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IDENTIFICATION OF BILINEAR TIME SERIES MODELS
BL(p,0,p,1)

T. Subba Rao and M. Eduarda A. da Silva

University of Manchester Institute of Science and Technology

Abstract: In this paper, we show how the Yule-Walker type difference equations for
higher order moments and cumulants, recently derived for certain types of bilinear
time series models, the BL(p, 0, p,1) models, by Sesay and Subba Rao (1988, 1991),
could be used for tentative identification of the order of the model. The technique
we use for identification is canonical correlation analysis, carried out between the
linear combination of the observations and linear combination of higher powers of
the observations. The methods are illustrated with real and simulated examples.”
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1. Introduction

An assumption often made in time series analysis is that the series under
consideration is linear, and perhaps even Gaussian. Many real time series, such
as sunspot numbers, Canadian lynx data, etc, have been found to be nonlin-
ear. Recently, many statistical tests, both in the frequency domain (Subba Rao
and Gabr (1980), Hinich (1982)) and in the time domain (Keenan (1985), Tsay
(1986)), have been proposed to test the hypothesis of linearity. Once we confirm
that the data is non-linear, it is then important to fit an appropriate nonlinear
time series model to the data. With this in view, in recent years, severaJ_‘i"lnite
parameter nonlinear models have been proposed, and properties studied. One of
these nonlinear models, proposed by Granger and Andersen (1978), Subba Rao
(1976, 1981), Subba Rao and Gabr (1984), is called a Bilinear model.

A time series X; is said to satisfy a Bilinear model if it satisfies the difference
equation

p q m k
X+ Y a;Xeej= Y dieci+ D Y buXereer (1.1)
1=1 i=0 i=1!=1

where e, is a sequence of independent and identically distributed random vari-
ables. Following Subba Rao (1981), we denote this model by BL(p, ¢,m, k). The
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properties of a special case of this model have been extensively studied in recent
years (for example Subba Rao (1981), Subba Rao and Gabr (1984), Bhaskara’
Rao et al.(1983), Pham Dinh and Tat Tran (1981), Liu and Brockwell (1988),
Guegan (1990), etc). It has been pointed out by Subba Rao (1981) that the sec-
ond order properties of the BL(p,0,p, 1) are similar to the ARMA(p,1) model,
and hence it is necessary to study higher order cumulants (or moments) to dis-
tinguish between linear models and bilinear models. Recently, Sesay and Subba
Rao (1988, 1991) have shown that for Bilinear models BL(p,0,p, 1), third and
fourth order moments satisfy Yule-Walker type difference equations. In view of
this it is interesting to investigate the possibility of using these difference equa-
tions for order determination and estimation of the parameters for this specific
model BL(p,0,p,1). Our object in this paper is to describe a procedure that
tentatively determines the order. The approach we follow here is similar to the
Canonical Correlation analysis approach proposed by Tsay and Tiao (1985) for
identification of the order of ARMA models. -

2. Motivation for using Canonical Correlations

~ _Let the time series {X;} satisfy the Bilinear model BL(p,0,p,1) given by

p p
Xt + Zant_j =€+ ijlXt-jet_l (2.1)

i=1 i=1

where {e;} is a sequence of mutually independent random variables, each dis-
tributed normally with mean zero and variance o?.

The bilinear model (2.1) can be written in vector form as

xy = Axy_1 + Bzi_164-1 + Cey
X = HTmt -

-where z; is the state vector, ; = (X, X¢-1,.-- ,Xt_p.,_l)T and the matrices A,
B, C, H are given by -

[—-a1 —ag -+ —Qp-1 —ap
A= 1 0 0 0 ,
L 0 0 1 0
fbin b1 o+ bpo1r b
B = 0 o .- 0 0 ,
L 0 o .- 0 0

C=H=(1,0,...,0)T.
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The conditions for stationarity up to the second order of the b_ilinea.r
- BL(p,0,p,1) model given by Subba Rao (1981) are p(A) < 1and p(AQA+V?B® -

B) < 1, where p(A) denotes the spectral radius of matrix A and A ® B denotes

the Kronecker product of the matrices A and B. Bhaskara Rao et al. (1983)

proved the existence of a stationary solution for Equation (2.1). Tang (1987)

gave explicit conditions for the Ith order asymptotic stationarity of the bilinear

BL(p,0,p,1) model, which we state in the following theorem. Let &A'B’ de-

note the summation of all possible Kronecker product combinations of 1 times
the matrix A and j times the matrix B.

