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Abstract: Using the covariance structure induced by the exchangeability of sampling

units, a unified approach to the analysis of dyadic data is proposed. Dyadic data,

encountered in diallel designs in genetics and other substantive scientific fields,

arise when pairs of sampling units are studied. The problem has been addressed

independently in a number of different areas of study. This paper argues that dyadic

data structures involve the same statistical elements as those of ordinary analysis

of variance and multivariate analysis. In addition to a synthesis of the available

literature, the article provides a closed form expression of the Gaussian likelihood,

the sufficient statistics and their joint distributions, and outlines for EM and ECM

algorithms for handling missing data and other complications. The approach is

illustrated with an applied example. The objective is to show that the analysis

of dyadic data can be developed as a standard statistical method not unlike the

analysis of variance, albeit with a multivariate twist. Dyadic data structures can

be treated similarly to ordinary factorial structures and have the potential to be

more widely used.
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1. Introduction

A common experimental design in genetics is the diallel cross, in which pairs
of distinct strains are cross-bred in order to estimate genetic effects. According
to Wright (1985, p.307), this design “has probably attracted more attention and
been the subject of more theoretical examination and practical application in the
past 30 years than any other mating design”. ANOVA-style models have been
described by many researchers (Yates (1947), Kempthorne (1952), Cockerham
and Weir (1977), Simms and Triplett (1996), Zhu and Weir (1996a, b), Hus-
band and Gurney (1998), Lynch and Walsh (1998), Lipow and Wyatt (1999), Xu
and Zhu (1999), Motten and Stone (2000)). However, this basic data structure
is not unique to genetics. Scientific interest in outcomes based on the pairing
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of sampling units arises in psychophysics (Bechtel (1967, 1971)), social psychol-
ogy (Kenny (1994), Lashley and Bond (1997)), comparative psychology (Lev
and Kinder (1957)) and social network analysis (Kraemer and Jacklin (1979),
Iacobucci and Wasserman (1987), Wasserman and Faust (1994)).

We use the term “dyadic data” to describe data derived from observations
on pairs of sampling units. When all possible pairings are observed, the experi-
mental design is often called either a diallel cross or a round-robin. A traditional
analytic approach to dyadic data has been to fit variance component models,
with independent developments in the above mentioned fields (Cockerham and
Weir (1977), Warner, Kenny and Stoto (1979), Wong (1982), Bond and Lashley
(1996)). However, considering the common formal structure in dyadic data with
regard to sampling and observation, which does not depend on the content area,
it is rather curious that each discipline has separately invented its own approach.
Indeed, there has been little recognition of this common formal structure, and of
the opportunity to synthesize the separately developed methods within a unified
statistical framework. To see the peculiarity of the situation with dyadic data
from a historical perspective, imagine that a diverse group of substantive areas
developed and used their own equivalent of the two-way analysis of variance,
without a central documentation in the statistical literature of the formal pro-
cedure, or common knowledge in each area that the same formal procedure was
being used in each specific instance. Unfortunately, this is now more or less the
case for dyadic data. Our objective is to establish a unified framework for the
statistical analysis of dyadic data, and to relate and generalize existing methods
within this framework. We begin by providing some background information.

2. The Generation of Dyadic Data

2.1. Notation

To formally describe the dyadic data structure, we set up a system of sub-
scription to distinguish it from two-way data in an ordinary analysis of variance.
We use the symbol (i, j) to indicate an ordered pair formed by distinct sampling
units i and j from the same population, and y(i,j) to indicate a single observation
on such an ordered pair. Reciprocal dyads are defined as two dyads consisting
of the same sampling units in opposite order, i.e., (i, j) and (j, i). In the case
of multiple observations on the same dyad, we will use y(i,j)k to denote the kth
observation on dyad (i, j). The vector of all the data points is denoted by y.

2.2. Data generation

The contemplation of the sources of variability for dyadic data can be guided
by the accumulated experience with variance component models associated with
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ordinary analysis of variance. The dyads can naturally be grouped into recipro-
cals, and accordingly we can initially decompose the variability into that from
within reciprocals, and that from between reciprocals. The within reciprocals
and between reciprocals variability can each in turn have two sources, that due
to individual units and that due to interaction between individual units. From
the above considerations the variance component model for dyadic data should
have the form

y(i,j) = µ + gi + gj + sij + di − dj + rij , (1)

where sij = sji and rij = −rji, with µ being a constant (or random variable),
g and s representing between reciprocals variability, d and t representing within
reciprocals variability, and all terms except µ having mean 0. In keeping with
the tradition of analysis of variance, we assume that all terms are normally
distributed, and the interaction terms are independent of each other and of the
individual main effect terms.

