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Abstract: The paper considers the standard linear multiple regression model where

the parameter of interest is a ratio of two regression coefficients. The general

model includes the calibration model, the Fieller-Creasy problem, slope-ratio as-

says, parallel-line assays and bioequivalence. We provide a unified objective Bay-

esian analysis for such problems. Both reference priors and probability matching

priors are found. Based on some numerical findings, our recommended prior is the

one-at-a-time reference prior. The analysis is greatly facilitated by an orthogonal

(Cox and Reid (1987)) reparameterization of the original parameter vector.
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1. Introduction

There is a large class of important statistical problems which can be broadly
described under the heading of inference about the ratio of regression coefficients
in a general linear model. Included in this class are (a) the calibration prob-
lem, (b) ratio of two means or the Fieller-Creasy problem, (c) slope-ratio assay,
(d) parallel-line assay, and (e) bioequivalence. The frequentist solutions to these
problems have typically encountered serious difficulties. As an example, confi-
dence sets for ratios of two normal means based on Fieller’s pivot (1954) may
be degenerate or a union of two disjoint unbounded intervals and, in extreme
situations, may even be the entire real line. The same phenomenon occurs as
well in the other problems described above.

The prime objective of this paper is to present a unified Bayesian analysis
for this general problem using objective priors. We develop both reference priors
as well as matching priors for the general problem described above. As we will
see in later sections, this process of development will suggest consideration of
two general classes of priors. All the reference priors belong to one class, while
Jeffreys’ prior as well as a second order probability matching prior (to be derived
in Section 3) belong to the other class. The former class of priors is considered in
Buonaccorsi and Gatsonis (1988) and Mendoza (1988), but the latter has never
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been treated before in its full generality. Various priors proposed for the specific
problems mentioned in (a)−(d) also belong to one or the other of these two
general classes. In particular for the calibration problem, Hoadley’s (1970) prior
plus all the reference priors considered in Ghosh, Carlin and Srivastava (1995) are
members of one class, while the prior considered by Hunter and Lamboy (1981)
belongs to the other class.

Liseo (1993), in an elegant article, discussed the general problem of elimina-
tion of nuisance parameters by a Bayesian approach. As an example, for the ratio
of two normal means (the Fieller-Creasy problem) with known common standard
deviation, he derived and compared both Jeffreys’ prior and the one-at-a-time
reference prior (to be introduced in Section 3) and found the superiority of the
latter over the former. Yin and Ghosh (2000) obtained the different reference
priors as well as matching priors for the problem of the ratio of two location
parameters with common unknown scale parameter. For the normal example, all
these priors can be viewed as special cases of the priors proposed in this paper.

The two-group reference prior for the slope-ratio assay, as derived by Men-
doza (1990), is a special case of our general class of priors. The priors of Buonac-
corsi and Gatsonis (1988) for the same problem are different, but are neither
reference priors nor matching priors. For the parallel-line assay, Bayesian analy-
ses of the log-relative potency with proper subjective priors are given in Darby
(1980). Kim, Carter and Hubert (1991) and Kim, Carter, Hubert and Hand
(1993) assigned a prior to the parameter of interest, and used MLE’s for the
nuisance parameters. Thus their approach, unlike ours, is only a partial Bayes
approach.

The key to the derivation of the different priors is a nontrivial orthogonal
reparameterization (cf. Cox and Reid (1987)) of the original parameter vector.
This orthogonal reparameterization, introduced in Section 2, unifies the develop-
ment of the different objective priors.

Section 3 develops the various objective priors. Because of the orthogonality
of the parameter of interest with the nuisance parameters, we can appeal to
the various available general results on the development of reference priors as
well as matching priors. Necessary and sufficient conditions for the propriety
of posteriors for the two general classes of priors are also given in this section.
Section 4 illustrates the general theory for the specific problems of slope-ratio
and parallel-line assays, and obtains the necessary expressions needed for the
derivation of the different posteriors. We provide also a numerical illustration
of the proposed procedure for a parallel-line assay problem. Some concluding
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remarks are made in Section 5. The proof of a technical result is deferred to the
Appendix.

