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Abstract: We prove a Bernstein-von Mises theorem for the survival function based

on doubly censored data. In particular, we develop a new technique for prov-

ing Bernstein-von Mises theorems for nonparametric problems. We consider two

Bayesian approaches for doubly censored data: the direct approach, where we ob-

tain the posterior of the distribution of the survival times by putting the Dirichlet

process prior on the distribution of the survival times; an indirect approach, where

we first obtain the posterior of the distribution of the observables with the Dirich-

let process and from which we get the posterior of the distribution of the survival

times. We show that the two posterior distributions from these two approaches are

the same. Using this fact, we prove a Bernstein-von Mises theorem.
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1. Introduction

Let Xi i = 1, . . . , n, be independent identically distributed (i.i.d.) survival
times with a common distribution function FX . Under the doubly censoring
mechanism, the survival times can be censored either from the right or the left.
Let Yi ≥ Zi, be i.i.d. pairs of right and left censoring times, independent of Xi,
with marginal distribution functions FZ and FY , that may have total mass less
than 1. We observe only the pairs of (Wi, δi),

(Wi, δi) =


(Xi, 1) if Zi < Xi ≤ Yi

(Yi, 2) if Xi > Yi

(Zi, 3) if Xi ≤ Zi

.

Here δi is the censoring indicator whose value is 1 for the uncensored case, and
2 and 3 for the right and left censored cases, respectively. Based on the observa-
tions Dn = {(W1, δ1), . . . , (Wn, δn)}, we wish to estimate the distribution of the
survival times FX . Doubly censored data arise in many medical and reliability
applications. For examples of doubly censored data, see Turnbull (1974) and Cai
and Cheng (2004).
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Hypothesis testing and estimation procedures under the doubly censoring
were studied by Gehan (1965), Mantel (1967), Turnbull (1974) and Mykland and
Ren (1996). Recently Cai and Cheng (2004) considered statistical analysis of
doubly censored data when there are covariates. The estimation procedures are
heavily based on the self-consistent equations and, the asymptotic properties of
the self-consistent estimator (SCE) have been studied by Chang and Yang (1987),
Chang (1990), and Gu and Zhang (1993).

In this paper, we consider the Bayesian nonparametric approach to the esti-
mation of the distribution function based on doubly censored data. Suppose that
a priori FX is a Dirichlet process on [0,∞) with a base measure α whose support
is [0,∞). For the definition and properties of the Dirichlet process, see Ferguson
(1973) and Ghosh and Ramamoorthi (2003). The objective of this paper is to
prove a Bernstein-von Mises theorem for FX , that is, that

L(
√

n(FX − F
(n)
X )|Dn) d→ W

on D[0,∞) in probability, where L(·|Dn) is the posterior distribution of FX given
Dn, W is the limiting distribution of the sampling distribution of

√
n(F (n)

X −F 0
X)

under regularity conditions, and D[0,∞) is the space of right continuous functions
on [0,∞) with left limits existing equipped with the Skorohod topology. Here,
F

(n)
X is the NPMLE and F 0

X is the true distribution of Xi. For the NPMLE
F

(n)
X and the limit sampling distribution of

√
n(F (n)

X −F 0
X), see Chang and Yang

(1987), Chang (1990), Gu and Zhang (1993), and Mykland and Ren (1996).
The Bernstein-von Mises theorems in parametric models have a long history,

dating back to Laplace. In early studies of nonparametric models, there was
doubt as to whether a Bernstein-von Mises theorem would hold, see Freedman
(1999). Positive results include Lo (1983), Conti (1999), Shen (2002), and Kim
and Lee (2004), among others. For a more detailed history of Bernstein-von Mises
theorems, see Kim and Lee (2004), Shen (2002), and Ghosh and Ramamoorthi
(2003). For the asymptotic properties of the posterior distribution of right cen-
sored data, see Kim and Lee (2001, 2004), and Kim (2006).

In general, there are two approaches for proving a Bernstein-von Mises the-
orem for nonparametric problems. The first approach considers a case where the
prior mass is concentrated on the space of probability measures having a domi-
nating σ-finite measure. Here densities exist, and so we can prove the result by
calculating the size of the support of the prior in terms of various entropies and
the degree of concentration of the prior mass around the true model. Shen (2002)
took this route. The second approach considers the case where densities do not
exist, but the closed form of the posterior distribution is available. In this case,
we can prove a Bernstein-von Mises theorem by directly calculating the moments
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of the posteriors. See Kim and Lee (2004) and Kim (2006) for this approach.
For doubly censored data, however, no density exists and no closed form of the
posterior is available, and these two approaches are not directly applicable.