Theorem 2.1. For the bilinear model, BL(p,0,p,1), if for the first | following
matrices

4]
an =Y LATTHBY(2)/2W n=1,...,1

i=0 -

p(ay) < 1, where [n/2] is the largest integer no larger than n/2, then X, is lth
order asymptotic stationary.

For a proof see Tang (1987). For I = 2 these conditions reduce to the
conditions mentioned above, given by Subba Rao (1981).

Let i, pm+1(S1,-..,5m) and ¢m+1(81,---,5m) denote the mean and the
(m + 1)th order moments and central moments of {X:} given by

4= E(X), bmsr(s1,er8m) = E(Xe [[ Xe4s)y m21

=1

m
Cmt1(515e-or8m) = BE(Xe = ) [[(Xegss —p), 1Sm <2
i=1 ~
The higher order cumulants can be defined similarly (see Subba Rao and~Gabr
(1984)). -

The above moments and cumulants satisfy some symmetry conditions (Sesay
and Subba Rao (1988)) and therefore only some of these moments and cumulants
need to be calculated. Assuming that the above conditions for the existence of
moments up to the fourth order are satisfied for the bilinear process, Sesay and
Subba Rao (1991) have derived the following difference equations for higher order
moments and cumulants for the above model. For s > 2, we have the following
difference equations.

er(s) + ) _asea(s =) =0, (2:2)
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c3(0,8) + Za,-ca(o,.s -7)=0, (23) .

i=1

P
©4(0,0,8) + Z a;p4(0,0,8 —j) = b10%u3(0,0). (2.4)
i=1

These equations characterise the bilinear model BL(p, 0, p, 1), and from these
equations it is clear, under the assumption of stationarity, that the higher order
moments tend to zero exponentially as the lag tends to infinity. Since we are
looking amongst nonlinear models at this stage, it is important that we know
how to compare the behaviour of these moments with the moments of processes
generated by other types of nonlinear models such as exponential AR models,
state dependent models, threshold models (Tong (1983)). Unfortunately, until
now no analytical expressions for the lagged moments (up to fourth order) of
these processes other than the bilinear processes are available. In view of this,
we simulated time series data from special types of threshold and exponential
models and estimated moments up to fourth order for various lags. The sample
moments obtained from bilinear models decay to zero as expected. For the
threshold models we find that the lagged moments do not tend to zero that fast
and, in fact, show some sort of oscillatory behaviour. For the exponential AR
model, the moments seem to tend to zero, but very, very slowly. As pointed out
earlier, since there are no analytical expressions available, these studies can not
be taken to be extensive. In this context we may point out that the procedure
advocated by Priestley (1988) for fitting state dependent models may be useful for
discriminating between these types of nonlinear models. Here our main concern
is with bilinear models and, as such, we do not pursue the investigations about
other models any further. '

It is interesting to observe the behaviour of sample second order covariances
and third order moments for both the linear and bilinear models. For this put-
pose, we generated 500 observations from the following bilinear BL(1,0,1,1) dnd
ARMA(1,1) models -

Xt + 0.4Xt_1 = e; + 0-2Xt—-let—-1, (25)
Xt + 0.4Xt_1 =e; + O.2€t_1, (26)

where {e;} are independent, normal variables with mean zero and variance one.