2. The Orthogonal Transformation

Consider the general regression model

yi =
r∑
j=1

βjxij + ei, i = 1, . . . , n, (2.1)

where the errors ei are i.i.d. N (0, σ2). Here βj ∈ (−∞,∞) for j �= 2, while
β2 ∈ (−∞,∞) − {0}. The parameter of interest is θ1 = β1/β2. We write
y = (y1, . . . , yn)T , xi = (xi1, . . . , xir)T , i = 1, . . . , n, XT = (x1, . . . ,xn), β =
(β1, . . . , βr)T , e = (e1, . . . , en)T . Thus in matrix notations, the model can be
rewritten as Y = Xβ + e. We assume that rank(X) = r < n.

First we introduce a transformation of the parameter vector (β, σ) which
results in the orthogonality of θ1 with the remaining parameters. We begin with
the Fisher information matrix

I(β, σ) = nσ−2
[
((sjl)) 0

0T 2

]
, (2.2)

where sjl = n−1
∑n
i=1 xijxil, j, l = 1, . . . , r. Consider the transformation

β1 = θ1θ2h(θ1); β2 = θ2h(θ1); βj = θj − θ2gj(θ1), j = 3, . . . , r; σ = θr+1.
(2.3)

Then the Jacobian matrix is given by

J =



θ2{θ1h′(θ1) + h(θ1)} θ2h
′(θ1) −θ2g′3(θ1) · · · −θ2g′r(θ1) 0

θ1h(θ1) h(θ1) −g3(θ1) · · · −gr(θ1) 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1


. (2.4)

Let XTX = n

[
A11 A12

A21 A22

]
, where

A11 =

(
s11 s12
s12 s22

)
, A12 = AT

21 =

(
s13 · · · s1r
s23 · · · s3r

)
, and A22 =


s33 · · · s3r
...

. . .
...

sr3 · · · srr

 .
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Also, let C =
(
c11 c12
c12 c22

)
= A11−A12A

−1
22 A21 = A11.2, say. We define Q(θ1) =

c11θ
2
1+2c12θ1+c22. Since rank(XTX) = rank(X) = r, XTX is positive definite

so that C is also positive definite. This implies that Q(θ1) is positive for all θ1.
Then we have the following theorem whose proof is omitted. The details are
available from the authors.

Theorem 1. Let gj(θ1) = h(θ1)(aj1θ1 + aj2), j = 3, . . . , r, where ajt is the
(j, t)th element of A−1

22 A21. Then parametric orthogonality holds by choosing
h(θ1) = Q− 1

2 (θ1).

Based on the transformation given in the theorem, it follows from (2.1)−(2.4)
that the reparameterized Fisher information matrix is given by

I(θ) = nθ−2r+1


θ22 |C|
Q2(θ1)

0 0T 0
0 1 0T 0
0 0 A22 0
0 0 0T 2

 . (2.5)

We make repeated use of this information matrix for the development of various
priors.

3. Developemtn of Objective Priors

3.1. Jeffreys’ and reference priors

We begin with Jeffreys’ prior given by

πJ (θ) ∝ |I(θ)| 12 ∝ θ−(r+1)r+1 |θ2|Q−1(θ1). (3.1)

This is a reference prior when all parameters are treated as equally important.
The two-group reference prior of Bernardo (1979) with θ(1) = {θ1} and θ(2) =
{θ2, . . . , θr+1} is given by π2R(θ) ∝ θ−rr+1Q−1(θ1). The three-group reference prior
with θ(1) = {θ1}, θ(2) = {θ2, . . . , θr}, and θ(3) = {θr+1}, arranged according to
their order of importance, is given by π3R(θ) ∝ θ−1r+1Q

−1(θ1). This is different
from the three-group reference prior with θ(1) = {θ1}, θ(2) = {θ2}, and θ(3) =

{θ3, . . . , θr+1}: π3R∗ (θ) ∝ θ
−(r−1)
r+1 Q−1(θ1). Finally the one-at-a-time reference

prior with the partition {θ1}, . . . , {θr+1}, where θ1 is the parameter of interest and
the remaining parameters are considered in an arbitrary order of importance, is
given by θ−1r+1Q

−1(θ1), which is the same as π3R(θ). All these reference priors can
be derived from Berger and Bernardo (1992), and more directly from Theorem
1 of Datta and Ghosh (1995).