In this paper, we develop a new technique. We consider two Bayesian ap-
proaches for doubly censored data: the direct approach where we obtain the
posterior of the distribution of the survival times by putting the Dirichlet pro-
cess prior on the distribution of the survival times; an indirect approach where we
first obtain the posterior of the distribution of the observables with the Dirichlet
process, from which we get the posterior of the distribution of the survival times.
We show that the two posterior distributions from these two approaches are the
same. Using this, we prove the Bernstein-von Mises theorem.

The paper is organized as follows. In Section 2, we describe our two Bayesian
approaches for doubly censored data. In Section 3, we prove that the posterior
distributions of FX from the two Bayesian approaches are the same. Using this
equivalence, we prove the main result in Section 4. To illustrate our theoretical
findings, we present simulation results in Section 5.

2. Direct and Indirect Bayesian Approaches

For inference on FX , we consider two Bayesian approaches.

• Direct : We put a Dirichlet process prior with a base measure α on FX and
obtain the posterior, LD(·|Dn), for FX directly given the data.

• Indirect : We put a Dirichlet process prior with a base measure β on the
distribution Q of the observables, (Wi, δi), and obtain the posterior of Q given
the data. Using this , we obtain the posterior, LI(·|Dn), of FX by (2.1).

In the indirect approach, the posterior distribution of Q, denoted by
LQ(·|Dn), is the Dirichlet process with base measure βp(·) = β(·) +

∑n
i=1 I((Wi,

δi) ∈ ·). Here is how, we recover FX , as well as FY and FZ , from Q. Let
Qk(t) = Q((t,∞), δ = k) for k = 1, 2, 3. Let SX = 1 − FX , SY = 1 − FY , and
SZ = 1 − FZ . By Chang and Yang (1987), We can write

Q1(t) = −
∫ ∞

t

(
SY (u) − SZ(u)

)
dSX(u),

Q2(t) = −
∫ ∞

t
SX(u)dSY (u), (2.1)

Q3(t) = −
∫ ∞

t

(
1 − SX(u)

)
dSZ(u).

Let U be the map from S = (SX , SY , SZ) to Q = (Q1, Q2, Q3) given at (2.1).
And write V = U−1. The explicit form of the V is not known, from (2.1), one
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can show

SX(t) = Q·(t) −
∫

u≤t

SX(t)
SX(u)

dQ2(u)

+
∫

t<u

1 − SX(t)
1 − SX(u)

dQ3(u), (2.2)

SY (t) = 1 +
∫ t

0

dQ2(u)
SX(u)

,

SZ(t) = −
∫ ∞

t

dQ3(u)
1 − SX(u)

,

where Q·(t) =
∑3

k=1 Qk(t). The SCE of SX is computed by using (2.2) iteratively.
In the indirect approach, once LQ(Q|Dn) is obtained, theoretically the posterior
of FX can be obtained as LI(S|Dn) = LQ(V (Q)|Dn).

3. Equivalence of the Two Approaches

Let β1(·) = α(·) and β2([0,∞)) = β3([0,∞)) = 0. In this section, we show
that the posterior of SX of the indirect approach is well-defined by proving that a
measurable version of U−1 exists, and then prove that the posterior distributions
of FX of the two Bayesian approaches are the same. Throughout this section, we
assume that

{Wi : δi = 1} ∩ {Wi : δi 6= 1} = ∅. (3.1)

3.1. Existence of U−1

Let Q be the set of probability measures on [0,∞)×{1, 2, 3}. Since any Q ∈ Q
can be identified by Q, without loss of generality, we let Q = Q1×Q2×Q3 where
Qk = {Qk : Q ∈ Q} and consider Q as a subspace of D3[0,∞). Let DI be the
set of nonincreasing nonnegative right continuous functions on [0,∞) which are
bounded by 1 and have left limits. Note that DI is also thought to be a subspace
of D[0,∞).