Under these assumptions, y(i,j) can be generated as follows: draw two in-
dependent (g, d)’s from N(0,Σgd) for individuals i and j; independently draw
r from N(0, σ2

r ) and s from N(0, σ2
s ); y(i,j) is realized via equation (1). Note

that even though we allow for a correlation between g and d, variances are still
additive in (1). Given σ2

s , σ2
r , σ2

g , σ2
d, and σgd, var(y(i,j)) = 2σ2

g + σ2
s + 2σ2

d + σ2
r ,

because the two terms involving σgd cancel out. The additivity of variance seems
to make it reasonable to call (1) a variance component model. Later we see that
(1) can take several equivalent forms.

2.3. A justification of the data generation mechanism based on covari-
ance structure

The exchangeability induced by random sampling of units from a popula-
tion puts constraints on the covariances between observations on dyads. Since
the group action on dyads is transitive, the variances of the observations are all
the same, denoted by σ2. As a result of group invariance, there are at most
five different covariances between different dyads, denoted by σ2ρi, i = 0, . . . , 4.
There is a one-to-one correspondence between the variance component parame-
ters in (1) and the above covariance parameters together with σ2, if we specify
µ in (1) as a random variable. Therefore, the variance component model (1) is
justified by exchangeability in the sense of Dawid (1988). The expressions of the
parameters σ2ρi {i = 0, . . . , 4} and σ2 as functions of those in (1) are given in
the third column of Table 1, with µ specified as a constant, as is the case in the
rest of the paper. If we specify µ in (1) as a random variable, then its variance
σ2

µ would be added to each term in the third column of the table. Translating the
covariance structure into the variance component model (1) reveals the structure
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of dyadic data. Model (1) indicates that certain dyadic phenomena measured
by a continuous variable can potentially be explained by two latent traits of the
individual units within the dyads, and two synergistic effects specific to each
dyad. Of course, as with the simplest one-way random effects model, the above
data generation mechanism, while preserving the covariance pattern required by
exchangeability, puts constraints on the covariances more stringent than those
guranteeing the nonnegative definiteness of the entire covariance matrix. This
implies that the variance component model (1) is not a plausible data genera-
tion mechanism when the covariance parameters do not satisfy those constraints,
similar to the one-way random effects model when the intraclass correlation is
negative. Thus covariance parameters have an advantage over variance compo-
nents in that the former are more generally applicable, as was pointed out in
Dawid (1988). We will exploit this advantage in the formulation provided below.

Table 1. Covariance structure.

observations Covariance
(i, j) and (i, j) σ2 2σ2

g + σ2
s + 2σ2

d + σ2
r

(i, j) and (l, m) σ2ρ0 0
(i, j) and (j, i) σ2ρ1 2σ2

g + σ2
s − 2σ2

d − σ2
r

(j, i) and (i, l) σ2ρ2 σ2
g − σ2

d

(i, j) and (i, l) σ2ρ3 σ2
g + 2σgd + σ2

d

(i, j) and (l, j) σ2ρ4 σ2
g − 2σgd + σ2

d

3. Relation to Models in Genetics and Psychology

Model (1), along with some close variants, has been proposed in genetics,
social psychology and psychophysics, with very little cross-referencing among the
fields. Model (b) in Cockerham and Weir (1977) is identical to (1). The Social
Relations Model (SRM) presented in Kenny (1994, p.232) (see also the references
therein), which is the Model (a) of Cockerham and Weir (1977) under different
notation, is a linear transformation of (1). Under the SRM, y(i,j) is decomposed
into random effects a, b, and c, with

y(i,j) = µ + ai + bj + cij . (2)

The terms in (1) and (2) are related by ai = gi + di, bj = gj − dj , and cij =
sij + rij . The parameters in (2) are the variances of a, b and c, the covariance
between ai and bi, and the covariance between cij and cji. Models (2) and
(1) are equivalent in the sense that both generate the same pattern in, and
impose the same constraints on, the covariance structure of the entire data vector.
Furthermore, there is a one-to-one linear relationship between the parameters in
(2) and (1).
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A third formulation is the bio model given in Cockerham and Weir (1977),
see also Lynch and Walsh (1998, p.605). The bio model differs slightly from (1)
and (2), and has the form

y(i,j) = µ + ni + nj + tij + mi + pj + kij , (3)

where ni and nj represent nuclear contributions, mi the extranuclear maternal
effect, and pj the extranuclear paternal effect. The reader is referred to Cock-
erham and Weir (1977) for more details. Table 2 shows the relations among
the parameters in Models (1), (2) and (3). Essentially the same information is
presented by Cockerham and Weir (1977, p.189).