Based on the above calculations, it follows that the reference priors belong
to a general class of priors of the form π

(1)
a (θ) ∝ θ−ar+1Q−1(θ1). In particular, the
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choices a = r, 1 and r− 1 lead respectively to π2R, π3R and π3R∗ . In the original
parameterization, the prior π(1)a (θ) reduces to

π(1)a (β1, . . . , βr, σ) ∝ σ−a
(
c11β

2
1 + 2c12β1β2 + c22β22

)− 1
2 . (3.2)

Also, one can generalize π(1)a (θ) further by replacing Q−1(θ1) with an arbitrary
function k(θ1) as done for example in Mendoza (1988) and Buonaccorsi and
Gatsonis (1988). This will not be pursued here.

3.2. Probability matching priors

We first describe the probability matching criterion based on posterior quan-
tiles in general notations. Let {Zi; i ≥ 1} be a sequence of i.i.d. (possibly vector-
valued) random variables with common pdf fθ(z), where θ = (θ1, . . . , θp)T be-
longs to some open subset of Rp, and θ1 is the parameter of interest. We write
Z = (Z1, . . . , ZN )T . Suppose θ1−α1 (Π, Z) is the (1 − α)th posterior quantile that
satisfies PΠ(θ1 ≤ θ1−α1 (Π, Z)|Z) = 1 − α + o(N−u) for some u > 0. We seek to
characterize priors Π such that P (θ1 ≤ θ1−α1 (Π, Z)|θ) = 1−α+o(N−u). Priors Π
satisfying this property with u = 1/2 are called first order probability matching
priors, while those satisfying this property with u = 1 are called second order
probability matching priors. In typical applications, o(N−1/2) and o(N−1) are ac-
tually O(N−1) and O(N−3/2) respectively. As shown in Welch and Peers (1963),
Stein (1985), Tibshirani (1989), Datta and J. K. Ghosh (1995a, b), Datta (1996),
Mukerjee and Dey (1993), Mukerjee and Ghosh (1997), Sun and Ye (1996), and
many others, such priors are obtained by solving certain differential equations.

For the problem at hand, asymptotics is based on N independent replications
of the set-up given in (2.1). Since θ1 is orthogonal to (θ2, . . . , θr+1) (see (2.5)),
from Tibshirani (1989), the class of first order probability matching priors is
characterized by

πF (θ) ∝ θ−1r+1|θ2|Q−1(θ1)q(θ2, . . . , θr+1), (3.3)

where q is an arbitrary positive-valued function differentiable in its arguments.
Jeffreys’ prior as well as the other reference priors are all first order probability
matching priors. Indeed, there are infinitely many such priors. To narrow down
the selection of priors within this class, we now consider second order probability
matching priors.

To this end, we first need to find the reparameterized likelihood L(θ1, . . . ,
θr, θr+1). The original likelihood is given by

L(β1, . . . , βr, σ) ∝ σ−n exp[− 1
2σ2

n∑
i=1

(yi −
r∑
j=1

xijβj)2]. (3.4)
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By (2.3) and the definition of gj(θ1), the reparameterized likelihood is given by

L(θ1, . . . , θr, θr+1) ∝ θ−nr+1 exp
[
− 1

2θ2r+1

n∑
i=1

(yi − θ2h(θ1){θ1xi1 + xi2

−
r∑
j=3

xij(aj1θ1 + aj2)} −
r∑
j=3

xijθj)2
]
. (3.5)

From Mukerjee and Ghosh (1997), due to the orthogonality of θ1 with (θ2, . . . ,
θr+1), the class of second order probability matching priors is characterized by
solving

1
6
q(θ2, . . . , θr+1)

∂

∂θ1
(I−3/211 L1,1,1)+

r+1∑
v=2

r+1∑
s=2

∂

∂θv
{I−1/211 L11sI

svq(θ2, . . . , θr+1)} = 0,

(3.6)

where L1,1,1 = E
[
∂ logL

∂θ1

]3
, L11s = E

[
∂3 logL

∂θ21 ∂θs

]
, s = 2, . . . , r + 1, and Isv is the

(s, v)th element of I−1(θ), the inverse of the Fisher Information matrix.
After much algebra, (3.6) simplifies to θ−12