The reason we chose these two models is, that as far as second order proper-
ties are concerned, they are similar; and the only way they can be distinguished
is by their higher order moments. The second and third order cumulants, ¢(s),
¢3(0, s) are estimated from the sample by the expressions given in Section 5. The
sample second order and third order cumulants, é;(s), é3(0,s), up to lag 50, for
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the above models are given in Figures 1 and 2. As expected theoretically, the sec-

_ond order covariances in both cases (Figure-1) decay to zero as the lag inereases,
though the rate of decay in the case of the Bilinear model is slower. As far as the
third order cumulants are concerned, for the Gaussian ARMA model, we know
that they are zero and for this bilinear model they are not zero. This analysis
together with the test for nonlinearity (which confirms that the model is nonlin-
ear) indicates that the model is Bilinear. The next stage of the investigation is
the determination of the order p of the bilinear model.

Cz(S) 62(8)
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Figure 1. 2nd order cumulants

é3(075) 63(0,3)
C.4q 0.y .
1 -
0.3 0.3 4 -
C.z 4 0.2 4

/

ot .ifxﬁ\f\hA Vo M“‘\A A N\u,/\' o ~
NERERIRR V’\”%_VW VR T

_
-0.2 4 0.2 +
te) BILINEAR MODEL ®) ARMA MOOEL

Figure 2. 3rd order cumulants
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3. Canonical Correlation Analysis of BL(p,0,p,1) Models

B
e

Canonical correlation analysis is a widely used technique in multivariate
analysis for finding best linear combinations between two sets of variables. This
technique has now found its use in time series analysis for the purpose of tenta-
tive identification of the orders of linear time series models, such as Autoregres-
sive Moving Average models (Akaike (1976), Subba Rao (1976), Tsay and Tiao
(1985)). The motivation for using canonical correlations analysis in the time se-
ries context is that for linear autoregressive moving average models, the second
order covariances satisfy a set of difference equations called Yule-Walker equa-
tions which suggest the application of canonical correlation analysis. The fact
that higher order moments and cumulants for the bilinear BL(p,0, p,1) model
satisfy a set of difference equations which are similar to the standard Yule-Walker
equations, suggests immediate extension of canonical correlation techniques for
tentative model identification to bilinear models.

Following Tsay and Tiao (1985), define the vectors -

YO = (Xe =t Xect = oo oy Koem — )T,

- - Y@ = (X = ) (Kict = 1)%ee s (Kimm = )27,
Y = (2o = p2)y(Zeor — p2), -1 (Zeem — p2))T
where Z; = X3, pz = E(Z;) and m =0,1,2,....

The difference equations (2.2) to (2.4), suggest canonical correlation analysis
between

Y,ftli and Y(l) : Y,fll} and Y(Z) : Y,,(B and Y(S)

m,t—j31 m,t—j3) m,t—3)
form=20,1,...,and 7 =1,2,....
Second Order Canonical Correlation Analysts

Consider the vectors Y,ﬁll)t and YU _ .. Let I'y(m,j) be the (m+1) X (m-F.l)_

. mrt_j.
matrix
Ty(m,7) = (T2(u,v)), v,v=1,2,...,m+1,

where T';(u,v) = ¢(j + u — v). We then have, from Equation (2.2), that for
m > max(0,p—-1), 7> 1,

Rank{Ty(m,j+ 1)} =m+1—s, where s = min(m + 1 - p, j). (3.1)

In other words, when s > 1, I'2(m,7 + 1) has s zero eigenvalues. Since
Ly(m,jg) = E(Y(l) Y(l)T), Equation (3.1) suggests that there are s zero canon-

m,t—j - m,t

ical correlations between Y,SZ and Y,fll’)t_j_l.
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Let
- Ag(m,j) = T2(m,0) 7 Ta(m,j + 1)Try(m,0) ' T2(m,j+1) — -
and let Na(m,j) be the number of zero eigenvalues of Aa(m, 7). Then,
N3(m,j) = s since Rank{Az(m,j)} = Rank{l2(m,j + 1)}
Third Order Canonical Correlation Analysis

Consider now the vectors Y,Sll,)t and ,f?}_j, and let T's(m,j) be the (m +
1) x (m + 1) matrix

I3(m,j) = (T3(u,v)), w,v = 1,2,...,m+1,

where T'3(u,v) = ¢3(0,5 + u — v). From Equation (2.3) it follows that for m 2
max(O,p— 1)7 J > 1,