Table 2. Parameters in Models (1), (2) and (3)

Diallel SRM Bio
σ2

g − σ2
d σab σ2

n

2σ2
d − 2σgd σ2

b − σab σ2
p

2σ2
d + 2σgd σ2

a − σab σ2
m

σ2
s − σ2

r σcc′(= cov(cij , cji)) σ2
t

2σ2
r σ2

c − σcc′ σ2
k

From Table 2 it is clear that Model (3) differs from Models (1) and (2)
by putting additional constraints on the covariance parameters in Table 1. The
three models have received independent attention because they represent distinct
situations. It is true, for instance, that Models (1) and (2) are statistically
equivalent, but they tend to suggest different mechanisms. In the diallel model,
outcomes arise from a composition of effects that are symmetrical with respect
to position (gi and sij), along with effects due to order of position (di and rij).
The model has been used extensively in genetics (Simms and Triplett (1996)),
and in the field of psychophysics Bechtel (1967, 1971) derived two very similar
models for analyzing ratings of all possible paired compositions and contrasts of
stimuli.

Model (2), the SRM, has been advocated by Kenny (1994) to analyze social
interactions. A common task in a social psychology experiment occurs when a
perceiver rates a target on some dimension of interest. The rating is affected
by the perceiver’s disposition to give certain ratings, along with the target’s
projected level on the dimension. Here the diallel model is not the most natural
as the perceiver and target effects are conceptually distinct: a personality rating,
for example, is not a composition of two individual effects of the same kind. Lev
and Kinder (1957) and Lashley and Bond (1997) describe other observational
settings where the SRM model is a better choice than the diallel model.
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Finally, the bio model has been popular in the genetics literature (Husband
and Gurney (1998), Lipow and Wyatt (1999), Motten and Stone (2000)). Here
the emphasis has been on the estimation of nuclear effects, and extranuclear ef-
fects attributable to maternal and paternal sources. Although the preference for
particular forms of the variance component models and their associated parame-
terizations depends on the scientific context, we believe that one parameterization
is clearly most convenient for likelihood-based inference for dyadic data. We call
this parameterization canonical, and now formally introduce it.

4. Likelihood-Based Inference for Dyadic Data

Along with statistical models for dyadic data, methods of statistical inference
have also been extensively documented. Both Cockerham and Weir (1977) and
Warner, Kenny and Stoto (1979) contain quadratic point estimates and schemes
of hypothesis testing for the models they postulate. Although their point es-
timates based on the first two moments can be justified without making any
distributional assumptions, some of their proposed procedures of statistical in-
ference, such as F-tests, can be established by assuming normality. So far no
systematic theory of statistical inference based on normal likelihood, analogous
to that for the ordinary analysis of variance, seems to be available to researchers
in the relevant substantive areas and applied statisticians. In this section we offer
such a systematic treatment.

First, we provide a simple expression for the likelihood, based on the co-
variance structure in Table 1 under the normal distribution, when all pairs of N

units are observed. This is called a diallel design (Cockerham and Weir (1977))
in the genetics literature and a round-robin design in the psychological litera-
ture. The likelihood for the situations in which there are repeated measures is
also provided. From those expressions of likelihood, we next give the maximum
likelihood estimates of the parameters, and the distribution of sufficient statistics
which can be used to derive test statistics. Bayesian inference for parameters is
then discussed. Finally, algorithms for maximum likelihood computation when
there are missing data are outlined.