∂q
∂θ2

= θ−1r+1
∂q

∂θr+1
so that a general

class of solutions is given by q(θ2, . . . , θr, θr+1) ∝ h1(θ22 + θ2r+1)h2(θ3, . . . , θr),
where h1 and h2 are both positive functions, differentiable in their arguments,
but are otherwise arbitrary. It appears though from our limited simulation study
in related problems that the choice of the second order probability matching prior
does not matter much in practice, and we have therefore decided to take q as a
constant. Thus we propose the second order probability matching prior

πS(θ) ∝ θ−1r+1|θ2|Q−1(θ1). (3.7)

Both πJ(θ) and πS(θ) belong to the general class of priors of the form
π
(2)
a (θ) ∝ θ−ar+1|θ2|Q−1(θ1). The former has a = r + 1 while the latter has a = 1.

Back to the original parameterization, this class of priors transforms to

π(2)a (β1, . . . , βr, σ) ∝ σ−a. (3.8)

The reference priors are first order but not second order matching priors.
We now find conditions under which the joint posterior π(θ|y) is proper under
the two proposed classes of priors.

Theorem 2. Under the class of priors π(1)a (θ) ∝ θ−ar+1Q−1(θ1), the joint posterior
π
(1)
a (θ|y) is proper if and only if n+a > r. When n+a > r, the marginal posterior

of θ1 is

π(1)a (θ1|y) ∝ Q−1(θ1)
{
SSE +

n|C|(β̂2θ1 − β̂1)2
Q(θ1)

}−n+a−r
2

.
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Theorem 3. Under the class of priors π(2)a (θ) ∝ |θ2|
θa
r+1
Q−1(θ1), the joint posterior

π
(2)
a (θ|y) is proper if and only if n+a > r+1. When n+a > r+1, the marginal

posterior of θ1 is

1

Q
1
2 (θ1)

{
SSE +

n|C|(β̂2θ1 − β̂1)2
Q(θ1)

+ nQ(θ1)ω2(θ1)
}−n+a−r−1

2

+2ω(θ1)
{
SSE +

n|C|(β̂2θ1 − β̂1)2
Q(θ1)

}−n+a−r
2

∫ A

0

dz

(1 + z2)
n+a−r+1

2

,

where ω (θ1) = θ1 (c11 β̂1 + c12 β̂2) + c12β̂1 + c22 β̂2

Q(θ1)
and A = Q

1
2 (θ1)ω (θ1) [SSE

+n|C|(β̂2θ1−β̂1)2

Q(θ1)
]−1/2.

The proof of Theorem 3 is given in the appendix. The proof of Theorem 2 is
simpler, and is omitted. It may be noted that for all these posteriors π(θ1|y) → 0
as |θ1| → ∞. Thus, unlike the usual frequentist approach, credible intervals for
θ1 based on these posteriors avoid the problem of potentially being the entire
real line.

4. Examples and Numerical Illustration

We first demonstrate how the slope-ratio and parallel-line assays are special
cases of the general problem considered in this paper. Other examples mentioned
in the introduction can be handled similarly. Later, we provide a numerical
illustration of the performance of the different priors for a parallel-line assay
example.

4.1. Slope-ratio assay

Consider an experiment where p doses (x11, . . . , x1p) of a standard drug S are
assayed m times and q doses (x21, . . . , x2q) of a test drug T are assayed u times
so that a set {Z1ik, i = 1, . . . , p; k = 1, . . . ,m; Z2jk, j = 1, . . . , q; k = 1, . . . , u}
of pm+ qu observations is obtained.

The assumed model for slope-ratio assay is

Z1ik = α+ βx1i + ε1ik, k = 1, . . . ,m; i = 1, . . . , p,

Z2jk = α+ βρx2j + ε2jk, k = 1, . . . , u; j = 1, . . . , q, (4.1)

where the ε1ik and ε2jk are i.i.d N (0, σ2). To see how this problem arises as a
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special case of the general regression model given in (2.1), let

Y1 = Z111, Y2 = Z112, . . . , Ym = Z11m
Ym+1 = Z121, Ym+2 = Z122, . . . , Y2m = Z12m

...
...

