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EQUIVALENCE OF FRACTIONAL FACTORIAL DESIGNS
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Abstract: Two designs for a fractional factorial experiment are equivalent if one can

be obtained from the other by reordering the treatment combinations, relabeling the

factors and relabeling the factor levels. Designs can be viewed as sets of points in p-

dimensional space, where p is the number of factors. It is shown that, in this setting,

two designs are equivalent if the Hamming distances between the points are the

same in all possible dimensions. An algorithm is given, based on this representation,

that can detect distinct designs for 2p experiments without a complete search of all

reorderings and relabelings in the fraction. In addition, if two designs are equivalent,

the algorithm gives a set of permutations which map one design to the other.

Key words and phrases: Design equivalence, fractional factorial experiment, Ham-

ming distance.

1. Introduction

We consider factorial experiments with p factors where the ith factor is ob-
served at mi ≥ 2 levels, i = 1, . . . , p. A fractional factorial design is composed of
n (not necessarily distinct) treatment combinations of the v = m1m2 . . . mp pos-
sible treatment combinations. Those fractions defined through defining relations
will be called group-generated fractions. Fractional factorial designs with differ-
ing properties have been discussed extensively in the literature. Some of these are
group-generated fractions (for example, those discussed by Bailey (1977), Box,
Hunter and Hunter (1978), Lewis (1982)), and many are not (for example, those
discussed by Plackett and Burman (1946), Wang and Wu (1992), Lin (1993),
Dean and Draper (1999)).

Several authors have provided computer algorithms for constructing fractions
which are optimal, or close to optimal, under a particular optimality criterion
(see, for example, Mitchell (1974), Welch (1982), Atkinson and Donev (1992),
Nguyen (1996), Hardin and Sloane (1993)). The constructed designs may or
may not be group-generated fractions. For a given experiment, an algorithm
may produce several designs, all of which have the same value of the selected
optimality criterion (see Example 3.1). This does not necessarily imply, however,
that the designs are “equivalent” in the following sense.
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Two designs are said to be equivalent if one can be obtained from the other
by reordering the treatment combinations, relabeling factors having the same
number of levels, and/or relabeling the levels of one or more factors. Equivalent
designs can be transformed into each other by the usual randomization of factor
labels and level labels, whereas this is not possible for non-equivalent designs.
The enumeration of equivalence classes of designs is an important combinatorial
problem (for example, Cohn (1994), Seiden (1999)). From a statistical point of
view, the identification of non-equivalent designs not only enlarges the class of
designs that can be obtained by randomization but also may enlarge the choice
of value of various efficiency criteria such as ranges of p-efficiencies (Lin (1993))
as discussed in Example 3.1.

The equivalence of group-generated fractional factorial designs has been dis-
cussed in the literature by a number of different authors. A necessary condition
for the equivalence of two such designs is that they have the same wordlength
pattern (the number of words of length i in the defining relation). Draper and
Mitchell (1968) give an example of two designs with identical wordlength patterns
that are, nevertheless, not equivalent, since they differ in their letter patterns.
The letter pattern matrix of design d is the matrix Ad whose (i, j)th element
is the frequency of letter i in words of length j in the defining relation of d. A
necessary condition for equivalence of two designs d1 and d2 is that Ad2 can be
transformed into Ad1 by row permutations. Draper and Mitchell (1970) conjec-
tured that this is also a sufficient condition for design equivalence, but Chen and
Lin (1991) disproved this via a counter-example. Chen (1992) discussed equiva-
lence of group-generated designs in terms of existence of relabeling maps between
frequency vectors representing the designs. He showed that, in the special case
of 2p−1 or 2p−2 group-generated fractions, the wordlength pattern does uniquely
determine the design. The wordlength pattern also uniquely determines the de-
sign for 2p−3 and 2p−4 group-generated minimum aberration (Fries and Hunter
(1980)) fractions.

The purpose of this paper is to present a method of determining equivalence
of any two factorial designs (non-group-generated as well as group-generated).
The method, which is based on a geometrical representation of a design, can be
used for factors at any number of levels. In Section 2, we consider equivalence of
designs with factors at two or more than two qualitative levels. We view a design
as a set of n points in p-dimensional space. Then two designs are equivalent
if the factors can be labeled so that the Hamming distance between a pair of
corresponding points is the same for the two designs in all possible dimensions.
We discuss the necessary modifications for quantitative factors at more than two
levels in Section 4.