For any subspace S of D3[0,∞), we let BS be the Borel σ-field on D3[0,∞)
(with respect to the Skorohod topology) restricted to S. The question addressed
in this subsection is whether U defines an inverse V, a measurable mapping from
(Q,BQ) to (D3

I ,BD3
I
). There are three difficulties: it is not clear that (2.1) has

a solution for all Q ∈ Q; if exists, the solution may not be unique (see Gu and
Zhang (1993) and Mykland and Ren (1996) for examples); the measurability is
by no means obvious. Measurability is important for our purpose since we have
to derive the posterior of SX from the posterior of Q. In this subsection, we show
that, for given data Dn, there exists a measurable mapping V from (Q,BQ) to
(D3

I ,BD3
I
), that satisfies (2.1) with probability 1 with respect to LQ(·|Dn).
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Our strategy is to construct a measurable subset Q0 of Q with LQ(Q0|Dn) =
1 such that (2.1) has a unique solution in Q0 and the induced mapping is mea-
surable from (Q,BQ) to (D3

I ,BD3
I
). Then, since Q0 is measurable, we can easily

extend this mapping from Q0 to Q.
Let Ψ2 = {u1 < · · · < un2} = {Wi : δi = 2} and Ψ3 = {v1 < · · · < vn3} =

{Wi : δi = 3}. Let Ψ23 = Ψ2 ∪ Ψ3 = {0 = z0 < z1 < z2 < · · · < zn23 <

zn23+1 = ∞}. Let Q01 be the set of nonincreasing nonnegative right continuous
step functions Q1 on [0,∞) such that Q1(zk)−Q1(zk−1) > 0 and ∆Q1(zk) = 0 for
k = 1, . . . , n23+1. Here we use the term step function to represent functions that
can have countably many jumps and are constant between jumps. Let Q0k be the
sets of nonincreasing nonnegative right continuous step functions on [0,∞) such
that they have jumps only at Ψk for k = 2, 3. Now we let Q0 = Q01 ×Q02 ×Q03.

In Kim (2007), we proved that Q0 is a measurable subset of Q. Since α has
support on [0,∞), it is well known from the property of the Dirichlet process
that LQ(Q0|Dn) = 1. Theorem 1 proves that (2.1) has a unique solution on Q0.
From now on, we use S = (SX , SY , SZ) and S = (S1, S2, S3) interchangeably
when there is no confusion.

Theorem 1. For any Q ∈ Q0, (2.1) has a unique solution in D3
I .

Proof. First, we show that (2.1) has a solution in D3
I . For given Q ∈ Q0,

suppose that Q1 has only finitely many jumps at 0 < x1 < · · · < xk < ∞. We
can prove the existence of a solution of (2.1) by modifying the proof of Theorem
6 in Mykland and Ren (1996). See Kim (2007) for details.

For general Q ∈ Q0, we can find a sequence of Qn ∈ Q0 such that each
member has only finitely many jumps, and supt∈[0,∞) |Qnk(t) − Qk(t)| → 0 as
n → ∞ for k = 1, 2, 3. For instance, set Qn2 = Q2 and Qn3 = Q3. As for Q1,
choose tk in (zk−1, zk) for k = 1, . . . , n23 + 1 such that ∆Q1(tk) > 0, and let
An = {t : ∆Q1(t) ≥ 1/n} ∪ {t1, . . . , tn23+1}. Since An has only finite number of
elements, we write An = {0 = v0 < v1 < v2 < · · · < vl < v∞}. Let Qn1(t) =
1 −

∑l
j=1 wjI(vj ≤ t), where wj = Q1(vj−1) − Q1(vj) for j = 1, . . . , l − 1, and

wl = Q1(vl−1). Then it is easy to show that supt∈[0,∞) |Qn1(t) − Q1(t)| → 0 as
n → ∞.

For given Qn, let Sn be a solution of (2.1). Since the Sn are uniformly
bounded and nonincreasing functions, Helly’s Selection Theorem implies that
there is a subsequence Snk

such that Snk converges pointwise to S ∈ D3. Since
Snk2 and Snk3 have jumps only at Ψ2 and Ψ3, respectively, they converge to S2

and S3 uniformly. Since Qnk1 converges uniformly to Q1, the first equation of
(2.1) implies that Snk1 converges to S1 uniformly. Hence, S1 is a solution of the
first equation of (2.2) and S is a solution of (2.1).
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For proving the uniqueness of the solution, we can use Theorem 3.2 of Chang
and Yang (1987). Who assumed that S2 and S3 are continuous, the proof of their
theorem 3.2 can be modified for our problem, see Kim (2007) for details.

Finally, in Kim (2007), we proved that the mapping from (Q,BQ) to (D3
I ,

BD3
I
) induced by (2.1) is measurable.