...
Y(p−1)m+1 = Z1p1, Y(p−1)m+2 = Z1p2, . . . , Ypm = Z1pm
Ypm+1 = Z211, Ypm+2 = Z212, . . . , Ypm+u = Z21u

...
...

...
Ypm+(q−1)u+1 = Z2q1, Y(p+q−1)n+2 = Z2q2, . . . , Ypm+qu = Z2qu.

We can then identify this model as a special case of the general regression model
with n = pm+ qu, r = 3, β1 = βρ, β2 = β, and β3 = α. Also, the design matrix
X is

XT =

 0 · · · 0 · · · 0 · · · 0 x21 · · · x21 · · · x2q · · · x2q
x11 · · · x11 · · · x1p · · · x1p 0 · · · 0 · · · 0 · · · 0
1 · · · 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1

 .
(4.2)

In this example, c11 = u
∑q
j=1(x2j − x̄2)2 + pmqu

pm+qu x̄
2
2, c12 = − pmqu

pm+qu x̄1x̄2 and
c22 = m

∑p
i=1(x1i − x̄1)2 + pmqu

pm+qu x̄
2
1 .

4.2. Parallel-line assay

The set up is the same as in the previous subsection, but the assumed model
here is

Z1ik = α+ βx1i + ε1ik, k = 1, . . . ,m; i = 1, . . . , p,
Z2jk = α+ β(x2j + ρ) + ε2jk, k = 1, . . . , u; j = 1, . . . , q, (4.3)

where the ε1ik and ε2jk are i.i.d. N (0, σ2). Once again, ρ is the parameter of
interest.

In order to recognize this model as a special case of (2.1), we first represent
the Z1ik’s and Z2jk’s as the Y vector as in the previous example. Also, as before,
n = pm+ qu, r = 3, β1 = βρ, β2 = β and β3 = α. The design matrix X in this
case is

XT =

 0 · · · 0 · · · 0 · · · 0 1 · · · 1 · · · 1 · · · 1
x11 · · · x11 · · · x1p · · · x1p x21 · · · x21 · · · x2q · · · x2q
1 · · · 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1

 . (4.4)

Also, c11 = pmqu
pm+qu , c12 = pmqu

pm+qu(x̄2 − x̄1) and c22 = m
∑p
i=1(x1i − x̄1)2 +

u
∑q
j=1(x2j − x̄2)2 + pmqu

pm+qu(x̄2 − x̄1)2.
In order to see the performance of the noninformative priors, we analyze

one parallel-line assay dataset using Jeffreys’ prior, the reference priors and the
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second order probability matching prior. The data given in Table 1, originally
analyzed in Finney (1978), pertain to turbidimetric measurements on the growth
response of Lactobacillus leichmannii to vitamin B12.

Table 1. Responses in an assay of vitamin B12.

Stimulus Standard Test
Dose -1.0 0.0 1.0 -1.0 0.0 1.0

0.96 1.06 1.17 0.91 1.09 1.15
0.91 1.07 1.14 0.93 1.04 1.15
0.92 0.99 1.14 0.98 0.97 1.14
0.76 0.86 1.13 0.96 1.06 1.16
1.03 1.06 1.13 0.89 1.04 1.10
0.93 1.02 1.15 1.01 1.02 1.15

In this case, n = 36, r = 3, p = 3, q = 3, SSE = 0.0961 and

β̂ =


β̂1

β̂2

β̂3

 =


β̂ρ

β̂

α̂

 =

0.0178
0.105
1.0238

 , C =

[
c11 c12
c12 c22

]
=

[
9 0
0 24

]
.

Finney obtained Fieller’s 95% confidence interval for this data as (−0.193, 0.551).
Table 2 provides the different equal-tailed 95% credible intervals. It appears
from this table that the noninformatives priors all performed well and produced
intervals shorter than Finney’s. Although Jeffreys’ and the two-group reference
priors seem to perform best lengthwise, our simulation results indicated that
the second-order matching prior and the one-at-a-time reference prior produced
intervals with probability content closer to the target 95% frequentist coverage
probability than the other priors.

Table 2. Posterior quantiles.