4.1. The likelihood function

Although not obvious from casual inspection, it is not difficult to verify
directly that the covariance matrix of the vector of observations on all the N(N−
1) dyads that can be formed with N units, with elements specified in Table 1,
can be expressed as a linear combination of a set of known matrices such that
its inverse is also a linear combination of the same set of matrices, with the
coefficients being simple functions of those of the original matrix. Specifically,
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let Σ denote a covariance matrix having the pattern given in Table 1, then

Σ = λuEu + λsEs + λrEr + λgEg + λdEd + λgd∆gd, (4)

Σ−1 = λ−1
u Eu+λ−1

s Es+λ−1
r Er+(λgλd−λ2

gd)
−1(λdEg+λgEd−λgd∆gd). (5)

A patterned covariance matrix described by Table 1 is said to be in its canonical
form when itself and its inverse are expressed in the form of (4) and (5), and the
parameters in those expressions are called canonical parameters. The E matrices
in (4) are orthogonal projections onto the subspaces arising from fitting (1) as
a fixed effect model, with the correspondence made explicit through the choice
of subscripts. The matrix ∆gd, as a linear operator, sends the range of Eg onto
that of Ed, the range of Ed onto that of Eg and all vectors in the orthogonal
complement of the sum of Ed and Eg to 0. The elements of the matrices in (4)
are displayed in Table 3.

Table 3. The elements of matrices.

index Σ Eu Eg Es Ed Er ∆gd

(i, j), (i, j) σ2 1
N(N−1)

1
N

1
2− 1

N − 1
N(N−1)

1
N

1
2− 1

N 0

(j, i), (i, j) σ2ρ1
1

N(N−1)
1
N

1
2− 1

N − 1
N(N−1) − 1

N − 1
2 + 1

N 0

(i, j), (j, k) σ2ρ2
1

N(N−1)
N−4

2N(N−2) − N−4
2N(N−2)− 1

N(N−1) − 1
2N

1
2N 0

(i, j), (i, k) σ2ρ3
1

N(N−1)
N−4

2N(N−2) − N−4
2N(N−2)− 1

N(N−1)
1

2N − 1
2N

1√
N(N−2)

(i, j), (k, j) σ2ρ4
1

N(N−1)
N−4

2N(N−2) − N−4
2N(N−2)− 1

N(N−1)
1

2N − 1
2N − 1√

N(N−2)

(i, j), (k, l) σ2ρ0
1

N(N−1) − 2
N(N−2)

2
N(N−2)− 1

N(N−1) 0 0 0

From the simple expression (5) for the inverse, and Table 3 for the matrix
elements, we can write down the complete data loglikelihood (integrating out µ)
in terms of canonical parameters as

−(N − 1)(N − 2)
4

ln λr − N(N − 3)
4

lnλs − N − 1
2

ln[λgλd − λ2
gd]

− tr(Eryy′)
2λr

− tr(Esyy′)
2λs

−λdtr(Egyy′)+λgtr(Edyy′)−λgdtr(∆gdyy′)
2[λgλd−λ2

gd]
. (6)

Thus, the MLE’s of the canonical parameters are:

λ̂r =
2tr(Eryy′)

(N − 1)(N − 2)
, λ̂s =

2tr(Eryy′)
N(N − 3)

, λ̂g =
tr(Egyy′)

N − 1
,

λ̂d =
tr(Edyy′)

N − 1
, λ̂gd =

tr(∆gdyy′)
2(N − 1)

. (7)
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From the above MLE’s for the canonical parameters we can obtain MLE’s for the
covariance parameters by using Table 3, which expresses covariance parameters
as linear combinations of canonical parameters whose coefficients can be found in
the corresponding columns. The variance parameters in Models (1), (2) and (3)
may then be obtained by using Tables 1 and 2. However, although the MLE’s for
the canonical parameters will automatically satisfy the necessary and sufficient
conditions for the covariance matrix Σ to be nonnegative definite, which are the
nonnegativity of λs, λr, and the nonnegative definiteness of Λgd (see (17)), there
is no guarantee that using this approach the estimated variance components
will have nonnegative variances and nonnegative definite covariance matrices in
Models (1), (2) and (3). Various additional constraints need to be imposed on
the canonical parameters. In the specific case of Model (3), such constraints can
be found in Section 5.