3.2. Equivalence of the two posteriors

In this subsection, we show that the posterior distributions of SX from the
direct and indirect approaches are the same, i.e., LI(SX |Dn) = LD(SX |Dn).
Recall that β1 = α, and that β2 and β3 are null measures.

For our purpose, it suffices to show that, for any 0 < t1 < · · · < tk < ∞,

LD(SX(t1), SX(t2), . . . , SX(tk)|Dn) = LI(SX(t1), SX(t2), . . . , SX(tk)|Dn). (3.2)

Let Ψ1 = {t1, . . . , tk} ∪ Ψ2 ∪ Ψ3 ∪ {0,∞} = {0 = x0 < · · · < xm+1 = ∞}. Let
Fi = SX(xi−1) − SX(xi) for i = 1, . . . ,m + 1. Then, (3.2) will hold if

LD(F|Dn) = LI(F|Dn),

where F = (F1, . . . , Fm+1).
First consider LD(F|Dn). Let Dn1 = {(Wi, δi) : δi = 1}. Let θi =

α((xi−1, xi]) +
∑n

k=1 I(Wk ∈ (xi−1, xi], δi = 1), i = 1, . . . ,m, θm+1 = α((xm,
xm+1)) +

∑n
k=1 I(Wk ∈ (xi, xm+1), δi = 1), φi =

∑n
k=1 I(Wk = yi, δk = 2),

i = 1, . . . , n2, and ψi =
∑n

k=1 I(Wk = zi, δk = 3), i = 1, . . . , n3. Then we can
write

LD(F|Dn) ∝
n2∏
i=1

(
1 −

∑
k:xk>yi

Fk

)φi n3∏
i=1

( ∑
k:xk≤zi

Fk

)ψi

× LD(F|D1)

∝
n2∏
i=1

(
1 −

∑
k:xk>yi

Fk

)φi n3∏
i=1

( ∑
k:xk≤zi

Fk

)ψi m+1∏
i=1

F θi−1
i

×I

( m+1∑
i=1

Fi = 1
)

, (3.3)

because LD(FX |Dn1) is the Dirichlet process with the base measure α(·)+∑n
k=1 I(Wi ∈ ·, δi = 1). The next theorem proves that LI(F|Dn) is also pro-

portional to (3.3).

Theorem 2. Suppose (3.1) holds. Then

LI(F|Dn) ∝
n2∏
i=1

(
1 −

∑
k:xk>yi

Fk

)φi n3∏
i=1

( ∑
k:xk≤zi

Fk

)ψi m+1∏
i=1

F θi−1
i I

( m+1∑
i=1

Fi = 1
)

.
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Proof. Let di = Q1(xi−1) − Q1(xi), i = 1, . . . ,m + 1, ei = −∆Q2(yi), i =
1, . . . , n2, and fi = −∆Q3(zi), i = 1, . . . , n3. Then we have LI(d, e, f |Dn) ∼
Dirichlet(θ,φ, ψ), where d = (d1, . . . , dm+1), e = (e1, . . . , en2) ,f = (f1, . . . , fn3),
θ = (θ1, . . . , θm+1), φ = (φ1, . . . , φn2), and ψ = (ψ1, . . . , ψn3).

Let ai = SX(xi−1)− SX(xi), i = 1, . . . ,m + 1, bi = −∆SY (yi), i = 1, . . . , n2,
and ci = −∆SZ(zi), i = 1, . . . , n3. Also, let bn2+1 = SY (∞), yn2+1 = ∞, and
c0 = 1 − SZ(0), z0 = 0. Then (2.1) and (3.1) imply that

di =
{ ∑

k:zk>xi

ck −
∑

k:yk>xi

bk

}
ai i = 1, . . . ,m,

ei =
(

1 −
∑

k:xk≤yi

ak

)
bi i = 1, . . . , n2, (3.4)

fi =
( ∑

k:xk≤zi

ak

)
ci i = 1, . . . , n3,

with am+1 = 1−
∑m

i=1 ai, bn2+1 = 1−
∑n2

i=1 bi and c0 = 1−
∑n3

i=1 ci. The variable
transformation technique yields that

LI(a,b, c|Dn) ∝
m+1∏
i=1

aθi−1
i

n2∏
i=1

(
1 −

∑
k:xk≤yi

ak

)φi−1 n3∏
i=1

( ∑
k:xk≤zi

ak

)ψi−1

×
m+1∏
i=1

{ ∑
k:zk>xi

ck −
∑

k:yk>xi

bk

}θi−1 n2∏
i=1

bφi−1
i

n3∏
i=1

cψi−1
i

×I

( m+1∑
i=1

ai = 1
)
|J |,

where a = (a1, . . . , am+1), b = (b1, . . . , bn2), c = (c1, . . . , cn3), and |J | is the
Jacobian. Note that F = a. By Lemma 1 in the Appendix,

