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Abstract: Ultrahigh-dimensional data are collected in many scientific fields where

the predictor dimension is often much higher than the sample size. To effectively re-

duce the ultrahigh-dimensionality, many marginal screening approaches have been

developed. However, existing screening methods may miss important predictors

that are marginally independent of the response, or may select unimportant predic-

tors owing to their high correlations with important predictors. Iterative screening

procedures have been proposed to address this issue. However, studying their theo-

retical properties is not straightforward. Penalized regressions are not computation-

ally efficient or numerically stable when the predictors are ultrahigh-dimensional.

To overcome these drawbacks, a forward regression approach has been developed for

linear models. However, nonlinear dependence between predictors and the response

is often present in ultrahigh-dimensional problems. In this study, we extend the

FR to develop a forward additive regression (FAR) method for selecting significant

predictors in ultrahigh-dimensional nonparametric additive models. We establish

the screening consistency for the FAR method and examine its finite-sample per-

formance using Monte Carlo simulations. Our simulations indicate that, compared

with marginal screenings, the FAR is much more effective in terms of identifying im-

portant predictors for additive models. When the predictors are highly correlated,

the FAR even outperforms iterative marginal screenings, such as the iterative non-

parametric independence screening. We also apply the FAR method to a real-data

analysis in genetic studies.

Key words and phrases: Additive models, forward regression, screening consistency,

ultrahigh-dimensionality, variable selection.

1. Introduction

Advances in modern information technology allow researchers in various sci-

entific fields to collect high-dimensional data, where the number of predictors

is greater than the sample size. Under the sparsity assumption that only a

small subset of predictors truly contribute to the response, penalized regression

methods have been studied intensively for various parametric and nonparametric

models. These methods include, but are not limited to, the LASSO (Tibshirani
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(1996)), SCAD (Fan and Li (2001)), elastic net (Zou and Hastie (2005)), adap-

tive LASSO (Zou (2006); Huang, Ma and Zhang (2008)), grouped LASSO (Yuan

and Lin (2006)), and Dantzig selector (Candes and Tao (2007)). These methods

are able to select significant variables and estimate parameters simultaneously,

enhancing both model interpretability and predictability.

When the predictor dimension is much greater than the sample size, the

aforementioned penalized approaches may suffer from computational complex-

ity, algorithmic instability, or statistical inaccuracy (Fan, Samworth and Wu

(2009)). Since the seminal work of Fan and Lv (2008), various marginal screen-

ing procedures have been proposed to reduce ultrahigh-dimensionality. Screen-

ing ranks all predictors using a marginal utility that measures the importance of

each predictor. For example, Fan and Lv (2008) developed a sure independence

screening (SIS) using a Pearson correlation ranking procedure for Gaussian lin-

ear regressions. Hall and Miller (2009) considered a generalized correlation based

on polynomial transformations of the predictors. For additional examples, see

Fan and Song (2010) for generalized linear models, Zhu et al. (2011) for multi-

index models, Fan, Feng and Song (2011) for nonparametric additive models,

He, Wang and Hong (2013) for heterogeneous nonparametric models, and Liu,

Li and Wu (2014) and Fan, Ma, and Dai (2014) for varying-coefficient models,

among others. Without imposing a specific regression model structure, some

dependence/independence measures have been used as marginal utilities to de-

velop model-free variable screenings. These measures include the distance corre-

lation (Li, Zhong and Zhu (2012)), Kendall’s τ -rank correlation (Li et al. (2012)),

Kolmogorov-Smirnov test statistic (Mai and Zou (2013)), martingale difference

correlation (Shao and Zhang (2014)), Pearson Chi-square test statistic (Huang,

Li and Wang (2014)), and mean variance index (Cui, Li and Zhong (2015)).

Despite being computationally efficient and possessing the sure-screening

property, existing marginal screening methods may fail to detect predictors that

truly contribute to, but are marginally independent of the response variable.

