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Abstract: We propose a boosting method, multivariate L2Boosting, for multivari-

ate linear regression based on some squared error loss for multivariate data. It

can be applied to multivariate linear regression with continuous responses and to

vector autoregressive time series. We prove, for i.i.d. as well as time series data,

that multivariate L2Boosting can consistently recover sparse high-dimensional mul-

tivariate linear functions, even when the number of predictor variables pn and

the dimension of the response qn grow almost exponentially with sample size n,

pn = qn = O(exp(Cn1−ξ)) (0 < ξ < 1, 0 < C < ∞), but the `1-norm of the true

underlying function is finite. Our theory seems to be among the first to address

the issue of large dimension of the response variable; the relevance of such settings

is briefly outlined. We also identify empirically some cases where our multivari-

ate L2Boosting is better than multiple application of univariate methods to single

response components, thus demonstrating that the multivariate approach can be

very useful.

Key words and phrases: High-multivariate high-dimensional linear regression,

L2Boosting, vector AR time series.

1. Introduction

Boosting was originally proposed as an ensemble scheme for classification

(AdaBoost by Freund and Schapire (1996)), and has attracted a lot of attention

both in the machine learning and statistics literature, mainly because of its suc-

cess as an excellent prediction method in numerous examples. The pioneering

work by Breiman (1998, 1999) demonstrated that the AdaBoost ensemble method

can be represented as a gradient descent approximation in function space, see also

Friedman, Hastie and Tibshirani (2000). This has opened new possibilities for

better understanding, and new versions of boosting. In particular, such gradient

descent methods can be applied to different loss functions, each yielding another

boosting algorithm. L2Boosting which uses the squared error loss (L2-loss) has

been demonstrated to be a powerful method for univariate regression (Friedman

(2001), Bühlmann and Yu (2003) and Bühlmann (2004)).

We propose here a boosting method with some squared error loss (Gaussian

negative log-likelihood) for multivariate data, called multivariate L2Boosting.

We restrict ourselves to linear models (linear basis expansions). They can be
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very high-dimensional in terms of the response or predictor dimension, and we
allow for seemingly unrelated regressions (SUR; Zellner (1962, 1963)) where each
response may have another design matrix (other predictor variables). The SUR
model is more general than the multivariate setting where each covariate has
an influence on all response variables. Our multivariate L2Boosting takes po-
tential correlations among the components of the multivariate error-noise into
consideration, that is, we account for the fact that the responses are still exhibit-
ing conditional dependence given all the predictor variables. We prove that our
boosting method is able to consistently recover sparse high-dimensional multi-
variate functions, even when the number of predictor variables pn and the di-
mension of the response qn grow almost exponentially with sample size n, i.e.,
pn = qn = O(exp(Cn1−ξ)) (0 < ξ < 1, 0 < C < ∞). The mathematical argu-
ments extend the analysis for boosting for high-dimensional univariate regression
(Bühlmann (2004)). Our theory seems to be among the first for the setting of
large dimension of the response (for its practical relevance, see below).

We also demonstrate the use of our multivariate L2Boosting for multivari-
ate, qn-dimensional time series {x(t)}t∈{1,...,n}, where qn can grow as fast as any
polynomial in the sample size n. We prove a consistency result for stationary,
linear processes which are representable as a sparse vector autoregressive model
of order ∞.

From a theoretical perspective it is interesting how far we can go with dimen-
sionality when the true underlying structure is sparse. From a practical point
of view, there are many applications nowadays with large predictor dimension p,
notably a broad variety of data mining problems belong to this setting. There
are also some applications where q is very large. We mention multi-category
classification with a huge number of categories − in Kriegel, Kroger, Pryakhin
and Schubert (2004), the categories are subsets of functions from gene ontol-
ogy (see also Remark 1 in Section 4). Another application is briefly outlined in
Section 4.1. In the context of time series, some graphical modelling for many
stochastic processes falls into our setting of q-dimensional linear time series, e.g
the partial correlation graph (cf., Dahlhaus and Eichler (2003)).

Besides presenting some theory, we also empirically identify some cases where
our multivariate L2Boosting is better than methods based on individual esti-
mation − we compare with individual univariate L2Boosting and with another
L2Boosting method in a multivariate regression model where every predictor
variable either influences all or none of the response components. Some data sets
are analyzed as well.

2. Multivariate Linear Regression

We consider the multivariate linear regression model with n observations

of a q-dimensional response and a p-dimensional predictor (for more detailed
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information, see for example Timm (2002)). In matrix notation,

Y = XB + E, (2.1)

with Y ∈ R
n×q, X ∈ R

n×p, B ∈ R
p×q and E ∈ R

n×q. We denote by y(i) the

response of the ith sample point (row-vector of Y), and by yk the kth response-

variable for all sample points (column-vector of Y). For each yk (k = 1, . . . , q) we

have a univariate regression model with the predictor matrix X and the coefficient

vector bk. For the row-vectors e(i) (i = 1, . . . , n) of the error matrix, we assume

e(i) i.i.d., E[e(i)] = 0 and Cov(e(i)) = Σ. Additionally, we assume w.l.o.g. that

all covariates and responses are centered to have mean zero, so we need not worry

about intercepts.

The ordinary least squares estimator (OLS) of B is given by, assuming X is

of full rank p,

B̂OLS = (XTX)−1XTY, (2.2)

and is nothing else than the OLS’s of the q univariate regressions. In particular,

it is independent of Σ.

To test whether a covariate has a significant influence on the multivariate

response we can use Wilk’s Λ, which is derived from the likelihood ratio test.

For an overall test with null-hypothesis H0 : B = 0 we compare the empirical

covariance matrix of the residuals to the one from the responses:

Λ =
|(Y −XB̂OLS)T (Y −XB̂OLS)|

|YTY|
,

where | · | denotes the determinant of a matrix. We reject the null hypothesis H0

if Λ is smaller than a critical value.

2.1. Forward stepwise variable selection

As with univariate regression, we can define a multivariate forward stepwise

variable selection algorithm in a straightforward manner: start with the empty

model and add in each step the most significant covariate according to Wilk’s Λ.

Notice that in each step the entries of a whole row b(j) of B are changed from

zero to non-zero by using OLS on the reduced space of all included covariates.

Therefore, this approach is not suited for the SUR model where a covariate may

only have an effect on some but not all components of the response.