|J | =
n2∏
i=1

(
1 −

∑
k:xk≤yi

ak

) n3∏
i=1

( ∑
k:xk≤zi

ak

) m∏
i=1

{ ∑
k:zk<xi

ck −
∑

k:yk<xi

bk

}
.

Hence we conclude that a and (b, c) are independent and the distribution of
LI(a|Dn) is the same as that of LD(F|Dn), as required.

4. The Main Theorem

In this section, we prove the Bernstein-von Mises theorem for the posterior
distribution of SX ; that is, we show that the posterior distribution of SX centered
by the NPMLE and scaled by

√
n is asymptotically equivalent to the asymptotic

sampling distribution of the NPMLE.
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Throughout the remainder of the paper, the following conditions are assumed
to hold.

A1. The random variables Xi and (Yi, Zi) are independent for i = 1, . . . , n, with
true survival functions S0

X and (S0
Y , S0

Z), respectively.

A2. Pr(Z ≤ Y ) = 1.

A3. S0
Y (t) − S0

Z(t) > 0 on (0,∞).

A4. S0
X , S0

Y and S0
Z are continuous functions of t, on t ≥ 0, and 0 < S0

X(t) < 1
for t > 0.

A5. S0
X(0) = S0

Y (0) = 1, S0
X(∞) = S0

Y (∞) = S0
Z(∞) = 0.

A6. There exist δ and T , 0 < δ < T < ∞, such that S0
Z(t) = constant < 1

on [0, δ] and S0
Z(T ) = 0, i.e., Pr(Z = 0) > 0, Pr(Z ∈ (0, δ)) = 0 and

Pr(Z ≤ T ) = 1.

These assumptions have been made by Chang (1990) to estabilish weak con-
vergence of the SCE. Milder conditions for the weak convergence of the NPMLE,
introduced by Gu and Zhang (1993), could also be used for our purpose; we
choose the former for simplicity.

Let Sn
X be the NPMLE of SX for given Dn. Under A1 to A6, Chang (1990)

proved that
√

n(Sn
X − S0

X) d→ W

for some Gaussian process W on D[0, T ]. The specifies of W can be found in
Chang (1990). A Bernstein-von Mises theorem for doubly censored data is given
now.

Theorem 3. Suppose that Dn consists of i.i.d. samples of (Wi, δi) from (S0
X ,

S0
Y , S0

Z). Then

LD(
√

n(SX − Sn
X)|Dn) d→ W

on D[0, T ] in probability with respect to Pn, where Pn is the probability measure
of Dn.

Before proving the main theorem, we clarify the definition of weak conver-
gence in probability. Let X be a Polish space (complete separable metric space),
let Pn be random probability measures on X , and P be a probability measure
on X . By Pn

d→ P in probability, we mean that for any bounded continuous
function f on X ,

∫
fdPn converges to

∫
fdP in probability. Since the space of

probability measures on a Polish space is metrizable (see, for example, Stroock
and Varadhan (1979)), we can define weak convergence in probability by asking
that dw(Pn, P ) converge to 0 in probability, where dw is a metric on the space
of probability measures induced by the weak convergence. Since the space of
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bounded continuous functions on a Polish space is separable, the two definitions
are equivalent.

Proof of Theorem 3. Let Q0 = (Q0
1, Q

0
2, Q

0
3) be the true sampling distribution

of (Wi, δi), and Qn be the empirical version of Q0; that is, Qn
k(t) =

∑n
i=1 I(Wi >

t, δi = k)/n for k = 1, 2, 3. It is well known that
√

n(Qn −Q0) d→ B, where B is
the corresponding Browninan bridge on D3[0, T ]. For given Qn, let LI(·|Qn) be
a probability measure on D3 induced by the Dirichlet process with base measure
βp(·) = β(·) + nQn(·). It suffices to show that

LI(
√

n(SX − Sn
X)|Qn) d→ W

in probability with respect to Pn.
Let un =

√
n(S − Sn)