Another problem is that marginal methods tend to select some unimportant

predictors, owing to their high correlations with the important predictors. To

overcome these drawbacks, iterative marginal variable screening procedures have

been developed. For example, the iterative sure-independence screening (ISIS)

proposed by Fan and Lv (2008) is conducted in the following way. In the first

step, we select an initial set of predictors using the SIS, and then regress the

response over the selected predictors. In the second step, we treat the residuals

as the new responses, and then apply the SIS again for the remaining predic-



FORWARD ADDITIVE REGRESSION 177

tors to obtain another subset. The procedure is performed iteratively and the

union of the selected subsets is the final set of predictors. Additional exam-

ples can be found in the aforementioned references. However, iterative screening

methods lack necessary theoretical justifications. Another alternative solution

to the problems with marginal variable screenings is to use a forward regres-

sion (FR). In an important work, Wang (2009) developed an FR for variable

screening in ultrahigh linear regression models. Wang (2009) also demonstrated

theoretically and numerically that the FR is able to identify all relevant predic-

tors consistently. Cheng, Honda and Zhang (2016) further extended the FR to

ultrahigh-dimensional varying-coefficient models. Cheng et al. (2018) proposed

a groupwise FR for linear models that incorporates multiple predictors in each

step.

It is well known that nonlinear dependence between predictors and the re-

sponse variable is often present in ultrahigh-dimensional data. In this case, tradi-

tional linear models may be not adequate to fit the data. On the other hand, fully

nonparametric models may suffer from the “curse of dimensionality” problem. In

this study, we consider a nonparametric additive model for ultrahigh-dimensional

data. This approach increases the flexibility of ordinary linear models and al-

lows a nonlinear transformation of each predictor to be added to the regression

model, where the unknown transformed functions are estimated in a nonpara-

metric manner. In the literature, penalized regression methods have been well

studied for nonparametric additive models. See Lin and Zhang (2006), Meier,

Geer and Bühlmann (2009) and Huang, Horowitz and Wei (2010). For sparse

ultrahigh-dimensional additive models, Fan, Feng and Song (2011) designed a

nonparametric independence screening (NIS) that fits marginal nonparametric

regressions of the response against each predictor individually, and then ranks

their importance according to the magnitudes of the estimated nonparametric

components. The iterative version of the NIS (INIS) was also introduced to

remedy the aforementioned drawbacks.

In this study, motivated by the appealing theoretical properties and out-

standing numerical performance of the FR of Wang (2009), we propose a forward

additive regression (FAR) procedure for ultrahigh-dimensional nonparametric ad-

ditive models. The FAR procedure works as follows. In the first step, we fit the

marginal regression models using B-spline smoothing, compute the residual sum

squares (RSS) for each model, and select the predictor that corresponds to the

minimum RSS. This step is identical to the marginal NIS procedure. In the sec-

ond step, we keep the selected predictor in the model, and then add a new one
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from the remaining predictors, one at a time. Next, we fit the augmented models

and then add the predictor with the minimum RSS to the selected subset. We

repeat the second step until a certain stopping rule is reached. The FAR en-

joys several advantages from both theoretical and practical viewpoints. First, we

rigorously establish the screening consistency for the FAR method under some

mild conditions. This justifies that the model selected by the FAR contains the

truly important set of predictors with probability approaching one. Note that the

FAR method is essentially a special case of the INIS procedure of Fan, Feng and

Song (2011) when the INIS adds one predictor per step. The main contribution

of this work is that the theorems of the FAR remedy the lack of a theoretical

justification for the INIS for nonparametric additive models. Second, the FAR

addresses the drawbacks of marginal variable screenings. Specifically, the FAR

selects important covariates that are marginally independent of the response,

and prevents adding unimportant covariates that may be selected by marginal

methods, owing to their high correlations with the important variables. Third,

the implementation is easy and the sequential procedure provides a clear solution

path. This path is straightforward to interpret in the sense that the importance

of the predictors can be ranked according to the selection order.

The rest of this article is organized as follows. In Section 2, we develop

the FAR procedure. Section 3 derives the screening consistency of the FAR

algorithm. Simulation studies and a real-data analysis are presented in Section

4. Section 5 concludes the paper.

2. FAR

In this section, we introduce the model setup for the FAR approach for

ultrahigh-dimensional nonparametric additive models and present the details of

the FAR algorithm.