In Section 3, we describe an algorithm for checking equivalence of fractional
factorial designs when all factors have two levels. The algorithm generally avoids
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a complete search of all n!p!2p reorderings and relabelings in the fraction and, in
our experience, usually detects non-equivalent designs in just a few comparisons
(often one). In theory, the worst possible case requires p(p!)2 comparisons, but
even this represents a considerable time saving for a design with at least p + 1
runs and large p. When two designs are equivalent, the algorithm gives a set of
permutations which map one design to the other. The algorithm can be extended
to deal with factors at more than two levels.

2. Qualitative Factors

Let Td be an n×p matrix whose (i, k)th element is the level at which the kth
factor is observed in the ith run in the fractional factorial design d, i = 1, . . . , n,

k = 1, . . . , p. Thus the rows of Td represent the n (not necessarily distinct)
treatment combinations observed in design d and we call Td the treatment matrix.

The equivalence of designs can be expressed in terms of equivalence of treat-
ment matrices as follows. Two designs d1 and d2 are equivalent if Td2 can be ob-
tained from Td1 by permuting rows, permuting columns, and relabeling symbols
within one or more columns. For example, the designs d1 and d2 corresponding
to the treatment matrices Td1 and Td2 shown transposed below, are equivalent
since Td2 can be obtained from Td1 by changing 1, 2 and 3 in column 2 to the
symbols 3, 1 and 2 respectively, cycling rows and switching columns.

T′
d1

=

[
1 2 3 3 3
1 1 2 2 3

]
, T′

d2
=

[
1 2 3 3 1
3 3 1 2 3

]
.

Let δ[Td]ki,j be equal to 1 if, in the kth column of Td, the symbols in the ith
and jth rows are different, and equal to 0 if they are the same. If we depict a
design as a set of n points in p-dimensional space, then Σp

k=1δ[Td]ki,j counts the
number of dimensions in which the ith and jth points fail to coincide; that is,
the Hamming distance between the two points. Thus, we may define the distance
matrix Hd of design d to have (i, j)th element equal to

[Hd]i,j = Σp
k=1δ[Td]ki,j, for i �= j, (2.1)

and equal to zero if i = j. The distance matrix Hd is invariant to permutations of
columns and relabeling of symbols within columns of Td; that is, it is invariant
to relabeling of the factors and relabeling of the factor levels in d, but not to
the re-ordering of treatment combinations. Consequently, a necessary condition
for equivalence of designs d1 and d2 is that there exists a permutation matrix R
such that

Hd1 = RHd2R
′, (2.2)
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where ′ denotes transpose. For example, the distance matrices Hd1 and Hd2 for
the above two designs are as shown in Figure 1, and it can be verified that (2.2)
holds when R is a cyclic permutation matrix with first row {0 0 1 0 0}.

Hd1 =




0 1 2 2 2
1 0 2 2 2
2 2 0 0 1
2 2 0 0 1
2 2 1 1 0


 , Hd2 =




0 1 2 2 0
1 0 2 2 1
2 2 0 1 2
2 2 1 0 2
0 1 2 2 0


 .

Figure 1. Distance matrices for designs d1 and d2.

In Theorem 2.1, we show that, in order to obtain a sufficient condition for
equivalence of d1 and d2, we need to check that, for the projection of d1 into the
q–dimensional subspace defined by factors 1, . . . , q, there exists a projection of d2

into some q-dimensional subspace such that (2.2) holds, for each q = 1, . . . , p−1.
Let {c1, . . . , cp} be any permutation of the integers {1, . . . , p} and let H

{c1,...,cq}
d

be the distance matrix corresponding to columns {c1, c2, . . . , cq} of Td. In order
to prove Theorem 2.1, we need the following lemma.

Lemma 2.1. For any given permutation {c1, c2, . . . , cp} of {1, 2, . . . , p} and any
given n × n permutation matrix R, the sequence of matrices R(H{c1,c2,...,cq}

d )R′,
q = 1, 2, . . . , p, uniquely determine the treatment matrix Td up to design-
equivalence.