′
, qn =

√
n(Q − Qn)

′
,

θn =
1√
n

(
−

∫ t

0

un
2 − un

3

Sn
Y − Sn

Z

dun
1 ,−

∫ t

0

un
1

Sn
X

dun
2 ,−

∫ T

t

un
1

1 − Sn
X

dun
3

)′

,

αn =
(
−

∫ t

0

dqn
1

Sn
Y − Sn

Z

,−
∫ t

0

dqn
2

Sn
X

,

∫ T

t

dqn
3

1 − Sn
X

)′

,

µn(ds) = −diag(dSn
X(s), dSn

Y (s), dSn
Z(s))

and kn(t, s) be a 3 × 3 matrix with elements kn
11 = kn

22 = kn
23 = kn

32 = kn
33 = 0,

kn
13 = −kn

12, And

kn
12(t, s) =

I(0 < s < t)
Sn

Y (s) − Sn
Z(s)

,

kn
21(t, s) =

I(0 < s < t)
Sn

X(s)
,

kn
31(t, s) =

I(t < s < T )
1 − Sn

X(s)
.

Then, as at (12) in Chang (1990), we have

(I − Kn)un = αn + θn, (4.1)

where I is the identity operator, and the operator Kn is defined as

Knu =
∫ T

0
µn(ds)kn(·, s)u(s).

Let K be the operator defined similarly to Kn but with Sn replaced by S0. Then,
(4.1) can be rewritten as

(I − K)un = αn + θn + (Kn − K)un. (4.2)
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Chang (1990) proved that there exists a resolvent kernel matrix Γ such that
each element is a bounded measurable functions on [0, T ] × [0, T ], and un =
(I + Γ)(αn + θn + (Kn − K)un), where

Γa =
∫ T

0
µ(ds)Γ(·, s)a(s)

and µ(s) is a matrix similar to µn but with Sn replaced by S0.
By a slight modification of Lo (1987), we have that

LI(
√

n(Q− Qn)|Qn) d→ B (4.3)

on D3[0, T ] with probability 1. Since Sn → S0 uniformly on [0, T ]3 with probabil-
ity 1 (see Theorem 4.2 of Chang and Yang (1987)), (4.3) implies that LI(αn|Qn)
converges weakly to a Gaussian process with probability 1, the weak limit of the
sampling distribution of αn

0 , where αn
0 is defined as was αn, except that Q and

Qn are replaced by Qn and Q0, respectively. Since the sampling distribution
of the first component of (I + Γ)αn

0 converges weakly to W on D[0, T ] (Chang
(1990)), the proof would be complete if we could show that for any ε > 0,
LI(|θn| > ε|Qn) → 0 and LI(|(K − Kn)un| > ε|Qn) → 0 in probability with
respect to Pn.

By the Skorohod Representation Theorem (Pollard (1987)), without loss of
generality we can assume that

√
n(Qn − Q0) → B (4.4)

on D[0, T ]3 with Probability 1. From now on, we assume that a sequence of {Qn},
for which

√
n(Qn − Q0) converges uniformly to a continuous function on [0, T ]3

and (4.3) holds, is given. By the application of the Skorohod Representation
Theorem, we can assume that there exist a sequence of random functions {Qn∗}
such that

√
n(Qn∗−Qn) converges to B with Probability 1, and Qn∗ ∼ LI(·|Qn).

Then, it suffices to show that (K −Kn)un and θn obtained from Qn∗, instead of
from Q, converge to 0 with probability 1. Note that Qn∗ − Qn converges to 0
uniformly on [0, T ] with Probability 1, and so that Sn∗ − Sn also converges to 0
uniformly on [0, T ] with Probability 1.

First, consider (K−Kn)un = (Zn
1 , Zn

2 , Zn
3 )

′
, say. We prove that Zn

1 converges
uniformly to 0 on [0, T ]. The convergence of Zn

2 and Zn
3 can be proved similarly.

We can write

Zn
1 (t) =

∫ t

0
(un

2 − un
3 )

(
dSn

X

Sn
Y − Sn

Z

−
dS0

X

S0
Y − S0

Z

)
=

∫ t

0

[
(Sn∗

Y −Sn∗
Y ) − (Sn∗

Z −Sn
Z)

]√
n

(
1

Sn
Y −Sn

Z

− 1
S0

Y −S0
Z

)
dSn

X (4.5)

+
∫ t

0
(un

2 − un
3 )

d(Sn
X − S0

X)
S0

Y − S0
Z

. (4.6)
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Since
√

n(Sn − S0) converges to a continuous function, so does

√
n

(
1

Sn
Y − Sn

Z

− 1
S0

Y − S0
Z

)
.