3. L2 Boosting for Multivariate Linear Regression

For constructing a boosting algorithm, we define a loss function and a base

procedure (simple fitting method). The latter is usually called a “weak learner”
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in the machine learning community: it is an estimator which is repeatedly used

in boosting.

3.1. The loss function

Regarding the loss function, we use the negative Gaussian log-likelihood as

a starting point:

−l(B,Σ) = − log((2Π)
nq

2 |Σ|
n
2 ) +

1

2

n
∑

i=1

(yT
(i) − xT

(i)B)Σ−1(yT
(i) − xT

(i)B)T .

The maximum likelihood estimator of B coincides with the OLS solution in

(2.2) and is therefore independent of Σ. The covariance matrix Σ only becomes

relevant in the seemingly unrelated regressions (SUR) model when there are

covariates that influence only a few components of the response.

Because Σ is usually unknown, we use the loss function

L(B) =
1

2

n
∑

i=1

(yT
(i) − xT

(i)B)Γ−1(yT
(i) − xT

(i)B)T , (3.1)

where Γ is the implementing covariance matrix. We may use for it an estimate

of Σ (e.g., from another model-fit such as univariate boosting for each response

separately) or we can choose something simpler, e.g., Γ = I (in particular if q is

large, see also Remark 2). The choice for Γ will show up again in our Theorem 1

in Section 4 (and Theorem 2 in Section 5); there it becomes clear that Γ = I can

be a reasonable choice.

3.2. The componentwise linear least squares base procedure

We specify the base procedure that will be repeatedly used in boosting.

Given is the design matrix X and a pseudo-response matrix R ∈ R
n×q (which is

not necessarily equal to Y).

We focus exclusively on what we call the componentwise linear least squares

base learner. It fits the linear least squares regression with one selected covariate

(column of X) and one selected pseudo-response (column of R) so that the loss

function in (3.1), with R instead of Y, is reduced most. Thus, the base procedure

fits one selected matrix element of B:

(ŝt̂) = argmin
1≤j≤p,1≤k≤q

{L(B);Bjk = β̂jk, Buv = 0 (uv 6= jk)}

= argmax
1≤j≤p,1≤k≤q

(
∑q

v=1 rT
v xjΓ

−1
vk

)2

xT
j xjΓ

−1
kk

,
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β̂jk =

∑q
v=1 rT

v xjΓ
−1
vk

xT
j xjΓ

−1
kk

,

B̂ŝt̂ = β̂ŝt̂, B̂jk = 0, (jk) 6= (ŝt̂). (3.2)

Corresponding to the parameter estimate, there is a function estimate ĝ(·) :

R
p → R

q defined as follows. For x = (x1, . . . , xp),

(ĝ)`(x) =

{

β̂ŝt̂xŝ if ` = t̂,

0 if ` 6= t̂,
` = 1, . . . , q.

From (3.2) we see that the coefficient β̂jk is not only influenced by the kth

response but also by other response-components, depending on the partial cor-

relations of the errors (via Γ−1 if Γ is a reasonable estimate of Σ) and by the

correlations of the other response-components with the jth covariate (i.e., rT
v xj).

3.3. The boosting algorithm

The base learner is fitted many times to different pseudo-responses R and the

function estimates are added up as described by the algorithm below. We build

the multivariate regression function f̂ : R
p → R

q step by step, where f̂(x) = B̂Tx.

Multivariate L2 Boosting with componentwise linear least squares

Step 1 (initialization): f̂
(0)
k (·) ≡ 0, k = 1, . . . , q. Set m = 1.

Step 2: Compute the current residuals r
(m)
(i) = y(i) − f̂ (m−1)(x(i)) (i = 1, . . . , n)

and fit the base learner to them as in (3.2). The fit is denoted by ĝ(m)(·).

Update f̂ (m)(·) = f̂ (m−1)(·) + ĝ(m)(·).

Step 3 (iteration): Increase the iteration index m by one and go back to Step 2

until a stopping iteration mstop is met.

Multivariate L2Boosting is thus iteratively fitting of residuals where, in each

step, we change only one entry of B. Also, every iteration m corresponds to an

estimate B̂(m) with f̂ (m)(x) = (B̂(m))Tx. The estimate f̂ (mstop)(·) is an estimator

of the multivariate regression function E[y|x = ·].

It is often better to use some shrinkage in Step 2; this has been first recog-

nized by Friedman (2001), and there are also some supporting theoretical argu-

ments for it (Efron, Hastie, Johnstone and Tibshirani (2004), Bühlmann and Yu

(2005)). We modify Step 2 to: f̂ (m)(·) = f̂ (m−1)(·) + ν · ĝ(m)(·), with ν < 1, for

example ν = 0.1. We then need more iterations but often achieve better out-of-

sample predictions. The boosting algorithm does depend on ν, but its choice is
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surprisingly insensitive as long as it is taken to be “small”. On the other hand,

the number of boosting iterations mstop is a much more crucial tuning parameter.

The computational complexity of the multivariate L2Boosting algorithm for

m iterations is O(npqm) if Γ is diagonal and O(npq2m) for arbitrary Γ.

3.4. Stopping the boosting iterations with the corrected AIC

The number of iterations mstop can be estimated by cross validation, a sepa-

rate validation set or by an internal AIC criterion. We pursue the latter because

of its computational attractiveness.

First we recall the definition of AIC for the multivariate linear regression

model. For d ≤ p covariates in a sub-model Md,

AIC(Md) = log(|Σ̂(Md)|) +
2qd

n
,

where Σ̂(Md) is the MLE of the error covariance-matrix. Note that we have a

total of q ·d parameters. In small samples, the corrected AIC (Hurvich and Tsai

(1989) and Bedrick and Tsai (1994)) is often a better model selection tool:

AICc(Md) = log(|Σ̂(Md)|) +
q(n + d)

n− d− q − 1
.

To apply AIC or AICc for boosting we have to determine the number of

parameters or degrees of freedom of boosting as a function of the number of

iterations. Clearly, the degrees of freedom of boosting increase as the number of

iterations grow, but this increase is heavily sub-linear (Bühlmann and Yu (2003)).

We first consider the hat-operator of the base learner in (3.2), mapping Y

to Ŷ = XB̂. After having selected the jth predictor and kth component of the

response, fitting is a linear operation which can be represented by a hat-matrix.

In the multivariate case, we stack the q responses y1, . . . ,yq end-to-end in a

vector of length nq (written as vec(Y)). The hat-matrix is then of dimension

nq × nq and, with the jth predictor and the kth response selected in the base

learner, it is of the form

H(jk) =





























0 0 . . . 0
...