P0.025 P0.975 Length
πJ -0.165 0.523 0.688
π3R -0.181 0.529 0.710
π2R -0.170 0.517 0.687
π3R∗ -0.176 0.523 0.699
πS -0.182 0.541 0.723

5. Concluding Remarks

One of the common evaluation procedures of objective Bayesian priors is
to judge their frequentist performance. For instance, Mendoza (1990) compared
the Bayesian credible interval based on the two-group reference prior with the
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classical interval given by Finney. Similar comparisons are provided in Philippe
and Robert (1998), and Yin and Ghosh (2000). One of the objectives of this
paper is to consider several objective priors, and we have considered an enlarged
class comprising the reference priors as well as the matching priors. Based on our
numerical findings for the slope-ratio and parallel-line assays, it appears that the
posterior quantiles for the one-at-a-time reference prior are closest to those for
the second order probability matching prior. Thus, our general recommendation
is the use of one-at-a-time reference prior. It meets both the criteria of max-
imization of entropy, as well as matching the coverage probability of Bayesian
credible intervals with the corresponding frequentist coverage probability. Also,
this prior is also computationally attractive since evaluation of percentiles based
on this prior requires only one-dimensional numerical integration.

Gleser and Hwang ((1987), Theorem 1) have shown that, based on a sample
of arbitrary, but fixed size n, any confidence interval for θ1 of finite expected
length has frequentist coverage probability (taking the infimum over all points
in the parameter space) zero. Thus, irrespective of which procedure is used,
there will be certain regions of the parameter space where the frequentist cov-
erage probability will be far off target. Based on some of our earlier work (e.g.,
Ghosh, Carlin and Srivastava (1995); Yin and Ghosh (2000)), we have found in
the calibration and the Fieller-Creasy problems that the poor frequentist per-
formance of Bayesian procedures occurs in the neighborhood of θ1 = 0. We
want to emphasize, however, that our primary interest is the construction of
Bayesian credible sets for θ1. The coverage probability is then conditional on the
data, and is not based on the infimum over all points in the parameter space.
Thus, Bayesian credible sets can be constructed to provide any required cover-
age probability. Moreover, the asymptotic matching of the coverage probability
of Bayesian credible sets with the corresponding frequentist coverage probabil-
ity does not contradict Theorem 1 of Gleser and Hwang (1987). Indeed, these
authors have pointed out (p.1361) that large sample 100(1 − α)% confidence
intervals of any finite length exist for θ1 for every α in (0,1).

It is possible to generalize the findings of this paper to the more general
location-scale families of distributions. To be specific, let Y1, . . . , Yn be in-
dependently distributed with pdf’s σ−1f((yi − xTi β)/σ), i = 1, . . . , n, where
f(z) = f(−z) for all real z. Then, after some calculations, one finds the Fisher
information matrix

I(β, σ) = nc1σ−2
[
((sjl)) 0t

0 c2/c1

]
, (5.1)

where c1 =
∫∞
−∞(f ′(z)/f(z))2f(z)dz and c2 =

∫∞
−∞ z

2(f ′(z)/f(z))2f(z)dz − 1. In
the N(0, 1) case, c1 = 1 and c2 = 2. Thus the same orthogonal transforma-
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tion derived in Section 2 works in this case, and the objective Bayesian analysis
remains the same as before.

6. Appendix

Proof of Theorem 3. Since θ2 = β2Q
1/2(θ1), the prior π2a(θ) transforms to

π
(2)
a (θ1, β2, β3, βr, σ)∝|β2|σ−a. Accordingly, the joint posterior of θ1, β2, . . . , βr, σ

is

π(2)a (θ1, β2, β3, βr, σ|y)

∝ σ−(n+a−r+2)|β2| exp
[
− 1

2σ2
{SSE+n(β2θ1−β̂1, β2−β̂2)C(β2θ1−β̂1, β2−β̂2)T }

]
× exp

(
− n

2σ2
uTA22u

)
,

where uT = (β3− β̂3, . . . , βr− β̂r)−(β2θ1− β̂1, β2− β̂2)A12A
−1
22 . First, integrating

with respect to β3, . . . , βr, one gets

π(2)a (θ1, β2, σ|y)

∝ σ−(n+a)+r−2|β2| exp
[
− 1

2σ2
{SSE+n(β2θ1−β̂1, β2−β̂2)C(β2θ1−β̂1, β2−β̂2)T }

]
.