Proof. Let {c1, c2, . . . , cp} be a fixed permutation of the integers {1, 2, . . . , p} and
let H

{c1,c2,...,cq}
d be the distance matrix corresponding to columns {c1, c2, . . . , cq}

of Td. Then R(H{c1,c2,...,cq}
d )R′ is the distance matrix corresponding to columns

{c1, c2, . . . , cq} of RTd for some given permutation matrix R.

For a given R let the sequence of matrices R(H{c1,c2,...,cq}
d )R′, q = 1, 2, . . . , p,

corresponding to a fixed but unknown design d, be fixed. Note that, for any q ≤ p,

[R(H{c1,c2,...,cq}
d )R′]i,j =

q−1∑
k=1

δ[RTd]
ck
i,j + δ[RTd]

cq

i,j

= [R(H{c1,c2,...,cq−1}
d )R′]i,j + [R(H{cq}

d )R′]i,j .

Thus, a fixed sequence of distance matrices R(H{c1,c2,...,cq}
d )R′, q = 1, 2, . . . , p,

implies a fixed sequence R(H{cq}
d )R′, q = 1, 2, . . . , p, and we may investigate

each column of the treatment matrix separately. Let Td∗ be an n × p treatment
matrix with first row [1, 1, . . . , 1]. For each q ∈ {1, 2, . . . , p}, we construct the
qth column of Td∗ as follows. For i = 2, 3, . . . , n in turn, if [R(H{cq}

d R′)]i,j = 0
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for some j = 1, 2, . . . , i− 1, then the symbol in the ith row of column q of Td∗ is
identical to the symbol in the jth row, so set [Td∗ ]i,q = [Td∗ ]j,q. Otherwise, set
[Td∗ ]i,q equal to an unused symbol. The qth column of Td∗ is then identical to the
cqth column of RTd, up to a relabeling of the symbols in the column. Hence Td∗ is
identical to Td up to a permutation of rows, columns and a relabeling of symbols
within columns. Since row and column permutations and symbol relabelings do
not affect design-equivalence, d∗ is equivalent to d, and the statement of the
lemma follows.

Theorem 2.1. Designs d1 and d2 are equivalent if and only if there exists an
n × n permutation matrix R and a permutation {c1, c2, . . . , cp} of {1, 2, . . . , p}
such that, for q = 1, 2, . . . , p, H

{1,2,...,q}
d1

= R(H{c1,c2,...,cq}
d2

)R′.

Proof. Suppose that designs d1 and d2 are equivalent. The distance matrix Hd2

is invariant to symbol relabelings in any columns of Td2 . Consequently, we can
assume without loss of generality that the factors in d1 and d2 have the same level
labeling. Then we can write Td1 = RTd2C, where C is the permutation matrix
corresponding to the permutation {c1, c2, . . . , cp} that maps the factor labels of
d2 to those of d1, and R is the permutation matrix that reorders the treatment
combinations in d2 into the same order as those in d1. Then, for 1 ≤ k ≤ p,
[Hk

d1
]i,j = δ[RTd2C]ki,j = δ[RTd2 ]

ck
i,j = [Hck

d2
]ri,rj . Necessity follows from the

fact that, for each q = 1, . . . , p, H
{1,2,...,q}
d1

=
∑q

k=1[H
k
d1

]i,j =
∑q

k=1[H
ck
d2

]ri,rj =∑q
k=1 R(Hck

d2
)R′ = R(H{c1,...,cq}

d2
)R′. Sufficiency follows from Lemma 2.1.

Corollary 2.1. Designs d1 and d2 are equivalent if and only if there exists an
n × n permutation matrix R and a permutation {c1, c2, . . . , cp} of {1, 2, . . . , p}
such that, for q = 1, 2, . . . , p, H

{q}
d1

= R(H{cq}
d2

)R′.

Example 2.1. Cohn (1994) constructs three distinct 18×18 binary arrays (with
symbols ±1), which can be transformed into D-optimal designs. Cohn refers to
the arrays as the “case-9”, the “case (6, 3)”, and the “case (3, 3, 3)” arrays. We
create a design from each of these arrays by interchanging all the symbols in any
column whose first element is −1, transposing the array, and deleting the first
column (which is now a column of +1’s). This results in treatment matrices for
three D-optimal designs with 17 factors and 18 runs. We will refer to the designs
as d9, d6,3 and d3,3,3.