Rank{T3(m,j+1)}=m+1-s, s= min(m + 1 — p, 7). (3.2)

Similar to the second order analysis, when s 2> 1, I3(m,j + 1) has s zero eigen-
values. Since I's(m,j) = E(Y,fii_ jY,(nly)tT), Equation (3.2) shows that there are

s zero canonical correlations between stf,l— i-1 and Y,f}},. ‘
Let

A3(m7j) = r(m, 0)—1r3(m9j + I)Tr2(m’ 0)_1r3(m7j + 1)’

where T'(m,j) = E(Y,ﬁ),_jY,g)tT) and let N3(m,j) be the number of zero eigen-
values of Az(m,j). Then, N3(m,j) = s, the number of zero canonical correla-
tions between Y,si)t_ ;-1 and le,)t.

Fourth Order Canonical Correlation Analysis

By observing that bjy0? = p(1 + 3P, ai) and rewriting, we can show that
Equation (2.4) is equivalent to .

E[(X} — EGX)(Xeps = 0] + 34 E[(XP = BN (Kersms = 1)) = 0. (33)

We therefore, consider the vectors Yfﬂ and erﬁi_j and let T4(m,j) be the
(m + 1) x (m + 1) matrix

Ly(m,j) = (Ta(w,v)), v,v=12,...,m +1,

where T4(u,v) = ka(j + u — v) and ka(j + v — v) = E((Z¢ — pz)(Xers — 1))
From Equation (2.4), it follows that for m 2 max(0,p—-1), 72 1,

Rank{T4(m,j +1)}=m+1-s, s= min(m + 1 - p,J)- (3.4)
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'Therefore, when s > 1, Ty(m,j + 1) has s zero eigenvalues. Since T'y(m,j) =

- E(Y,ﬁ?l_ J-Y,Elll)tT), Equation (3.4) shows that there are s zero canonical correla-

tions between Y,(,i),_j_l and Y,S‘IZ
Let

A4(m7j) = FS(m7 0)_lr4(maj + 1)Tr2(m’ 0)—lr4(m7j + 1),
where T's(m,7) = E(Y(a) Y(3)T) and let Ng(m,7) be the number of zero eigen-

m,t—j*m,t
values of A4(m,j). Then, Ny(m,j) = s.
For convenience of discussion, we write N(m,j) for N;(m,7),: = 2,3,4 and

A(m,j) for A;(m,j),i = 2,3,4. Then we can state the following result

Lemma 3.1. Suppose that X; follows a BL(p,0,p,1) model. Then for m 2>
max(0,p — 1) and 7 > 1, N(m,j) = s, where s = min(m + 1 — p, 7).

Moreover, this result may be used for tentative model identification._Be-
cause of the similarity between the second order structure of the bilinear model,
BL(p,0,p,1) and the ARMA(p,1) model, Lemma 3.1 with N(m,j) = Na(m,Jj),
identifies the order p of the model but not the type of the model. However, the
higher order structure of the bilinear model is unique and, therefore, Lemma 3.1
with N(m,j) = N3(m,j) or N(m,j) = N4(m,j), can be used to confirm the
order of the bilinear model.

By arranging the N(m,j), m =0,1,..., 7= 1,2,... in a two-way table, we
see a special pattern for the bilinear model BL(p,0,p,1). Let the entries of the
table be m = 0,1,... and 7 =1,2,.... As N(m,j) becomes non-zero for m = p
and 7 = 1, the non-zero N(m,j)’s form a lower right rectangle bordered by the
equations N(m,j) = 1, such that the coordinates of the upper left hand vertex
of the rectangle correspond to (p,1), the order of the model. Moreover, N(m, j)
increases within the diagonal of the rectangle. Theoretically, this pattern can be
used to identify the order of the model. A

In Table 1 the values of N(m,j) for a BL(1,0,1,1) model and a BL(2,0:2,1-)
model are given. -

Let )\Ek)(m,j), 1=1,....m+1, k = 2,3,4 be the eigenvalues of matrix
Ag(m,J), where /\(lk)(m,j) > /\gk)(m,j) > e 2 /\S:_)*_l(m,j). Rather than con-
sidering N(m,j), we can consider /\gﬂ_l(m,j), the smallest eigenvalue of the
matrix Ag(m,7), k = 2,3,4. Then we have the result

Lemma 3.2. Suppose X, is a bilinear time series model satisfying (2.1). Then:
k . .