When n+ a > r + 1, integrating with respect to σ,

π(2)a (θ1, β2|y) ∝ |β2|
{
SSE+n(β2θ1−β̂1, β2−β̂2)C(β2θ1−β̂1, β2−β̂2)T

}−n+a−r+1
2 .

Recalling the definition of ω(θ1) after Theorem 3, one has the identity

(β2θ1− β̂1, β2− β̂2)C(β2θ1− β̂1, β2− β̂2)T = Q(θ1)[β2−ω(θ1)]2+ |C|(β̂2θ1 − β̂1)2
Q(θ1)

.

Hence,
∫∞
−∞ π(θ1, β2|y)dβ2 simplifies to∫ ∞

−∞
|β2|

{
SSE + nQ(θ1)

[
β2 − ω(θ1)

]2
+
n|C|(β̂2θ1 − β̂1)2

Q(θ1)

}−n+a−r+1
2

dβ2

=
∫ ∞

0
β2

{
SSE +

n|C|(β̂2θ1 − β̂1)2
Q(θ1)

+ nQ(θ1)
[
β2 − ω(θ1)

]2}−n+a−r+1
2

dβ2

−
∫ 0

−∞
β2

{
SSE +

n|C|(β̂2θ1 − β̂1)2
Q(θ1)

+ nQ(θ1)
[
β2 − ω(θ1)

]2}−n+a−r+1
2

dβ2.

Writing z = Q
1
2 (θ1)[β2 − ω(θ1)], the first of these terms is

1

θ
1
2 (θ1)

1
n+ a− r − 1

{
SSE +

n|C|(β̂2θ1 − β̂1)2
Q(θ1)

+ nQ(θ1)ω2(θ1)
}−n+a−r−1

2
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+ω(θ1)
{
SSE +

n|C|(β̂2θ1 − β̂1)2
Q(θ1)

}−n+a−r
2

∫ ∞

−A
dz

(1 + z2)
n+a−r+1

2

,

where A = Q
1
2 (θ1)ω(θ1)[SSE + n|C|(β̂2θ1−β̂1)2

Q(θ1)
]−1/2. Similarly, the second of the

terms is

1

Q
1
2 (θ1)

1
n+ a− r − 1

{
SSE +

n|C|(β̂2θ1 − β̂1)2
Q(θ1)

+ nQ(θ1)ω2(θ1)
}−n+a−r−1

2

−ω(θ1)
{
SSE +

n|C|(β̂2θ1 − β̂1)2
Q(θ1)

}−n+a−r
2

∫ ∞

A

dz

(1 + z2)
n+a−r+1

2

.

Thus, the marginal posterior pdf of θ1 is proportional to

2

(n+ a− r − 1)Q
1
2 (θ1)

{
SSE +

n|C|(β̂2θ1 − β̂1)2
Q(θ1)

+ nQ(θ1)ω2(θ1)
}−n+a−r−1

2

+2ω(θ1)
{
SSE +

n|C|(β̂2θ1 − β̂1)2
Q(θ1)

}−n+a−r
2

∫ A

0

dz

(1 + z2)
n+a−r+1

2

.

In order to see the propriety of the posterior, it is more convenient to look
at π(β, σ|y):

π(β, σ|y) ∝ σ−(n+a)|β2| exp
[
− 1

2σ2

{
SSE + (β − β̂)TXTX(β − β̂)

}]
. (6.1)

Now, integrating out with respect to σ, one gets

π(β|y) ∝ |β2|
{
SSE + (β − β̂)TXTX(β − β̂)

}−n+a−1
2

.

Recognizing the above pdf as proportional to E
(
|β2|

∣∣∣y), where β has a mul-

tivariate t-distribution with location parameter β̂, scale matrix SSE
r (XTX)−1

and degrees of freedom n+ a− r− 1, the propriety of the posterior follows when
n + a > r + 1. On the other hand, if n + a ≤ r + 1,

∫
π(β|y)dβ = +∞. This

proves the theorem.
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