Since (Sn∗
Y − Sn

Y ) − (Sn∗
Z − Sn

Z) converges to 0 uniformly with Probability 1 and
Sn

X converges to S0
X uniformly, we conclude that (4.5) converges to 0 uniformly

with Probability 1. For (4.6), integration by part yields

(4.6) =
(Sn∗

Y (t) − Sn
Y (t)) − (Sn∗

Z (t) − Sn
Z(t))

S0
Y (t) − S0

Z(t)
√

n(Sn
X(t) − S0

X(t))

+
∫ t

0

(Sn∗
Y (t) − Sn

Y (t)) − (Sn∗
Z (t) − Sn

Z(t))
(S0

Y (t) − S0
Z(t))2

√
n(Sn

X − S0
X)d(S0

Y − S0
Z)

−
∫ t

0

√
n(Sn

X − S0
X)

S0
Y − S0

Z

[
d(Sn∗

Y − Sn
Y ) − d(Sn∗

Z − Sn
Z)

]
.

The first term on the right side of the above equation clearly converges uniformly
to 0, and the second term converges uniformly to 0 because the integrand does.
The third term also converges uniformly to 0 since the integrand converges uni-
formly to a continuous function and the integrator converges to 0 uniformly with
Probability 1.

The uniform convergence of θn to 0 in probability can be proved similarly as
was Lemma 3.3 of Chang (1990) with Qn∗, and so the proof is done.

5. Simulation

In this section, we present simulation results to evaluate the true coverage
probability of the Bayesian probability interval. Survival times X were generated
from Exp(100) — the exponential distribution with mean 100. The left and
right censoring variables (Z, Y ) were generated by (Z, Y ) = (Z,Z + W ), where
Z ∼ Exp(10) and W ∼ Exp(140) and Z and W are independent. Under this
model, the censoring probability is about 48%, of which 38% is due to right
censoring and 10% due to left censoring. For each of four sample sizes n =
20, 50, 100 and 200, we generated 1,000 data sets, and calculated the empirical
coverage probabilities of the Bayesian probability interval of F at times t =
50, 100, 150, 200. The empirical coverage probability is the proportion of the
data sets having the probability intervals including the true parameter value.
The posteriors are calculated by the MCMC algorithm of Doss (1994) with 10,000
iterations, of which the first 1,000 iterations are discarded as burn-in. For the
base measure of the Dirichlet process prior, we set α[0, t] = 1 − exp(−t).

Simulation results are presented in Figure 5.1. The thee solid lines represent
the nominal coverage probability 0.9 and two standard errors, 2

√
0.9 · 0.1/1, 000 =
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Figure 5.1. Empirical coverage probabilities of the Bayesian credible sets for
SX(t) at t = 50, 100, 150, 200 with nominal level 90%. The three solid lines
represent the nominal level and two standard errors from it. The dots are
the empirical coverage probabilities.

0.0190, away from it. For t = 100 (the mean survival time), the coverage prob-
ability of the probability interval is very close to the nominal level when the
sample size is small (i.e., n = 20). In contrast, for t = 200, the coverage proba-
bility is not close to the nominal level when n = 200. Based on these results, we
conclude that the posterior distribution is a good approximation of the sampling
distribution of the MLE for most time points, unless the sample size is too small
and a time point is too large.
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A. Appendix

Lemma 1.

|J | =
n2∏
i=1

(
1 −

∑
k:xk≤yi

ak

) n3∏
i=1

( ∑
k:xk≤zi

ak

) m∏
i=1

{ ∑
k:zk<xi

ck −
∑

k:ykxi

bk

}
.
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Proof. Write

J =

J11 J12 J13

J21 J22 J23

J31 J32 J33


where

J11 =


dd1
da1

· · · dd1
dam

...
. . .

...
ddm
da1

· · · ddm
dam

 ,

J22 =


de1
db1

· · · de1
dbn2

...
. . .

...
den2
db1

· · · den2
dbn2

 ,

J33 =


df1

dc1
· · · df1

dcn3
...

. . .
...

dfn3
dc1

· · · dfn3
dcn3

 ,

and Jij , i 6= j are defined accordingly. Note that Jii, i = 1, 2, 3 are diagonal
matrices.