The design d9 is non-equivalent to the other two since there is no subset
{c1, c2, . . . , c15} of {1, 2, . . . , 18} for which there exists a permutation matrix R
satisfying H

{1,2,...,15}
d9

= R(H{c1,c2,...,c15}
d6,3

)R′ or H
{1,2,...,15}
d9

= R(H{c1,c2,...,c15}
d3,3,3

)R′.
Similarly, there is no subset {c1, c2, . . . c12} of {1, 2, . . . , 18} for which there exists
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a permutation matrix R satisfying H
{1,2,...,12}
d6,3

= R(H{c1,c2,...,c12}
d3,3,3

)R′ . The non-
equivalence can be verified using the algorithm discussed in Section 3 — see
Example 3.3.

In the special case where all factors have two levels, coded −1 and +1, the
distance matrix can be written as Hd = (pJp − TdT′

d) /2, where Jp is a p × p

matrix of unit elements. Let T{c1,...,cq}
d denote a matrix consisting of columns

c1, . . . , cq of Td. We then have the following corollary to Theorem 2.1, which
forms the basis of the algorithm discussed in Section 3.

Corollary 2.2. Designs d1 and d2 are equivalent if and only if there exists an
n × n permutation matrix R and a permutation {c1, c2, . . . , cp} of {1, 2, . . . , p}
such that, for q = 1, 2, . . . , p,

T{1,2,...,q}
d1

T{1,2,...,q}
d1

′
= R(T{c1,c2,...,cq}

d2
T{c1,c2,...,cq}′

d2
)R′. (2.3)

3. An Algorithm for the Equivalence of Fractions of 2p Experiments

Suppose all factors have two levels, coded −1 and +1. Then two treatment
matrices Td1 and Td2 are equivalent if there exist permutation matrices R and
C, and a diagonal matrix L with L2 = I, such that Td1 = RTd2CL. In order to
establish equivalence, we need to determine R, C and L.

Once R and C are known, L is determined, since the negative entries on the
diagonal of L correspond to the elements in the first row of RTd2C that differ in
sign from the corresponding elements in the first row of Td1. The permutation
matrices R and C are determined using Corollary 2.2.

A Fortran program for checking equivalence of two designs is obtainable from
the authors. It has two parts: the first algorithm, called Deseq1, does an initial
check for non-equivalence, while the second algorithm, Deseq2, looks for the
permutations that transform one design to the other, if they exist. Specifically,
Deseq1 checks that, for each q = p, p−1, 1, p−2, 2, . . . , p−[p/2], [p/2], there is some
subset {c1, . . . , cq} of {c1, . . . , cp} so that the rows of H1,...,q

d1
and H

c1,...,cq

d2
contain

the same set of distances with the same multiplicity. (Here, [.] denotes integer
part). The algorithm calls the check at each value of q a different “stage” of check
— the stage number being p − q. If one of the checks fails, the algorithm stops
and indicates at which stage the condition failed to be satisfied. Geometrically,
what these initial tests do is compare the plots for the two designs. If the designs
are equivalent, the plots appear similar, and the distances between all pairs of
points are the same for the two designs. Likewise if one design is collapsed into a
q-dimensional space, equivalent to deleting p−q columns from the design matrix,
there must be some q-dimensional subspace onto which one can collapse the other
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design to yield similar inter-point distances. This must be true for each value of
q.

Deseq2 searches for row and column permutations which transform d2 into
d1. The steps in searching for permutation matrices R are as follows. Initially,
an n×n matrix P of potential row permutations is constructed, where [P]ij = 1
if the ith row of Td1T

′
d1

has the same multiplicity of distinct elements as the
jth row of Td2T

′
d2

, and [P]ij = 0 otherwise. Next, the smallest m such that
[P]1m = 1 is chosen and the algorithm sets [R]1m = 1. This corresponds to the
first possible permutation of a row of Td2 to the first row of Td1 . The [R]1i for
i �= m are set to zero, [R]im for i �= 1 are set to zero, and for j = 1, 2, . . . , n, [R]jl
are set to zero for all l for which [Td1T