...
...

0 0 . . . 0

Hj Γ−1

k1

Γ−1

kk

Hj Γ−1

k2

Γ−1

kk

. . . Hj Γ−1

kq

Γ−1

kk

0 0 . . . 0
...

...
...

0 0 . . . 0





























←− kth row,
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where each entry is a n × n matrix, the non-zero matrix-entries are at row k,

and Hj = xjx
T
j /xT

j xj is the hat-matrix of the univariate componentwise linear

learner using the jth predictor variable.

Due to the nature of iterative fitting of residuals, the hat-matrix of multi-

variate L2Boosting after m iterations is then (c.f., Bühlmann and Yu (2003) and

Bühlmann (2004))

Km = I− (I− νH(ŝm t̂m))(I− νH(ŝm−1 t̂m−1)) . . . (I− νH(ŝ1 t̂1)).

Here, (ŝm t̂m) denote the selected covariate and response-component from the

base learner in (3.2) in boosting iteration m. The computation of the hat-matrix

has a complexity of O(n2p + n3q2m) and is not feasible if n (and/or q) is large.

The trace of Km gives the number of degrees of freedom. For AICc we need

the degrees of freedom (number of equivalent parameters) per response variable;

thus, we divide the total number of degrees of freedom by q to get the average

number of degrees of freedom per response. For AIC and AICc for multivariate

L2Boosting, as functions of the number of iterations m, we get

AIC(m) = log(|Σ̂(m)|) +
2 · trace(Km)

n
,

AICc(m) = log(|Σ̂(m)|) +
q(n + trace(Km)

q )

n− trace(Km)
q − q − 1

,

where Σ̂(m) = n−1
∑n

i=1(y(i) − f̂ (m)(x(i)))(y(i) − f̂ (m)(x(i)))
T . The number of

boosting iterations is chosen to minimize AIC or AICc, respectively:

m̂stop = argmin
0≤m<M

AICc(m),

where M is a pre-specified large, upper bound for the candidate number of boost-

ing iterations.

3.5. L2 Boosting with whole rows of B

Multivariate L2Boosting changes only one entry of B at each step. This

might be suboptimal if we believe that a covariate either has some influence on

all response-components or no influence at all. It may then be better at each

step to update a whole row of B. This can also be done with a L2Boosting-type

algorithm, which we call “row-boosting”: we select in each step the covariate

which gives the best multivariate fit to the current residuals (according to Wilk’s

Λ) and add it to the multivariate function estimate. This algorithm is more

closely related to multivariate forward variable selection, see Section 2.1, with
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the difference that we do not adjust the coefficients of the covariates already

included in the model.

4. Consistency of Multivariate L2Boosting

We present a consistency result for multivariate L2Boosting in linear re-

gression where the number of predictors and the dimension of the response are

allowed to grow very fast as the sample size increases. Consider the model

y(i) = f(x(i)) + e(i), i = 1, . . . , n, y(i), e(i) ∈ R
qn , x(i) ∈ R

pn ,

f(x) = BT x, B ∈ R
pn×qn , (4.1)

x(i) i.i.d. and e(i) i.i.d., independent of {x(i); 1 ≤ i ≤ n}

with E[e(i)] = 0 and Cov(e(i)) = Σ.

Because pn and qn are allowed to grow with n, the predictors and the responses

depend on n. We ignore this notationally most of the time. To identify the

magnitude of Bjk we assume E|x(1)j |
2 = 1, j = 1, . . . , pn.

We make the following assumptions.

(A1) The dimension of the predictor and the response in (4.1) satisfies pn =

O(exp(Cn1−ξ)), qn = O(exp(Cn1−ξ)) (n → ∞), for some 0 < ξ < 1, 0 <

C <∞.

(A2) supn∈N

∑pn

j=1

∑q
k=1 |Bjk,n| <∞.

(A3) For the implementing Γ in 3.1,

supn∈N,1≤k≤qn

∑qn

`=1 |Γ
−1
k`,n| <∞, infn∈N,1≤k≤qn

Γ−1
kk,n > 0.

(A4) sup1≤j≤pn
‖x(1)j‖∞ < ∞, where ‖x‖∞ = supω∈Ω |x(ω)| (Ω denotes the un-

derlying probability space).

(A5) sup1≤k≤qn
E|e(1)k|

s <∞ for some s > 2/ξ, with ξ from (A1).

Assumption (A1) allows for very large predictor and response dimensions rel-

ative to the sample size n. Assumption (A2) is a l1-norm sparseness condition for

the underlying multivariate regression function f(·). If qn grows with sample size

it seems quite restrictive, but we describe a potential application in Section 4.1

(second example) where (A2) could be reasonable even if qn grows. Assump-

tion (A3) is a sparseness condition on Γ−1 that holds when choosing Γ = I (or

other reasonable diagonal matrices). Assumption (A4) and (A5) are the same as

in Bühlmann (2004); (A4) can be relaxed at the price of a polynomial growth

O(nδ) (0 < δ < ∞) in (A1) and assuming sufficiently high-order moments, cf.,

Section 5.

Theorem 1. Suppose (A1)−(A5) hold at (4.1). Then the multivariate L2Boosting

estimate f̂ (mn) with the componentwise linear learner from (3.2) satisfies: for
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some sequence (mn)n∈N with mn →∞ (n→∞) sufficiently slowly,

Ex

[

(

f̂ (mn)(x)− f(x)
)T

Γ−1
(

f̂ (mn)(x) − f(x)
)

]

= op(1) (n→∞),

where x denotes a new observation, independent of and with the same distribution

as the x(i), i = 1, . . . , n.

A proof is given in Section 9. Theorem 1 says that multivariate L2Boosting

recovers the true sparse regression function even if the dimensions of the predictor

and response grow almost exponentially with sample size n.

Remark 1. We can also use the multivariate L2Boosting for multi-category

classification with q categories labeled 1, . . . , q. This can be encoded with a

multivariate q-dimensional response y = (y1, . . . , yq), where

yj =

{

1 if the category-label = j,

0 if the category-label 6= j.

Assume that the data (x(1),y(1)), . . . , (x(n),y(n)) are independent and identically

distributed, that the conditional probabilities πj(x) = P [yj = 1|x] are linear in x.