4.2. The likelihood function with repeated measures

Warner, Kenny and Stoto (1979) considered round-robin designs with re-
peated measures on each dyad. Their model amounts to adding an error term to
Model (2), or equivalently (in the statistical sense) Model (1), that is correlated
between reciprocal dyads, and thus can be expressed as follows:

y(i,j)k = µ + gi + gj + sij + di − dj + rij + eijk, (8)

where (i, j)k denotes the kth repeated measure on dyad (i, j), var(eijk) = σ2
e

and cov(eijk, ejik) = σ2
eρ. Expressions (4) and (5) can also be extended for the

covariance matrix Σ (and its inverse) for the balanced round-robin design with K

observations on all the N(N − 1) dyads that can be formed with N units under
Model (8). Specifically, the KN(N − 1) × KN(N − 1) matrix Σ and its inverse
can be expressed as

Σ = λuEu + λsEs + λrEr + λgEg + λdEd + λgd∆ + λvEv + λwEw, (9)

Σ−1 = λ−1
u Eu + λ−1

s Es + λ−1
r Er+(λgλd − λ2

gd)
−1(λdEg+λgEd − λgd∆gd)

+λ−1
v Ev + λ−1

w Ew, (10)

where the elements of Ev and Ew, both orthogonal projections, are tabulated
in Table 4, and the rest of the matrices are defined as in Table 3 with each
entry replaced by a K ×K matrix in which all the elements are 1

K×(the original
entry). In terms of group invariance, covariance matrices of the form (9) are
precisely those invariant under the permutations on the sampling units and pairs
of repeated measurement on reciprocal dyads.
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Table 4. The elements of Ev and Ew.

(i, j)k, (i, j)k (j, i)k (i, j)k′ (j, i)k′ other

Ev
1
2 − 1

2K
1
2 − 1

2K − 1
2K − 1

2K 0

Ew
1
2 − 1

2K − 1
2 + 1

2K − 1
2K

1
2K 0

Table 5 gives the relation between the canonical parameters and the variance
components for Model (8), from which the relation between the parameters in
(1) and (5) can be obtained by setting K = 1 and σ2

e = 0. The complete data
loglikelihood in terms of canonical parameters is

−(N − 1)(N − 2)
4

ln λr − N(N − 3)
4

ln λs − N − 1
2

ln[λgλd − λ2
gd]

−N(N − 1)(K − 1)
4

(ln λw + ln λv) − tr(Evyy′)
2λv

− tr(Ewyy′)
2λw

− tr(Eryy′)
2λr

− tr(Esyy′)
2λs

− λdtr(Egyy′) + λgtr(Edyy′) − λgdtr(∆gdyy′)
2[λgλd − λ2

gd]
(11)

From the above loglikelihood, the MLE’s are:

λ̂v =
2tr(Evyy′)

N(N − 1)(K − 1)
λ̂w =

2tr(Ewyy′)
N(N − 1)(K − 1)

λ̂gd =
tr(∆gdyy′)
2(N − 1)

, (12)

with the rest having the same formal expressions as in (7). The MLE’s automat-
ically satisfy the necessary and sufficient conditions on the canonical parameters
for the entire covariance matrix to be nonnegative definite: that λv, λw, λr, λs

be nonnegative and Λgd (see (17)) be nonnegative definite.

Table 5. Repeated measures parameters.

Canonical Variance
λg 2K(N − 2)σ2

g + λs

λs 2Kσ2
s + (1 + ρ)σ2

e

λd 2KNσ2
d + λr

λr 2Kσ2
r + (1 − ρ)σ2

e

λv (1 + ρ)σ2
e

λw (1 − ρ)σ2
e

λgd 2K
√

N(N − 2)σgd

4.3. The complete data inference

Statistical inference beyond point estimation for variance components under
round-robin (diallel) designs can be based on the joint distribution of the sufficient
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statistics in (11) (or (6) when K = 1). In what follows we work with the more
general (11). The distribution of the sufficient statistics, which are quadratic
forms of the data vector, are given below.

SSw = y′Ewy = tr(Ewyy′) ∼ λwχ2
1
2
(K−1)N(N−1)

,

SSv = y′Evy = tr(Evyy′) ∼ λvχ
2
1
2
(K−1)N(N−1)

,

SSg = y′Egy = tr(Egyy′) ∼ λgχ
2
(N−1), (13)

SSs = y′Esy = tr(Esyy′) ∼ λsχ
2
1
2
N(N−3)

,

SSd = y′Edy = tr(Edyy′) ∼ λdχ
2
(N−1),

SSr = y′Ery = tr(Eryy′) ∼ λrχ
2
1
2
(N−1)(N−2)