′
d1

]1j �= [Td2T
′
d2

]ml. These same steps are
carried out on succeeding rows of R. If, at any step, a row of R appears with
no non-zero entries, the process backs up to the previous row, using the next
available non-zero entry in the corresponding row of P and the remainder of R is
simplified. Once the last row is reached, R is a row permutation matrix. If no C
exists satisfying Corollary 2.2, another row permutation matrix is constructed by
moving up one row of P in the search, taking the next available non-zero entry
in that row, making the simplifications, etc. This procedure is capable of finding
the set R of all the matrices R and corresponding matrices C and L that satisfy
Td1 = RTd2CL, without necessarily examining the the entire set of permutation
matrices. If R is empty then d1 and d2 are non-equivalent at step 0. If R is
non-empty then Deseq2 checks to see whether there exists at least one R ∈ R
satisfying the conditions of Corollary 2.2.

The algorithms can be adapted to handle qualitative factors with more than
two levels by using Theorem 2.1 instead of Corollary 2.2 to calculate the distance
matrices.

Example 3.1. For a 25 design with n = 12 runs, the ACED algorithm (Welch
(1982)) was asked to return the ten best designs found under an excursion al-
gorithm, the D-optimality criterion and a first order model. Two of the designs
returned had det(n−1X ′X)−1/6 = 1.040. The two designs had different multiplic-
ities of runs and different values of trace(X ′X)− (the A-criterion), and were there-
fore clearly not equivalent. Three other designs, d1, d2 and d3, have similar infor-
mation matrices with det(n−1X ′X)−1/6 = 1.020. If we list the 25 treatment com-
binations in lexicographical order from 1 to 32, then these three 12-run designs
have the following treatment combinations: d1 : {2, 3, 9, 13, 16, 16, 22, 23, 26, 27,
28, 29}; d2 : {4, 6, 7, 9, 10, 16, 18, 19, 22, 28, 29, 32}; d3 : {4, 6, 7, 10, 11, 13, 17, 20,
22, 25, 31, 32}. Examination of the treatment combinations reveals that design
d1 cannot be equivalent to designs d2 and d3 since d1 has a repeated run and the
other designs do not. Designs d2 and d3 are non-equivalent at stage 0, by Deseq1.
Designs d1 and d2 perform similarly under the p-efficiency criterion defined by



544 JAMES B. CLARK AND A. M. DEAN

Lin (1993), whereas design d3 differs. Projecting into the space of p = 2 factors,
nine of the possible subdesigns from d3 are orthogonal arrays, but only six of
the possible subdesigns from each of d1 and d2 are orthogonal arrays. Similarly,
projecting into the space of p = 3 factors, seven of the possible subdesigns from
d3 are orthogonal arrays, whereas only one subdesign from each of d1 and d2 is an
orthogonal array. Under factor sparsity, design d3 would probably be preferred
to design d1 or d2.

The best five designs returned by the algorithm are orthogonal arrays (which
have identical values under the D-, A- and E- criteria in all dimensions). None
of these designs have repeated treatment combinations. The treatment matrices
of the first three of these designs, d4, d5 and d6, are shown below.