If (A1)−(A4) hold, then multivariate L2Boosting is consistent e.g., with Γ = I:
∑q

j=1 Ex[(π̂
(mn)
j (x)− πj(x))2] = oP (1).

Remark 1 is a consequence of Theorem 1. Note that for binary classification,

we typically encode the problem by a univariate response. Multi-category prob-

lems could also be represented with a q− 1-dimensional response, but this would

require tagging a particular label as the complement of all others; we typically

want to avoid such arbitrariness.

4.1. Two potential applications with large response dimension q

One problem is classification (see Remark 1) of biological objects such as

genes or proteins into subsets of various functional categories, e.g., in Gene On-

tology (GO) (cf., Kriegel et al. (2004)). Because biological objects typically

belong to many functional categories, the labels for classification are subsets of

functional categories, resulting in a large value of q (and p is large here as well).

Another application is to screening for associations of q candidate random

variables y1, . . . ,yq with a system of p target variables x1, . . . ,xp. This occurs

in Wille et al. (2004) when screening expressions of q = 795 genes which ex-

hibit some potential associations to the expressions of p = 39 genes from two

biosynthesis pathways in Arabidopsis thaliana. We would like to know whether
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the partial correlation Parcor(yk,xj |{xu;u ∈ {1, . . . , p} \ j) is zero or not, for all

1 ≤ k ≤ q, 1 ≤ j ≤ p. This is equivalent to checking in the linear regressions

yk = Bjkxj +
∑

1≤u≤p,u 6=j

Bukxu + ek

whether Bjk = 0 or not. One could imagine that only a few of the q candidate

variables y1, . . . ,yq have something to do with the p target variables x1, . . . ,xp

(i.e., there are many k’s where Bjk ≡ 0 for all j), and that existing relations be-

tween the candidate and target variables are sparse in terms of the corresponding

regression coefficients, i.e., (A2) could be a reasonable assumption.

Remark 2. Using an estimate of Σ for Γ may result in a poor fit when q is

large relative to n. In this case we may choose something simpler, e.g., diag(Σ̂)

or I (this is only reasonable when the responses are standardized) or a convex-

combination γΣ̂ + (1 − γ)diag(Σ̂) with 0 < γ < 1 small. If Γ is diagonal,

multivariate L2Boosting fits q independent univariate linear regressions. For

each response it produces the same sequence of selected covariates as univariate

L2Boosting. The only difference in the multivariate method is that it mixes the

individual sequences of selected covariates for the different responses, and uses

only one stopping iteration. From a theoretical point of view, the multivariate

method (even for Γ = I) allows one to derive consistency for growing q.

5. Multivariate L2 Boosting for vector AR processes

The boosting method from Section 3 can be used for vector autoregressive

processes (VAR, see for example Lütkepohl (1993))

x(t) =

p
∑

j=1

Ajx(t−j) + e(t), t ∈ Z, (5.1)

where x(t) ∈ R
q is the q-dimensional observation at time t, Aj ∈ R

q×q and

e(t) ∈ R
q i.i.d. with E[e(t)] = 0 and Cov(e(t)) = Σ. The model is stationary and

causal if all roots of det(I−
∑p

j=1 Ajz
j) (z ∈ C) are greater than one in absolute

value.

For observations x(t) (t = 1, . . . , n), (5.1) can be written as a multivariate

regression model as at (2.1), with Y = [x(p+1), . . . ,x(n)]
T ∈ R

(n−p)×q, B =

[A1, . . . ,Ap]T ∈ R
qp×q and X ∈ R

(n−p)×qp the corresponding design matrix.

The consistency result from Theorem 1 carries over to the time series case.

We assume that the data is generated from the qn-dimensional VAR(∞) model

x(t) =

∞
∑

j=1

Ajx(t−j) + e(t), t ∈ Z, (5.2)
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with e(t) ∈ R
qn i.i.d., E[e(t)] = 0, Cov(e(t)) = Σ, and e(t) independent of

{x(s); s < t}. Again, we ignore notationally that the model and its terms depend

on n due to the growing dimension qn. Appropriate assumptions now are the

following.

(B1) {x(t)}t∈Z in (5.2) is strictly stationary and α-mixing with mixing coefficients

αn(·).

(B2) The dimension satisfies: q = qn = O(nδ) for some 0 < δ <∞.

(B3) supn∈N

∑∞
j=1

∑qn

k,v=1 |Akv;j,n| <∞, Akv;j,n = (Aj,n)kv.

(B4) The mixing coefficients and moments are such that, for some s ∈ N with

s > 2(1 + δ)− 2 (δ as in (B2)) and γ > 0,

∞
∑

k=1

(k + 1)s−1αn(k)γ/(2s+γ) <∞,

sup
1≤k≤qn,n∈N

E|x(t)k|
4s+2γ <∞, sup

1≤k≤qn,n∈N

E|e(t)k |
2s+γ <∞.

Theorem 2. Suppose (B1)−(B4) and (A3) hold at (5.2). Consider multivariate

L2Boosting with componentwise linear least squares (as in Section 3) using p = pn

lagged variables (as in (5.1)) with pn → ∞, pn = O(n1−κ) (n → ∞), where

2(1 + δ)/(s + 2) < κ < 1. Then, the conclusion of Theorem 1 holds with f(x) =
∑∞

j=1 Ajx(t−j), f̂ (mn)(x) =
∑pn

j=1 Â
(mn)
j x(t−j) and x a new realization from (5.2),

independent of the training data.

A proof is given in Section 9. Note that if in (B4) the mixing coefficients

decay exponentially and all moments exist, i.e., for a suitably regular Gaussian

VAR(p) of finite order, Theorem 2 holds for arbitrarily large δ in (B2) and arbi-

trarily small κ > 0, implying pn = O(n1−κ) is allowed to grow almost as fast as

n.

6. Simulation Study

In this Section we compare multivariate L2Boosting (MB) to individual

L2Boosting (IB, univariate L2Boosting for each response alone; cf., Bühlmann

(2004)), row-boosting (RB, see Section 3.5), and multivariate forward stepwise

variable selection (MFS, see Section 2.1) on simulated data sets.

6.1. Design

The sample size is always n = 50 and the number of responses is q = 5.