LA (m)#£0, m<p—1,j2 1.
k . .

2. /\fnil(m,]) =0, m>p, j2>1.
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Table 1. The N(m, j) table for (a) BL(1,0,1,1) model; (b) BL(2,0,2,1) model.

i=1lj=2|i=3]j=4|i=5|i=6|li=1]j=2|j=38|j=4|j=5=6

oslo|lw|lw|vw]=1co]|3
[V e e L K,
ol |wlvwl~]lo|e
e l|lwldlimlole

(2) (b)

In view of the special bilinear model we are considering where only. one

order, p, has to be determined, we will set j = 1, and this simplifies the result as
follows:

Lemma 3.3. Suppose X; is a time series satisfying the bilinear BL(p,0,p,1)
model given by (2.1). Then:

1. A% (m, 1) £0, m<p-1.
2. A% (m,1)=0, m>p.

Denote, for the sake of brevity, )\Sﬂ_l(m, 1) by A(m, k), where k is the order of
the canonical correlation analysis. A two-way table for the A(m, k), m = 0,1,...,
k = 2,3,4, consists of p rows of non-zero entries followed by rows of zeros.

4. An Approximate Test Statistic

» In view of the fact that the eigenvalues are calculated from the higher otder
- moments of the non-linear process, we do not have at the moment a statistical
test for the hypothesis that the smallest eigenvalue is zero. Nevertheless, we use
the test available in classical multivariate analysis (Anderson (1984)) which will
give us a rough idea of the significance of those eigenvalues. Briefly, the test is
as follows:

Let X be a g dimensional random vector with multivariate normal distribu-
tion, with mean zero and variance covariance matrix X. Partition X into two
subvectors of ¢; and q2, ¢1 < g2, components, respectively,

X
x ( xm)
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and partition ¥ similarly into ¢; and ¢, Tows and columns,

[ Eu )P}
o1 oz

Suppose we have a sample of size N on X and let r;, i = 1,...,q1, be the
corresponding sample canonical correlations, rp 2 12 2 -+ > 14, The statistic
to test the hypothesis that the smallest canonical correlation between X and
X s zero, is

T = —Nlog(1 -3,
which is approximately distributed as a chi-squared variable with 1 degree of
freedom. Obviously large values of T indicate rejection of the null hypothesis.

Now, we apply this test to our situation. Suppose we have a sample of size
N from {X.} satisfying the bilinear process, BL(p,0,p,1) and let A(m, k) be
the square of the smallest sample canonical correlation (or the smallest sample
eigenvalue). Following the above discussion construct the test statistic

co- T(m, k) = —N log(1 — A(m,k)), m=0,1,..., k=2,3,4.

It is not known how well the asymptotic chi-squared distribution with one degree
of freedom approximates the distribution of T'(m, k) in the situation of nonlinear
time series. However, from the simulations we observe that the statistic T(m, k)
seems to determine the true order p of the model. For N large and m < p -1,
T(m,k), k = 2,3,4, should be significantly greater than zero judged by a chi-
squared distribution with one degree of freedom; and for m > p, T (m, k), k =
2,3,4, should be less than some prespecified chi-squared value.

It may be pointed out here that when we studied the distribution of the
smallest eigenvalues by simulating a large number of realizations, we found evi-
- dence to show that the distribution of these eigenvalues is close to chi-squdre.

