(
α−2k

)
, (A.1)

pr
(
||∇1Snj(θ

∗
n)− E(∇1Snj(θ

∗
n))|| >

√
qnα

)
= O

(
α−2k

)
, (A.2)
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for all j ≤ pn. For all θn ∈ Bn, and for j ≤ pn,

pr
(
||∇2

1Snj(θn)|| > nqnα
)
= O

(
α−2k

)
. (A.3)

Proof of Lemma A.1 Under A2, A5 and the Rosenthal inequality, we have

E
(
Snj(θ

∗
n)
)2k

= O
(
nk
)

for all j ≤ pn. Using the Markov inequality, it is easy to check

pr
(
|Snj(θ

∗
n)| >

√
nα
)
≤ (
√
nα)−2kE

(
|Snj(θ

∗
n)|
)2k

= O
(
α−2k

)
.

Hence, (A.1) holds. Let ∆njl(θ
∗
n) = Unjl(θ

∗
n)−E(Unjl(θ

∗
n)). Then, from A2, A5

and the Rosenthal inequality, we get

E
(
∆njl(θ

∗
n)
)2k

= O
(
nk
)

for all l ≤ qn and j ≤ pn. Using the triangular inequality in Lk, we have

E
(
||∇1Snj(θ

∗
n)− E∇1Snj(θ

∗
n)||2k

)
= E

{ qn∑
l=1

(
∆njl(θ

∗
n)
)2}k

≤
[ qn∑

l=1

{
E
(
∆njl(θ

∗
n)
)2k}1/k]k

= O
(
nqkn
)

for all j ≤ pn. Hence, using the Markov inequality again, (A.2) follows. Similarly,

under A4 and A5,

E
( n∑

i=1

Vnjlm(zni)
)2k

= O(n2k)

holds, from which we can conclude

E
(
||∇2

1Snj(θn)||
)2k
≤ O

(
(nqn)

2k
)

for all θn ∈ Bn and j ≤ pn. Hence, (A.3) follows. This completes the proof.

Proof of Theorem 1. Let

Un(θn) = Ln(θn)− n

pn∑
j=1

(
Jλn(θnj)− λn|θnj |

)
.
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Then, Un(·) is continuously differentiable so that we have

∂Un(θn)

∂θnj
=


Snj(θn), |θnj | < λn,

Snj(θn)− n
(
aλn−|θnj |

a−1 − λn

)
sign(θnj), λn ≤ |θnj | < aλn,

Snj(θn) + nλn sign(θnj), aλn ≤ |θnj |,

for all j ≤ pn. Since Qn(θn) = Un(θn) − nλn
∑pn

j=1 |θnj |, the correspond-

ing Karush-Kuhn-Tucker (KKT) conditions (see, for example, Rosset and Zhu

(2007)) are

∂Un(θn)

∂θnj
= nλnsign(θnj), θnj ̸= 0, (A.4)∣∣∣∣∂Un(θn)

∂θnj

∣∣∣∣ ≤ nλn, θnj = 0, (A.5)

for all j ≤ pn. By the definition of θ̂
o

n, Snj(θ̂
o

n) = 0 for j ≤ qn and θ̂onj = 0 for

qn < j ≤ pn. Hence, it suffices to show that θ̂
o

n satisfies

pr

(
min

1≤j≤qn
|θ̂onj | ≥ aλn

)
→ 1, (A.6)

pr

(
max

qn<j≤pn
|Snj(θ̂

o

n)| ≤ nλn

)
→ 1, (A.7)

as n→∞. From the regularity condition A1 and (3.2), we have

min
1≤j≤qn

|θ̂onj | ≥ min
1≤j≤qn

|θ̂∗nj | − max
1≤j≤qn

|θ̂onj − θ∗nj | = Op(n
−(1−c2)/2).

Hence, (A.6) follows since λn = o
(
n−(1−c2+c1)/2

)
. Next, we prove (A.7). From

Taylor’s expansion and the definition of θ̂
o

n and θ∗
n, we have

Snj(θ̂
o

n) = Snj(θ
∗
n) +∇1Snj(θ

∗
n)

T (θ̂
o

n1 − θ∗
n1)

+(θ̂
o

n1 − θ∗
n1)

T∇2
1Snj(θ

∗∗
n )

(θ̂
o

n1 − θ∗
n1)

2

for all qn < j ≤ pn for some θ∗∗
n that lies between θ̂

o

n and θ∗
n. From the Cauchy-
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Schwarz inequality, it follows that

pr
(

max
qn<j≤pn

|Snj(θ̂
o

n)| > nλn

)
≤ pr

(
max

qn<j≤pn
|Snj(θ

∗
n)| >

nλn

4

)
+pr

(
max

qn<j≤pn
||∇1Snj(θ

∗
n)− E∇1Snj(θ

∗
n)|| ||θ̂

o

n− θ∗
n|| >

nλn

4

)
+pr

(
max

qn<j≤pn
||E∇1Snj(θ

∗
n)|| ||θ̂

o

n− θ∗
n|| >

nλn

4

)
+pr

(
max

qn<j≤pn
||∇2

1Snj(θ
∗∗
n )|| ||θ̂o

n− θ∗
n||2 >

nλn

2

)
=let P1 +P2 +P3 +P4.