We take two numbers of covariates (p = 10 and p = 30) and two proportions of

non-zero entries of B (peff = 0.2 and peff = 0.5, where peff = 0.2 means that

20% of the entries of B are non-zero).
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The covariates are generated according to a multivariate normal distribution

with covariance matrix V, x(i) ∼ N (0,V), with Vkv = 0.9|k−v|. The value 0.9

seems to be pretty high but, when having p = 30 covariates, the average corre-

lation between the covariates is only 0.42. Smaller values lead to similar results

among the boosting methods, only MFS performs then a bit better.

For the true coefficient-matrix B we take two different types, characterized

by the non-zero entries. For the first type, we arbitrarily choose the q · p · peff

non-zero entries of B with the only constraint that each response must depend

on at least one covariate. We call this type “B arbitrary” (this is the case of

seemingly unrelated regressions). For the other type, we randomly choose p ·peff

rows of B and take entries of the full rows unequal to zero (“B row-complete”).

The non-zero entries of B are, for both types, i.i.d. ∼ N (0, 1).

The errors are again generated according to a multivariate normal distribu-

tion with covariance-matrix Σ, e(i) ∼ N (0,Σ). The diagonal elements of Σ are

constructed to give individual signal-to-noise ratios of 0.71, 0.84, 1.00, 1.19, 1.41.

The off-diagonal elements of Σ are chosen so that Cor(ek, ev) = ρ|k−v|, with ρ

taking the values 0, 0.6, and 0.9. All responses are standardized to unit variance

to make them comparable.

The design of this simulation comprises two types of B-matrices, three values

for the correlations between the errors, two values for the number of predictors

and two values for the number of effective predictors. A complete factorial design

over all these levels gives rise to 24 settings. Each setting is replicated 100 times

and the different methods are applied.

To select the number of boosting iterations or the number of steps in MFS

we use either a validation set of size 50 or AICc. For all boosting methods we

choose the shrinkage factor ν = 0.1. For the covariance-matrix Γ in MB we

use the empirical covariance-matrix of the residuals rIB
(i) of the IB: Γ = Σ̂ =

n−1
∑n

i=1 rIB
(i) (rIB

(i) )T .

6.2. Performance measure

In simulations we can measure how close the prediction for an additional

observation comes to the true value. For the kth response, the mean squared

prediction error is given by

MSPEk =

∫

(

xT (bk − b̂k)
)2

dP (x) = (bk − b̂k)
TV(bk − b̂k).

Our performance measure is the mean of the individual MSPE’s

MSPE = q−1
q

∑

k=1

MSPEk.
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This is reasonable, because we have standardized the responses.

6.3. Results

The results are summarized in Table 6.1 and Figure 6.1. We give the mean

of the MSPE of the 100 replicates (multiplied by 1,000) for each method and

setting. Additionally, paired sample Wilcoxon tests are performed that compare

for each setting the best method to the other three methods. A p-value below

1e− 9 is set to zero. The iterations are stopped with a validation set.

Table 6.1. Mean squared prediction error MSPE, multiplied by 1,000, of

multivariate forward stepwise variable selection (MFS), row-boosting (RB),

individual L2Boosting (IB) and multivariate L2Boosting (MB) averaged over

100 replicates. The best method for each setting is in bold face. P-values

of the paired sample Wilcoxon tests that compare for each setting the best

method to the other three methods, are also given.

MSPE Wilcoxon p-value

B ρ p peff MFS RB IB MB MFS RB IB MB

arbitr. 0.0 10 0.2 84 63 50 51 0 0 1e−1

arbitr. 0.0 10 0.5 96 71 66 67 0 8e−5 9e−2

arbitr. 0.0 30 0.2 176 125 112 116 0 1e−9 5e−3

arbitr. 0.0 30 0.5 216 132 130 135 0 1e−1 1e−3

arbitr. 0.6 10 0.2 73 60 50 44 0 0 2e−6
arbitr. 0.6 10 0.5 93 71 67 62 0 8e−8 3e−4

arbitr. 0.6 30 0.2 164 116 109 100 0 0 4e−6

arbitr. 0.6 30 0.5 203 126 127 117 0 6e−6 5e−7

arbitr. 0.9 10 0.2 62 53 49 33 0 0 0

arbitr. 0.9 10 0.5 93 71 68 51 0 0 0

arbitr. 0.9 30 0.2 149 107 110 72 0 0 0
arbitr. 0.9 30 0.5 183 115 126 85 0 0 0

row-c. 0.0 10 0.2 26 41 48 50 0 0 0

row-c. 0.0 10 0.5 70 66 67 71 6e−2 2e−1 4e−6

row-c. 0.0 30 0.2 123 105 118 121 1e−4 1e−9 0

row-c. 0.0 30 0.5 203 132 136 139 0 7e−2 1e−5

row-c. 0.6 10 0.2 25 38 49 50 1e−9 0 0

row-c. 0.6 10 0.5 64 60 64 63 2e−2 6e−4 7e−2
row-c. 0.6 30 0.2 109 101 120 110 3e−2 0 3e−6

row-c. 0.6 30 0.5 186 128 137 129 0 1e−5 8e−1

row-c. 0.9 10 0.2 31 33 50 45 6e−2 6e−9 2e−5

row-c. 0.9 10 0.5 62 54 63 48 5e−5 2e−1 1e−9

row-c. 0.9 30 0.2 88 88 120 89 7e−1 0 5e−1

row-c. 0.9 30 0.5 179 120 137 102 0 4e−7 0
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Figure 6.1. Mean squared prediction error MSPE, multiplied by 1,000, of
multivariate forward stepwise variable selection (◦), row-boosting (+), indi-

vidual L2Boosting (4) and multivariate L2Boosting (×).

For ρ = 0, multivariate L2Boosting is a few percent worse than individual

L2Boosting. But for ρ = 0.6 and ρ = 0.9, MB performs significantly better than

IB and the gain can be up to a factor of 1.5 (for less correlated predictors the

gain is even bigger). Thus, MB is able to exploit the additional information in a

multivariate response.
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As expected, MB and IB perform well when B is arbitrary and RB performs
well when B is row-complete. MFS gives good results only in the easier settings,
especially with B row-complete, p = 10 and peff = 0.2. It is interesting to
see that MB performs best in the case when B is row-complete, ρ = 0.9 and
peff = 0.5, even though the setting favors methods which work with whole rows
of B.