,(
SSg SCgd

SCgd SSd

)
∼ W2

((
λg λgd

λgd λd

)
, N − 1

)
,

where SCgd = 1
2y

′∆gdy = 1
2 tr(∆gdyy′). We use the notation ‘SS’ (‘SC’) for

the quadratic forms because they have the same algebraic and distributional
properties as sums of squares in analysis of variance or sums of cross products in
multivariate analysis. The sums of squares add up to the total sum of squares just
as in an ordinary analysis of variance. Since the above distributional results can
be read off the loglikelihood (11), formal derivations are omitted. Based on the
distributions of the sufficient statistics, appropriate procedures can be derived for
statistical inference with regard to the variance components. Wong (1982) also
addressed the likelihood-based inference for Model (8), but did not obtain closed
form MLE’s (7) (or (12)) and simple expressions of loglikelihoods (11) (or (6)).
Nor did he obtain all the sufficient statistics and their distributions. Cockerham
and Weir (1977), working with the special case of ρ = 0, correctly pointed out
that some of the sums of squares in their paper are correlated. However, their
method was not based on the likelihood function, and therefore they did not give
the joint distribution of the sums of squares.

When ρ = 0, as is the case in most diallel designs in genetics, λv = λw, and
SSw and SSv can be pooled to become the ‘within dyad’ sum of squares. Let
λe = λv = λw, SSe = SSw + SSv, and Ee = Ew + Ev. The loglikelihood for this
special case is

−(N − 1)(N − 2)
4

ln λr − N(N − 3)
4

ln λs − N − 1
2

ln[λgλd − λ2
gd]

−N(N − 1)(K − 1)
2

ln λe − tr(Eeyy′)
2λe

− tr(Eryy′)
2λr

− tr(Esyy′)
2λs

−λdtr(Egyy′) + λgtr(Edyy′) − λgdtr(∆gdyy′)
2[λgλd − λ2

gd]
(14)
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From the above loglikelihood we can see that the sufficient statistics SSw =y′Ewy
and SSv = y′Evy collapse into SSe = SSw + SSv = y′Eey ∼ λeχ

2
(K−1)N(N−1).

The covariance matrices under the condition ρ = 0 are precisely those invariant
under all permutations on the sampling units and on repeated measures inde-
pendently within each dyad.

In the absence of ρ the mean square associated with SSe is the ‘error term’,
the maximum likelihood and unbiased estimator of σ2

e in Model (8). However,
depending on the actual design, a number of degrees of freedom in SSe may need
to be allocated to certain design effects, with the remainder serving as error term.
For the diallel experiment example in Cockerham and Weir (1977), one degree
of freedom is allocated to a ‘block effect’.

4.4. The likelihood computation when there are missing data and
covariates

Additional problems in the estimation of the parameters in Model (8) (and
its special cases and variants) resulting from missing data and covariates can
be handled by the EM algorithm (Dempster, Laird and Rubin (1977)) and its
recent extensions (e.g., Meng and Rubin (1993), Liu and Rubin (1994)). Here the
phrase ‘missing data’ is used in its most general sense, which includes the cases
when certain observations are omitted by design, as well as the cases when data
are lost by accident. Indeed, if we think along the lines of Rubin and Szatrowski
(1982), the relevance of the results in this section is not restricted to dyadic data.
The results are useful for any patterned covariance that can be ‘imbedded’, in
the sense of Rubin and Szatrowski (1982), in the covariance structures (4) or (9).
In this section we only sketch the steps of the EM algorithm, without addressing
the issue of efficient implementation. The reader is recommended to consult Liu
and Rubin (1994), Liu, Rubin and Wu (1998), Meng and van Dyk (1997, 1998).

The EM algorithm for maximum likelihood estimation of the parameters
based on the loglikelihood (11), when there are missing data, is sketched below.
Specialization to Model (6) is straightforward. The t-th E step:

V(t) = y∗(t)(y∗(t))′ +

(
Σ̂(t)

mis,mis − Σ̂(t)
mis,obs(Σ̂

(t)
obs,obs)

−1Σ̂(t)
obs,mis 0

0 0

)
, (15)




y∗(t)
mis = µ̂(t)Jmis + Σ̂(t)

mis,obs(Σ̂
(t)
obs,obs)

−1(yobs − µ̂(t)Jobs)

y∗(t)
obs = yobs (J = summing vector)

, (16)

where y∗(t)
mis is the conditional expectation of ymis, and V(t) is the conditional

expectation of yy′ given yobs at the values of parameters obtained from the
previous M step. The (t+1)-st M step: use (12) and (7) with yy′ replaced by V(t)
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to obtain the new estimates of the canonical parameters; the new estimate for the
mean parameter is µ̂(t+1) = J ′y∗(t). For methods of evaluating the asymptotic
variance-covariance matrix of the estimates obtained by EM algorithm, see Meng
and Rubin (1991), van Dyk, Meng and Rubin (1995), and Oakes (1999). Note
that, as in Little and Rubin (1987), ‘mis’ and ‘obs’ refer to the set of indices of
missing and observed elements of data vector, respectively.