Td4 Td5 Td6


1 1 1 1 −1
1 1 −1 1 1
1 1 −1 −1 −1
1 −1 1 1 −1
1 −1 1 −1 1
1 −1 −1 −1 1

−1 1 1 −1 1
−1 1 1 −1 −1
−1 1 −1 1 1
−1 −1 1 1 1
−1 −1 −1 1 −1
−1 −1 −1 −1 −1







1 1 1 1 1
1 1 1 −1 1
1 1 −1 1 −1
1 −1 1 −1 −1
1 −1 −1 1 1
1 −1 −1 −1 −1

−1 1 1 −1 −1
−1 1 −1 1 −1
−1 1 −1 −1 1
−1 −1 1 1 1
−1 −1 1 1 −1
−1 −1 −1 −1 1







1 1 1 1 1
1 1 1 −1 −1
1 1 −1 1 −1
1 −1 1 −1 1
1 −1 −1 1 −1
1 −1 −1 −1 1

−1 1 1 −1 −1
−1 1 −1 1 1
−1 1 −1 −1 1
−1 −1 1 1 1
−1 −1 1 1 −1
−1 −1 −1 −1 −1




When Deseq1 is used to compare pairs of these three designs, it immediately indi-
cates that the initial checks are all passed and, therefore, the designs are possibly
equivalent. The equivalence is confirmed by Deseq2 which quickly returns the
permutations for transforming d5 into d4. The columns of d5 need to be arranged
in the order (1, 4, 3, 2, 5) and the rows in the order (1, 3, 5, 2, 4, 6, 11, 10, 8, 7,
9, 12). After applying these permutations to the rows and columns of d5, a sign
change in the last column is necessary to obtain d4, since the first element of the
last columns of Td4 and Td5 differ in sign. The column and row permutations for
transforming d6 into d4 are given by Deseq2 as (2, 1, 4, 5, 3) and (2, 3, 1, 7, 9,
8, 6, 4, 5, 12, 11, 10), respectively. Sign interchanges are necessary in the last
three columns of the permuted Td6 .

Example 3.2. Abraham, Chipman and Vijayan (1999) discuss supersaturated
designs. For illustration, they take eight subarrays (d1 − d8) with 14 rows and
24 columns from a 28 × 28 Plackett and Burman orthogonal array, including
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a constant column. Comparing all 28 pairs of these eight designs, Deseq1 de-
tects at stage zero that all but four design pairs are non-equivalent. The pairs
(d3, d6), (d3, d8), (d5, d7) and (d6, d8) pass the checks of Deseq1. Deseq2 shows
that the pairs (d3, d6) and (d3, d8) contain non-equivalent designs. The design
pairs (d5, d7) and (d6, d8), however, are equivalent, and Deseq2 returns the col-
umn and row permutations for transforming one design into the other.

Example 3.3. The three designs d9, d6,3 and d3,3,3 of Example 2.1 have the same
information matrices and, consequently the same statistical properties. Deseq1
can be used to verify that they are, nevertheless, non-equivalent. The design d9

is found to differ from the other two designs at stage 3 (q = 15). The designs
d6,3 and d3,3,3 differ at stage 6 (q = 12).

4. Quantitative Factors with More Than Two Levels

Quantitative factors differ from categorical factors in that the levels of the
factors have a numerical meaning. The only level labels of a quantitative factor
that result in equivalent designs are those that preserve the order and the relative
magnitudes of the levels. We transform the levels of each factor so that the range
for each is [−1, 1]. For a factor with a true range of [l, u], this transformation is
accomplished by mapping the true value x of the factor level to [(2x−u−l)/(u−l)].
For example, if a four-run experiment is performed with the levels of one factor
set to [100, 200, 200, 300], the corresponding transformed values are [−1, 0, 0, 1].
Any equivalent design would include two experimental runs with this factor at its
middle level so, for example, a design with this factor set to [100, 100, 200, 300], or
[−1,−1, 0, 1] when transformed, would not be equivalent. The only permissible
level label change is obtained from multiplying the transformed labels of a factor
by −1.

Necessary and sufficient conditions for two designs with quantitative factors
to be equivalent are similar to those for the case of qualitative factors. However,
unlike the designs with qualitative factors or two-level factors, we cannot con-
struct an equivalent design by arbitrarily setting the first row of its treatment
matrix to be a row of all 1’s. This means that the proof of Lemma 2.1 needs to
be modified. The simplest solution is to modify Td by including an extra row
of 1’s as its first row, and defining the (n + 1) × (n + 1) distance matrix Hd as
follows:

[Hd]ij =
p∑

k=1

∣∣∣[Td]ik − [Td]jk
∣∣∣ , for i, j ∈ 1, 2, . . . , n + 1.

Every permutation matrix R is an (n + 1) × (n + 1) matrix with R11 = 1, since
both designs for which we are testing equivalence have a row of 1’s added to
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the first row of the treatment matrix. The proof of Lemma 2.1 is valid after
modifying the construction of the qth column of Td∗ as follows.

Set [Td∗ ]1,q = 1. For k = 2, 3, . . . , n + 1, since [R(H{cq}
d )R′]k,1 indicates the

distance from the element in the first row of RTd, which is a 1, to that in the
kth row, set [Td∗ ]k,q = 1 − [R(H{cq}

d ) R′]k,1. The first column of Td∗ will be
identical to the cqth column of RTd with a possible sign change.

Theorem 2.1 and Corollary 2.2 are also valid using the new definition of Hd.
For further details, see Clark (1997).
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