The given results come about with stopping by a validation set. Stopping
methods which only use the training data (like AICc) lead on average to worse
results because they use much less information. Therefore we can use the vali-
dation set stopping as a benchmark to assess the performance of AICc stopping:
MB is 6.3% worse (median over all 24 settings) when we use AICc instead of
the validation set, RB is 3.5% worse, MFS 10.2% worse and IB 25.0% worse.
AICc stopping works relatively better for the multivariate methods (MB, RB
and also MFS) than for IB. A possible explanation is that MB and RB have to
be stopped only once and not q times. This gives less variability in the final
boosting estimate and makes it easier to stop at a good point. Note that for

IB, it is desirable, or even essential, to allow for individual stopping iterations
because we often need varying complexities for modelling the different response
variables.

7. Data

We have analyzed the following data sets.
Chemical reaction data (Box and Youle (1955) and Rencher (2002)). This

is a planned experiment involving a chemical reaction with three input (predic-
tor) variables (temperature, concentration, time) and three output (response)
variables (percentage of unchanged starting material, percentage converted to
the desired product, percentage of unwanted by-product). We fit a quadratic
model including the first order interactions (product of the predictor variables).
This gives a total of nine covariates.

Macroeconomic data (Klein, Ball, Hazlewood and Vandome (1961) and
Reinsel and Velu (1998)). This is a 10-dimensional time series from the United
Kingdom from 1948−1956 with quarterly measurements. Five terms are taken as
predictor variables (total labor force, weekly wage rates, price index of imports,
price index of exports, price index of consumption) and five terms are taken
as response variables (industrial production, consumption, unemployment, total
imports, total exports). We ignore the time-dependency of the observations and
again fit a quadratic model with first order interactions.

Chemometrics data (Skagerberg, MacGregor and Kiparissides (1992) and
Breiman and Friedman (1997)). This is a simulation of a low density tubu-
lar polyethylene reactor. There are 22 predictor variables (20 reactor tempera-

tures, wall temperature of the reactor, feed rate of the reactor) and six responses
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(number-average molecular weight, weight-average molecular weight, frequency
of long chain branching, frequency of short chain branching, content of vinyl
groups, content of vinylidene groups). Because the responses are skewed, they
are all log-transformed.

Arabidopsis thaliana data (Wille et al. (2004)). This is a microarray
experiment. There are 795 genes (the responses) that may show some association
to 39 genes (the predictors) from two biosynthesis pathways in A. thaliana. All
variables are log transformed.

All responses are standardized to unit variance to make them comparable.
The predictive accuracy of each method is estimated by leave-one-out cross-
validation (for the A. thaliana data set we used 5-fold cross-validation):

MSPECV = q−1
q

∑

k=1

n−1
n

∑

i=1

(y(i)k − f̂
(−i)
k (x(i)))

2.

Note that we compare the prediction with the observation, the latter being an
unbiased rough estimate for the true unknown function f . Therefore the pre-
diction accuracy contains also the error variances, which makes it harder to see
clear differences between the methods.

The data sets are summarized in Table 7.2 and the results are given in
Table 7.3. We use 5-fold cross validation and AICc to stop the iteration. The
implementing Γ in MB is the empirical covariance-matrix Σ̂ of the residuals from
IB (for the A. thaliana data set we used the diagonal matrix diag(Σ̂)).

MFS performs worst, but there is no overall best boosting method. As
mentioned already in Section 6.3, it seems easier to stop the iteration for MB
and RB than for IB. Therefore, cross-validation stopping and AICc stopping
differ only slightly for MB and RB.

For IB, stopping by AICc works much better than using cross validation in
two examples. The mean squared prediction error of 0.208 for the chemometrics
data is quite good compared to the numbers published in Breiman and Friedman
(1997). We remark here that we only have rounded data (taken from Skagerberg
et al. (1992)) and therefore we get slightly different prediction errors (e.g., for
OLS: 0.411 instead of 0.431 in Breiman and Friedman (1997)).

Table 7.2. Summary of the analyzed data sets: sample size (n), number
of predictors (p), number of responses (q), and average absolute empirical
correlation between the responses (aac).

Data set n p q aac

Chemical reaction 19 9 3 0.56

Macroeconomic 36 20 5 0.71

Chemometrics 56 22 6 0.48

A. thaliana 118 39 795 0.21
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Table 7.3. Leave-one-out (5-fold for A. thaliana) cross-validated mean squ-

ared prediction error MSPECV for four data sets. Iteration stopped either
by 5-fold cross validation or AICc. AICc-stopping for A. thaliana is not

easily accomplished (see Section 3.4) and the computation of Wilk’s Λ (MFS

and RB) is only possible if n > q.

Data set OLS MFS RB IB MB

CV AICc CV AICc CV AICc CV AICc

Chemical 1.343 1.261 0.616 0.532 0.500 0.744 0.527 0.488 0.479

Macroe. 0.499 0.209 0.224 0.193 0.197 0.194 0.195 0.202 0.204

Chemom. 0.411 0.360 0.386 0.253 0.262 0.260 0.208 0.259 0.263
A. thaliana 0.753 0.559 0.556 0.551

8. Conclusions

We propose a multivariate L2Boosting method for multivariate linear mod-

els. The multivariate L2Boosting inherits the good properties from its uni-

variate counterpart: it does variable selection and shrinkage. Our multivariate

L2Boosting method is suitable for a variety of different situations: (i) multivari-

ate linear regression, with or without seemingly unrelated regressions (SUR), and

with covariates which can be arbitrarily correlated; (ii) for multivariate vector

autoregressive time series. The method is particularly powerful if the predictor

dimension, or the dimension of the response, is large relative to the sample size.

Our multivariate L2Boosting takes potential correlations among the compo-

nents of the multivariate error-noise into account. It is therefore very different

from OLS and other methods which work on individual responses only. Cor-

relation among the errors can arise from various sources − for example via an

unobservable covariate which influences the responses in the same way.

We prove here, for i.i.d. data as well as for time series, that multivariate

L2Boosting can consistently recover sparse, very high-multivariate and very high-

dimensional linear functions. In high response-dimensions, a non-trivial issue is

how to control the estimation error over all multivariate components simultane-

ously. Our theory seems to be among the first which actually addresses such

questions.

An important question in multivariate regression is whether “jointness” pays

off: is the multivariate method better than q estimates from a univariate method?