Let gij be the (i, j)th element of J , and let N = m + n2 + n3. Let I1 =
{1, . . . ,m}, I2 = {m + 1, . . . ,m + n2}, and I3 = {m + n2 + 1, . . . , N}. Let Π be
the set of all permutations of {1, . . . , N}. Now

|J | =
∑
π∈Π

(±)g1π(1)g2π(2) · · · gNπ(N),

where (±) is either +1 or −1 depending on the permutation π.
Note that

N∏
i=1

gii =
n2∏
i=1

(
1 −

∑
k:xk≤yi

ak

) n3∏
i=1

( ∑
k:xk≤zi

ak

) m∏
i=1

{ ∑
k:zk<xi

ck −
∑

k:yk<xi

bk

}
.

We prove that for any permutation π ∈ Π,
∏N

i=1 giπ(i) = 0 unless π(i) = i for all
i = 1, . . . , N.

For a given permutation π, suppose
∏N

i=1 giπ(i) 6= 0. Let B = {i : π(i) 6= i}.
And k be the smallest element in B∩I1. Then, in order that

∏N
i=1 giπ(i) 6= 0, π(k)

should be either in I2 or I3 because J11 is a diagonal matrix. Suppose further
that π(k) ∈ I2. Then, direct calculation with the first equation of (3.4) yields
that gk,π(k) 6= 0 only if

xk > yπ(k)−m. (A.1)
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Next, note that π(k) ∈ B. Consider π(π(k)). Since J23 and J32 are zero matrices
and J22 is a diagonal matrix, π(π(k)) should be in I1. However, gπ(k),π(π(k)) 6= 0
only if

xπ(π(k)) ≤ yπ(k)−m (A.2)

from the second equation of (3.4). Hence, from (A.1) and (A.2), we conclude
that π(π(k)) < k, which is impossible since π(π(k)) ∈ B∩ I1 and k is assumed to
be the smallest element in B ∩ I1. Similarly, we can prove that it is impossible
that π(k) ∈ I3. Hence, we conclude that I1 ∩ B = ∅.

Next, suppose that k ∈ I2. Then gk,π(k) = 0 unless π(k) ∈ I1. However,
π(k) 6∈ I1 since π(k) is also in B. Hence, I2 ∩B = ∅. Similarly, we can show that
I3 ∩ B = ∅. Therefore, we conclude that B is the empty set and the proof is
complete.

References

Cai, T and Cheng, S. (2004). Semiparametric regression analysis for doubly censored data.

Biometrika 91, 277-290.

Chang, M. N. (1990). Weak convergence of a self-consistent estimator of the survival function

with doubly censored data. Ann. Statist. 81, 391-404.

Chang, M. N. and Yang, G. L. (1987). Strong consistency of a nonparametric estimator of the

survival function with doubly censored data. Ann. Statist. 15, 1536-1547.

Conti, P. L. (1999). Large sample Bayesian analysis for Geo/G/1 discrete-time queueing models.

Ann. Statist. 27, 1785-1807.

Doss, H. (1994). Bayesian nonparametric estimation for incomplete data via successive substi-

tution sampling. Ann. Statist. 22, 1763-1786.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1,

209-230.

Freedman, D. (1999). On the Bernstein-von Mises theorem with infinite-dimensional parameters.

Ann. Statist. 27, 1119-1140.

Gehan, E. A. (1965). A generalized two-sample Wilcoxon test for doubly censored data.

Biometrika 52, 650-653.

Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparanetrics. Springer, New York.

Gu, M. G. and Zhang, C. H. (1993). Asymptotic properties of self-consistent estimators based

on doubly censored data. Ann. Statist., 21, 611-624.

Kim, Y. (2006). The Bernstein-von Mises theorem for the proportional hazard model. Ann.

Statist. 34, 1678-1700.

Kim, Y. (2007). Supplements for A Bernstein-von Mises theorem in the non-parametric right-

censoring model. Preprint.

Kim, Y. and Lee, J. (2001). On posterior consistency of survival models. Ann. Statist. 29, 666-

686.

Kim, Y. and Lee, J. (2004). A Bernstein-von Mises theorem in the non-parametric right-

censoring model. Ann. Statist., 32, 1492-1512.

Lo, A. Y. (1983). Weak convergence for Dirichlet processes. Sankhyā 45, 105-111.
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