5. Numerical Illustrations
For illustration we consider the model, BL(2,0,2,1)
Xt + 0.4Xt—1 + 0-3Xt__2 = €t + 0.2Xt_1€t_1 + 0.2Xt_26t_1 (51)

where e; is a sequence of independent random variables, each distributed nor-
mally with mean zero and variance 0> = 1. We generated 900 observations
(X1,X2,...,X900) and computed the sample mean, covariances, third order cu-

mulants and fourth order moments:
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&
h=x )P N - .
t=1
1 N-—s
&)=y, > (Xt - 2)(Xers — 2)
t=1
1 N-—s
&(0,9) = 57— D_(Xi = A) (Xes = )
t=1

N-s
. 1
74(0,0,8) = 7 D X Xts

t=1

where N = 900 is the sample size.

Using these sample estimates we computed the matrices and the eigenval-
ues A(m,k). As sample moments and cumulants are consistent estimators of
theoretical moments and cumulants (Kim (1989)) the estimated A(m, k) should,
asymptotically, have the properties described in Lemma 3.3.

For the above model, the smallest eigenvalues of Ai(m, 1), A(m,1) and the
.corresponding statistic T(m, 1), i = 2,3,4, were computed and are tabulated in
Table 2. From the results in Table 2 we see that for m < 1, both T(m,2) and
T(m,4) are large compared to a chi-squared variable with one degree of freedom
(at 1% x? = 6.64) but for m > 2, T(m, k), k = 2,3,4, are smaller than the 1%
point of a chi-squared variable with one degree of freedom, indicating p = 2.

Table 2. Eigenvalues and statistic for model 5.1; *-values are significant at
1% level of significance.

A(m, k) T(m, k)
k=2lk=31k= k=2|k=31k=4
0.043 |0.010 | 0.035 { 39.18™ | 8.96* [ 31.75™ -

0.056 | 0.002 | 0.034 | 51.44™ | 2.21 |{31.18"
0.001 [ 0.001{0.003| 0.66 | 0.97 | 3.02
0.000 { 0.001 | 0.002} 0.42 | 0.55 | 2.32
0.005 { 0.000 | 0.003 | 4.50 | 0.66 | 3.02

el |[—|eo]3

Next, we apply the above methodology to real time series. Since it is well
known that the annual sunspot numbers, recorded from 1700 to 1985, are nonlin-
ear, for our illustration we consider this data. The eigenvalues and corresponding
statistics are tabulated in Table 3. From the results of Table 3 we see that for
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m < 1, both T(m,2) and T(m,4), are large compared to a chi-squared variable
_with one degree of freedom but for m > 2, T(m,k), k = 2,3,4, are smaller
than the 1% point of a chi-squared variable with one degree of freedom, indicat-
ing p = 2. This is consistent with AR(2) models fitted previously to this data
(Moran (1954), Yule (1927)), except that this analysis shows that there are extra
nonlinear terms.

Suppose we do not observe the time series {X:}, but the series {Z;}, where
for each t, Z; = X+ N, where {N;} is a noise process assumed to be stationary
up to third order and independent of X:. We can easily show that, when N is a
Gaussian (white or coloured) noise, the third order cumulants of Z; are the same
as those of X;. Therefore, when X satisfies a bilinear BL(p,0,p,1) model, one
can determine the order of the process X; by performing third order canonical
correlations on the process Z; as described above. The simulations performed
with several samples confirm this.

Table 3. Eigenvalues and statistic for Sunspot Numbers; x-values are significant’at
1% level of significance.

- ’ A(m, k) T(m, k)
mlk=2k=3lk=4|k=2|k=3|k=
0 ]0.210|0.096 | 0.091 | 29.00* | 28.80" | 27.19"
110.294 |0.016 | 0.167 [ 99.20% | 4.60 |52.07"
2 10.004 {0.001{0.007 | 1.14 0.29 0.87
3 10.000|0.001|0.005} 0.00 0.29 1.40
4 10.002|{0.000{0.000| 0.60 0.00 0.00
6. Conclusions -

Here we have considered the problem of the determination of the order.of
a specific bilinear model using higher order moments. The problem of the esti-
mation of the parameters using the difference equations is considered elsewhere.
The technique of identification given here, can in principle, be extended to more
general bilinear models provided we have difference equations for higher order
moments and cumulants similar to the equations derived by Sesay and Subba
Rao (1991). This is a problem worth considering.
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