For special patterns of fixed effects superimposed on the covariance struc-
ture, closed form solutions could still be possible. When arbitrary covariates
are incorporated into Model (12), MLE’s can be obtained from the ECM al-
gorithm (Meng and Rubin (1993)). The loglikelihood in the presence of fixed
effects represented by model matrix X and coefficients β can be obtained from
(11) by replacing y with (y − Xβ). The ECM algorithm can be implemented
through the following modification of EM algorithm: (1) replace µ̂(t)J in the

E step of the EM algorithm (16) with y − Xβ̂
(t)

; (2) replace the V(t) in the

M step of the EM algorithm with V(t) − 2y∗(t)(Xβ̂
(t)

)′ + (Xβ̂
(t)

)(Xβ̂
(t)

)′; (3)
β̂(t+1) = (X′(Σ̂(t+1))−1X)−1X′(Σ̂(t+1))−1y∗(t). The EM algorithms described in
this section appear to be simpler than those in Wong (1982), due to the avail-
ability of closed form MLE’s and the simple expression of loglikelihood.

4.5. Toward Bayesian inference for dyadic data

The loglikelihood (11) has five additive components. Four of the components
correspond to the density of the chi-square distribution with scale parameters λw,
λv, λr, λs, respectively. The fifth component corresponds to a Wishart density
with scale parameter

Λgd =

(
λg λgd

λgd λd

)
. (17)

If we assign priors independently for the parameters λw, λv, λr, λs, and Λgd

associated with each of the five components of the likelihood, which seems to be a
reasonable thing to do, then those parameters would be independent a posteriori.
The standard reference prior for λw, λv, λr, and λs is Jeffreys’s prior, under which
the posterior distributions of those parameters are λw|y ∼ SSwχ−2

1
2
(K−1)N(N−1)

;

λv|y ∼ SSvχ
−2
1
2
(K−1)N(N−1)

; λr|y ∼ SSrχ
−2
1
2
(N−1)(N−2)

; λs|y ∼ SSsχ
−2
1
2
N(N−3)

.

There seems to be less agreement on the choice of reference prior for the scale
parameters of a Wishart density, a topic that deserves further study. The reader
is advised to consult recent references, such as Yang and Berger (1994), on this
topic. In a subsequent numerical example, we choose for Λgd the reference prior
documented in Box and Tiao (1973, p.426).

The Bayesian approach can overcome difficulties with the frequentist ap-
proach with regard to the inference for some of the parameters. Examples of
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such parameters are the variances σ2
a and σ2

b , in the Social Relations Model, and
the parameter σ2

n (= σ2
g − σ2

d) in Cockerham and Weir (1977). The inference for
those parameters, especially beyond point estimation, is a hard problem within
the frequentist framework, but can readily be dealt with from the Bayesian per-
spective. The posterior distribution of those parameters can easily be found,
through simple simulation if necessary, given the joint distribution of the canon-
ical parameters. The constraints induced by the nonnegativity of variance com-
ponents are also easier to cope with in the Bayesian framework (Box and Tiao
(1973, p.67)).

5. Some Practical Implications of the Theoretical Advances Illustrated
by Numerical Examples

The likelihood-based and Bayesian methods of statistical inference for dyadic
data developed in this paper is not only of theoretical interest, but also of practi-
cal significance. In this section we illustrate the application of the methods pro-
posed in the previous sections. The data set used for the illustration is displayed
in Appendix C of Cockerham and Weir (1977), which contains the flowering times
in days of crosses from eight inbred lines, originally from Hayman (1954). We
perform two statistical procedures that are beyond what can be provided by the
methods developed in Cockerham and Weir (1977).