From Lemma A.1, we can see that

P1 = pr
(

max
qn<j≤pn

|Snj(θn)| >
nλn

4

)
≤

pn∑
j=qn+1

pr
(
|Snj(θn)| >

nλn

4

)
= O

( pn
(
√
nλn)2k

)
→ 0

as n→∞. Similarly, for the term P2, from Lemma A.1 we have

P2 ≤ pr
(
||θ̂o

n− θ∗
n|| >

qn√
n

)
+ pr

(
max

qn<j≤pn
||∇1Snj(θ

∗
n)− E∇1Snj(θ

∗
n)|| >

n
√
nλn

4qn

)
= o(1) +O

( pn
(nλn/(qn

√
qn))2k

)
→ 0

as n→∞. From A5, we have

P3 = pr
(

max
qn<j≤pn

||E∇1Snj(θ
∗
n)|| ||θ̂

o

n− θ∗
n|| >

nλn

4

)
≤ pr

(
||θ̂o

n− θ∗
n|| >

nλn

4M5
√
q
n

)
→ 0

as n→∞. For the last term P4, from Lemma A.1 we have

P4 ≤ pr
(
||θ̂o

n− θ∗
n||2 >

qn
√
qn

n

)
+ pr

(
max

qn<j≤pn
||∇2

1Snj(θ
∗∗
n )|| > n2λn

2qn
√
qn

)
= o(1) +O

( pn
(nλn/(q2n

√
qn))2k

)
→ 0
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as n→∞. Hence, (A.7) follows. This completes the proof.

Proof of Theorem 2. It suffices to show that

pr

(
max
θn∈Ωn

Qn(θn) ≤ Qn(θ̂
o

n)

)
→ 1 (A.8)

as n→∞. From Taylor’s expansion, we get

Ln(θn)− Ln(θ̂
o

n) = ∇Ln(θ̂
o

n)
T (θn − θ̂

o

n) + (θn − θ̂
o

n)
T∇2Ln(θ̂

∗∗
n )

(θn − θ̂
o

n)

2

for some θ∗∗
n that lies between θn and θ̂

o

n. The definition of θ̂
o

n together with

(A.7) implies that

∇Ln(θ̂
o

n)
T (θn − θ̂

o

n) =

pn∑
j=1

Snj(θ̂
o

n)(θnj − θ̂onj) ≤
pn∑

j=qn+1

op(nλn)|θnj |

and from A6 and the Cauchy-Schwarz inequality,

(θn − θ̂
o

n)
T∇2Ln(θ̂

∗∗
n )(θn − θ̂

o

n)/2 ≤ −nM7||θn − θ̂
o

n||2

holds. Hence, we have

Qn(θn)−Qn(θ̂
o

n) ≤
pn∑
j=1

nwnj ,

where

wnj = op(λn)|θnj |I(j > qn)−M7(θnj − θ̂onj)
2 + Jλn(θ̂

o
nj)− Jλn(θnj).

If |θnj | ≥ aλn for all j ≤ qn, we have

qn∑
j=1

wnj ≤ −M7

qn∑
j=1

(θnj − θ̂onj)
2 ≤ 0.

If there exists a j ≤ qn such that |θnj | < aλn, then

|θnj − θ̂onj | ≥ min
1≤j≤qn

|θ∗nj | − max
1≤j≤qn

|θ̂onj − θ∗nj | − aλn = Op(n
−(1−c2)/2).

Hence, we have

qn∑
j=1

wnj ≤ −Op(n
−1+c2) +O(qnλ

2
n) = −Op(n

−1+c2) + o(n−1+c2) ≤ 0
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for sufficiently large n. On the other hand, for each j > qn, if |θnj | > λn,

wnj ≤ |θnj |(op(λn)−M7|θnj |)

and if |θnj | ≤ λn,

wnj ≤ op(λn)|θnj | − Jλn(θnj) = (op(λn)− λn)|θnj |.

Hence, we have
∑pn

j=qn+1wnj ≤ 0 for all sufficiently large n. As a consequence,

(A.8) holds. This completes the proof.
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