Our simulation study shows that multivariate L2Boosting outperforms individual

univariate L2Boosting by a substantial amount when the errors are correlated,

and is almost as good when the errors are independent. In data examples, we

were not able to see a clear difference (which may be masked by substantial noise

variance). This has been found in other work, e.g., Brooks and Stone (1994).
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9. Proofs

9.1. Proof of Theorem 1

The proof of Theorem 1 is similar to that in Bühlmann (2004), where the
univariate case is discussed. We define an appropriate Hilbert space and dictio-
nary of basis functions; then, it is sufficient to prove Lemma 1 from Bühlmann
(2004) for the setting of multivariate L2Boosting.

A population version

The L2Boosting algorithm has a population version known as “matching
pursuit” (Mallat and Zhang (1993)) or “weak greedy algorithm” (Temlyakov
(2000)).

Consider the Hilbert space L2(P ) = {f : R
pn → R

qn ; ‖f‖2 = 〈f , f〉 <∞} with
inner product 〈f ,g〉 =

∫

f(x)T Γ−1g(x)dP (x). Here, the probability measure P is
generating the predictor x in (4.1). To be precise, the probability measure P = Pn

and the function f = fn depend on n, but we often ignore this notationally (a
uniform bound in (9.4) will be a key result to deal with sequences of Hilbert
spaces).

Denote the components of x = (x1, . . . , xpn) viewed as scalars or as 1-
dimensional functions from R

pn → R, by gj(x) = xj, and denote the compo-
nents of x = (x1, . . . , xpn) viewed as qn-dimensional vectors or as functions from
R

pn → R
qn with only component k different from zero, by

(g(j,k))l(x) =

{

xj, if l = k,

0, if l 6= k.

For notational simplicity, assume that ‖g(j,k)‖ =
∫

x2
jΓ

−1
kk dP (xj) = Γ−1

kk = 1 for

all k (this simplifies e.g., the formula (9.2)); the proof for non-equal Γ−1
kk would

work analogously using the second assumption in (A3).
Define the following sequence of remainder functions, called matching pursuit

or the weak greedy algorithm:

R0f = f ,

Rmf = Rm−1f −
〈

Rm−1f ,g(sm,tm)

〉

g(sm,tm), m = 1, 2, . . . , (9.1)

where (sm, tm) would be ideally chosen as

(sm, tm) = argmax
1≤j≤pn;1≤k≤qn

|
〈

Rm−1f ,g(j,k)

〉

|.

The choice functions (sm, tm) are often infeasible to realize in practice, because
we have finite samples. A weaker criterion is: for every m (under consideration),
choose any (sm, tm) which satisfies, for some 0 < d ≤ 1,

|
〈

Rm−1f ,g(sm,tm)

〉

| ≥ d · sup
1≤j≤pn;1≤k≤qn

|
〈

Rm−1f ,g(j,k)

〉

|. (9.2)
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Of course, the sequence Rmf = Rm,s,tf depends on (s1, t1), (s2, t2), . . . , (sm, tm)

as to how we actually make the choice in (9.2). Again, we ignore this notationally.

It easily follows that

f =
m−1
∑

j=0

〈

Rjf ,g(sj+1,tj+1)

〉

g(sj+1,tj+1) + Rmf .

Temlyakov (2000) gives a uniform bound for the algorithm in (9.1) with

(9.2).

If the function f is representable as

f(x) =
∑

j,k

Bjkg(j,k)(x),
∑

j,k

|Bjk| ≤ D <∞, (9.3)

which is true by (A2), then

‖Rmf‖ ≤ D(1 + md2)−d/(2(2+d)), 0 < d ≤ 1 as in (9.2). (9.4)

To make the point clear, this bound holds also for sequences Rmf = Rm,s,t,nf

which depend on the choice function (s, t) in (9.2) and on the sample size n (since

x ∼ P depends on n and also the function of interest f); all we have to assume

is the condition (9.3).

A sample version

The multivariate L2boosting algorithm can be represented analogously to

(9.1). We introduce the following notation:

〈f ,g〉(n) = n−1
n

∑

i=1

fT (x(i))Γ
−1g(x(i)) and ‖f‖2(n) = 〈f , f〉(n)

for functions f ,g : R
pn → R

qn . As before, we denote by Y = (y(1), . . . ,y(n))
T

the matrix of response variables.

Define

R̂1
nf = f −

〈

Y,g(ŝ1,t̂1)

〉

(n)
g(ŝ1,t̂1)

,

R̂m
n f = R̂m−1

n f −
〈

R̂m−1
n f ,g(ŝm,t̂m)

〉

(n)
g(ŝm,t̂m), m = 2, 3, . . . ,

where

(ŝ1, t̂1) = argmax
1≤j≤pn;1≤k≤qn

∣

∣

∣

〈

Y,g(j,k)

〉

(n)

∣

∣

∣
,

(ŝm, t̂m) = argmax
1≤j≤pn;1≤k≤qn

∣

∣

∣

〈

R̂m−1
n f ,g(j,k)

〉

(n)

∣

∣

∣
, m = 2, 3, . . . .
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With some abuse of notation, we denote by R̂m−1
n f and g(ŝm,t̂m) either func-

tions from R
pn → R

qn or n × qn matrices evaluated at the observed predictors.

We emphasize here the dependence of R̂m
n on n since finite-sample estimates

〈R̂m−1
n f ,g(j,k)〉(n) are involved. We also assume without loss of generality (but

simplifying the notation) that ‖g(j,k)‖(n) ≡ 1 for all j, k and n (note that we have

already assumed w.l.o.g. that ‖g(j,k)‖ ≡ 1 for all j, k). Then, the formulae above

are the same as in (3.2) (because ‖g(j,k)‖(n) = xT
j xjΓ

−1
kk ). Hence, R̂m

n f = f− f̂ (m).

For analyzing ‖R̂m
n f‖ = Ex|(f̂

(mn)(x) − f(x))T Γ−1(f̂ (mn)(x) − f(x))|, which

is the quantity in the assertion of Theorem 1, we need some uniform laws of large

numbers, as discussed below.

Uniform laws of large numbers

Lemma 1. Under (A1)−(A5), with 0 < ξ < 1 as in (A1),

(i) sup1≤j,u≤pn;1≤k,v≤qn
|〈g(j,k),g(u,v)〉(n) − 〈g(j,k),g(u,v)〉| = ζn,1 = OP (n−ξ/2),

(ii) sup1≤j≤pn;1≤k≤qn
|〈g(j,k),E〉(n)| = ζn,2 = OP (n−ξ/2),

(iii) sup1≤j≤pn;1≤k≤qn
|〈g(j,k), f〉(n) − 〈g(j,k), f〉| = ζn,3 = OP (n−ξ/2),

(iv) sup1≤j≤pn;1≤k≤qn
|〈g(j,k),Y〉(n) − 〈g(j,k),Y〉| = ζn,4 = OP (n−ξ/2).