The first procedure is a test of the null hypothesis σ2
m = σ2

p in the bio model,
which is exact under the assumption of normality. From Tables 2 and 5, this
hypothesis is equivalent to λgd = 0. Based on the last equation in (13), an
obvious test statistic is h = SCgd/

√
SSgSSd, which is distributed as an ordi-

nary sample correlation coefficient with its corresponding population value equal
to λgd/

√
λgλd. In particular the null distribution of

√
N − 1h/

√
1 − h2 is a t-

distribution with N−1 degrees of freedom. Cockerham and Weir (1977) provided
a test statistic for the null hypothesis σ2

m = σ2
p for the factorial data structure,

but not the diallel data structure, due perhaps to the limitations of the methods
of symmetrical products (Koch (1967)) and of squares of symmetrical differences
(Koch (1968)) employed therein. For numerical illustration, we use data in Ap-
pendix C of Cockerham and Weir (1977), from which we obtain SCgd = −67.635,
SSg = 1225.312, and SSd = 374.026. Therefore, h = −0.1 and the corresponding
t statistic is equal to −0.266, which indicates that λgd, and hence σ2

m −σ2
p, is not

significantly different from 0.
The second procedure is an empirical test for the plausibility of the bio

model itself. For any covariance matrix whose pattern is specified in (9), or the
special case of λv = λw as a result of the appropriate group invariance, the only
constraints on the canonical parameters imposed by the nonnegative definiteness
are that they are all nonnegative and Λgd is nonnegative definite. Any variance
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component model would impose additional constraints. Tables 2 and 5 tell us
that the Cockerham-Weir model (3) requires more stringent constraints than the
other two variance component models discussed in this paper. It would therefore
be natural to ask how likely do the constraints imposed by (3), or its repeated
measures version, hold given a set of data. A very simple way to address this
question is to calculate the posterior probability that the constraints are satisfied.
If we choose the prior as described in Section 4.5, and use the reference prior in
Box and Tiao (1973, Chapter 8) for Λgd, then Λ−1

gd |y ∼ W (S−1
gd , N − 1), and

the distributions of the other parameters are given in Section 4.5. Now it is
straightforward to calculate, via simulation, the probability that the following
constraints imposed by the bio model are met: (λg − λs)/2K(N − 2) − (λd −
λr)/2KN ≥ 0, −(λd − λr)/N ≤ λgd/

√
N(N − 2) ≤ (λd − λr)/N , λs ≥ λr,

λr ≥ λe. Ten thousand samples were obtained from the posterior distribution
using Splus on a Sun workstation. Out of those 10000 samples 5334 meet the
constraints, hence the posterior odds is 1.143 : 1 in favor of the bio model.

The two examples in this section cover only a small fraction of the range
of potential applications that can be of utility to substantive fields. In partic-
ular, the scheme for Bayesian inference is general enough to address statistical
inference for all the parameters, including those of scientific interest in the Social
Relations Model, the diallel model, and the bio model. There is clearly a need
for inferential tools for a variety of parameters, see for example Husband and
Gurney (1998, p.175) in the case of bio model. Sometimes it may be desirable
to adapt the general method for specific purposes, and this is a good topic for
future investigation.

6. Discussion

The subject of dyadic data structure has a long history in statistics. Frank
Yates addressed it in his article in the first volume of Heredity, in which (1)
appeared as a fixed effects model. Since then the problem has emerged in the
statistical literatures on judgement and perception, sports, genetics, and social
relations. Although there have been obvious similarities among the various for-
mulations, they have been largely independently developed and ad hoc due to the
lack of a unified framework for modelling and inference. Methods of statistical in-
ference grounded on a sound theoretical foundation and having the capability for
handling general patterns of missing data and unbalance, which commonly occur
even in the best designed experiments, are lacking (Cockerham and Weir (1977),
Husband and Gurney (1998)). Our work bridges these gaps by showing the
underlying connections among the various approaches. The likelihood-based in-
ference numerically reproduces the point estimation obtained in Warner, Kenny
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and Stoto (1979), Lev and Kinder (1957), Bechtel (1967, 1971), and Cocker-
ham and Weir (1977). However, we go beyond point estimation by introducing
streamlined statistical procedures for joint inference for all the parameters based
on likelihood and Bayesian methodology, and with full missing data capabilities.
Generally, we hope that the availability of the powerful and convenient statistical
methods will encourage a wider application of dyadic data structure in designing
empirical studies and in formulating scientific theories. We also hope that the
technical aspect of our work will be a useful experience for the study of statis-
tical inference for other data structures under more general exchangeability and
distributional conditions. In fact, the results in Andersson (1975), which are
succinctly summarized in Perlman (1987), indicate that decompositions in the
form of (4), which serves as the starting point of our work, are available for all
covariance structures invariant under some group actions.
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