Proof. For (i), note that

sup
j,u,k,v

∣

∣

∣

〈

g(j,k),g(u,v)

〉

(n)
−

〈

g(j,k),g(u,v)

〉

∣

∣

∣
=

= sup
j,u,k,v

∣

∣

∣n−1
n

∑

i=1

gT
(j,k)(x(i))Γ

−1g(u,v)(x(i))−E
[

gT
(j,k)(x(i))Γ

−1g(u,v)(x(i))
] ∣

∣

∣ =

= sup
j,u,k,v

∣

∣

∣
n−1

n
∑

i=1

x(i)jΓ
−1
kv x(i)u −E

[

x(1)jΓ
−1
kv x(1)u

]

∣

∣

∣

= sup
j,u,k,v

∣

∣Γ−1
kv

∣

∣

∣

∣

∣
n−1

n
∑

i=1

gj(x(i))gu(x(i))−E
[

gj(x(1))gu(x(1))
]

∣

∣

∣

≤ sup
k,v

∣

∣Γ−1
kv

∣

∣ · OP (n− ξ

2 ) = OP (n− ξ

2 ).

We have used here that supj,u |n
−1

∑n
i=1 gj(x(i))gu(x(i))−E[gj(x(1))gu(x(1))]| =

OP (n−ξ/2) (Bühlmann (2004)), and also the first assumption in (A3).

For (ii), we write

〈

g(j,k),E
〉

(n)
=

qn
∑

v=1

n−1
n

∑

i=1

x(i)jΓ
−1
kv e(i)v = n−1

n
∑

i=1

gj(x(i))Qi(k), (9.5)

where Qi(k) =
∑qn

v=1 Γ−1
kv e(i)v .
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Note that Qi(k) is independent from X, E[Qi(k)] = 0 for all i, k and

sup
k

E|Qi(k)|s ≤ sup
k

(

qn
∑

v=1

|Γ−1
kv |(E|e(1)v |

s)1/s
)s

<∞, (9.6)

using (A3) and (A5). The form in (9.5), with the moment property in (9.6), is

the same as in Lemma 1 (ii) from Bühlmann (2004).

For (iii), note that

sup
j,k

∣

∣

∣

〈

g(j,k), f
〉

(n)
−

〈

g(j,k), f
〉

∣

∣

∣ ≤
∑

u,v

|Buv,n| · ζn,1 = OP (n−ξ/2)

using (A2) and the bound from (i).

Finally, (iv) follows immediately from (ii) and (iii).

The rest of the proof is the same as in Bühlmann (2004). We only have to

replace the basis functions gj by our double indexed basis functions g(j,k).

9.2. Proof of Theorem 2

As we have seen from the proof of Theorem 1, a substantial part of the

analysis can be borrowed from Bühlmann (2004); we only need to reconsider

uniform laws of large numbers, as in Lemma 1, but for dependent data. This can

be done by invoking the following result.

Lemma 2. Consider sequences {Zt,n}t∈Z, n ∈ N, that are strictly stationary

and α-mixing, with mixing coefficients αZ,n(·). Assume that E[Zt,n] = 0 for

all n ∈ N, supn∈N E|Zt,n|
2s+γ < ∞ for some s ∈ N, γ > 0, and the mixing

coefficients satisfy for, some constants 0 < C1, C2 <∞,

∞
∑

k=0

(k + 1)s−1αZ,n(k)γ/(4s+γ) < C1p
s
n + C2,

where s ∈ N is linked to the moments of Zt,n as above. Then,

E
∣

∣

∣n−1
n

∑

t=1

Zt,n

∣

∣

∣

2s
= O(ps

nn−s) (n→∞).

Proof. The reasoning can be done analogously to the proof of Theorem 1 in

Yokoyama (1980).

The only part of the proof of Theorem 1 which needs to be changed is

Lemma 1. A version of Lemma 1 also holds for stationary VAR(∞) processes;
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the predictor variables at time t are the pn lagged qn-dimensional variables

x(t−1), . . . ,x(t−p) and the response variable is the current x(t).

Instead of exponential inequalities we first invoke Markov’s inequality and

then Lemma 2. For example, for the analogue of Lemma 1 (i), note that

P
[

|(n− pn)−1
n

∑

t=pn+1

x(t−j)kx(t−u)v −E[x(t−j)kx(t−u)v ]| > ε
]

≤ ε−2s E
∣

∣

∣
(n− pn)−1

n
∑

t=pn+1

x(t−j)kx(t−u)v −E[x(t−j)kx(t−u)v ]
∣

∣

∣

2s
. (9.7)

We now observe that Zt,n = x(t−j)kx(t−u)v − E[x(t−j)kx(t−u)v ] is still stationary

and α-mixing with coefficients that satisfy the requirement from Lemma 2. Due

to different lags j and u, the mixing coefficients of Zt,n usually don’t decay for the

first |j − u| lags (therefore the special construction with C1p
s
n + C2 in Lemma 2.

Invoking Lemma 2 for the right hand side of (9.7), we get

P
[

|(n− pn)−1
n

∑

t=pn+1

x(t−j)kx(t−u)v −E[x(t−j)kx(t−u)v ]| > ε
]

≤ ε−2sO(ps
nn−s) = O(n−sκ),

since pn = O(n1−κ) by assumption. For the supremum over the different lags

and components we then get

P
[

sup
1≤j,u≤pn,1≤k,v≤qn

∣

∣

∣
(n− pn)−1

n
∑

t=pn+1

x(t−j)kx(t−u)v −E[x(t−j)kx(t−u)v ]
∣

∣

∣
> ε

]

= O(p2
nq2

nn−sκ) = O(n2(1+δ)−(s+2)κ).

Hence, since κ > 2(1 + δ)/(s + 2), we have proved that there exists a c > 0 such

that

sup
1≤j,u≤pn,1≤k,v≤qn

∣

∣

∣
(n− pn)−1

n
∑

t=pn+1

x(t−j)kx(t−u)v−E[x(t−j)kx(t−u)v ]
∣

∣

∣
=OP (n−c).

The version of Lemma 1 (ii) follows analogously; the versions of Lemma 1 (iii)

and (iv) can be proved exactly as in Lemma 1.
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