2.1. Model setup

Let {(xi, Yi), i = 1, . . . , n} be a random sample of size n from the population

(x, Y ), where Yi ∈ R1 is the response variable and xi = (Xi1, . . . , Xip)
T ∈ Rp

is the predictor vector, with p � n, for the ith observation. Without loss of

generality, we assume that the mean of the response is zero. In practice, we can

centralize the response first. To study the relationship between the predictors and

the response, we assume that the observations satisfy the following nonparametric

additive model:
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Yi =

p∑
j=1

fj(Xij) + εi, (2.1)

where fj denotes an unknown function and εi is an unobserved random vari-

able with mean zero and finite variance σ2. For identifiability, we assume that

all fj(·) are centered (i.e., E{fj(Xj)} = 0, 1 ≤ j ≤ p). We refer to Xj as a

relevant/important predictor if E{fj(Xj)
2} > 0, and an irrelevant/unimportant

predictor if E{fj(Xj)
2} = 0. Let A = {1, . . . , p} be the full model and T = {j :

E{fj(Xj)
2} > 0} be the true model that contains all relevant predictors. Under

the sparsity assumption, we assume that p0 predictors can truly contribute to

the response, and that the model size |T | = p0 � p. For convenience, we also

use the generic notation M = {j1, . . . , jd∗} ⊆ A to denote an arbitrary model

corresponding to Xj1 , . . . , Xjd∗ .

To estimate the nonparametric components, we use B-spline basis. Let Sn
be the space of polynomial splines of degree l ≥ 1, and let {ψjk, k = 1, . . . ,mn}
denote a normalized B-spline basis for the jth predictor with ‖ψjk‖∞ ≤ 1, where

‖ · ‖∞ is the sup norm and mn is the sum of the polynomial degree and the

number of knots used to create the B-spline basis. In theory, we may choose

mn = O(n1/(2d+1)), as per Stone (1985) and Huang, Horowitz and Wei (2010),

which allows mn to increase at a relatively slow rate with the sample size, where

d > 1 is specified in Section 3. We can represent any fnj ∈ Sn by the linear

combination of normalized B-spline basis functions. That is,

fnj(x) =

mn∑
k=1

γjkψjk(x), for 1 ≤ j ≤ p. (2.2)

Thus,

Yi =

p∑
j=1

mn∑
k=1

γjkψjk(Xij) + ξi, (2.3)

where ξi =
∑p

j=1{fj(Xij) − fnj(Xij)} + εi. Here, we implicitly assume that

fj(Xij) can be well approximated by fnj(Xij) ∈ Sn by choosing some suitable

coefficients {γj1, . . . , γjmn
} under some smoothness conditions (Stone (1985)).

Specifically, Huang, Horowitz and Wei (2010) showed that ‖fn−f‖2 = Op(m
−d
n ),

where ‖ ·‖2 is the L2-norm. When p is fixed and small, the ordinary least squares

estimators can be obtained for (2.3). When p is moderately high, penalized

regression methods with grouped penalties have been well studied for (2.3), for

example, by Lin and Zhang (2006), Meier, Geer and Bühlmann (2009), and

Huang, Horowitz and Wei (2010). When p is much higher than the sample size,
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Fan, Feng and Song (2011) proposed an NIS that reduces the dimensionality

efficiently. In the next subsection, we will propose a new FAR algorithm to

select important variables for (2.3).

First, we introduce some notation. For simplicity, we write ψk(Xij) =

ψjk(Xij). Let Uij = {ψ1(Xij), . . . , ψmn
(Xij)}T ∈ Rmn , such that Uij consists of

values of the centered basis functions for the ith observation of the jth predictor.

Let Uj = (U1j , . . . , Unj)
T ∈ Rn×mn be the “design” matrix corresponding to the

jth predictor. Hence, the total “design” matrix is U = (U1, . . . ,Up) ∈ Rn×pmn .

Moreover, define γj = (γj1, . . . , γjmn
)T as an mn × 1 vector of parameters corre-

sponding to the jth predictor in the model, and denote γ = (γT

1 , . . . ,γ
T

p )T as a

pmn × 1 vector of parameters. For an arbitrary candidate model M, we use the

notation Ui(M) = {Uij : j ∈M} to denote the subvector of Ui corresponding to

M. Similarly, U(M) is the “subdesign” matrix corresponding to M. Lastly, let

Y = (Y1, . . . , Yn)T ∈ Rn be the response vector.

2.2. FAR algorithm

Under the assumption that T exists, our main objective is to discover all

relevant predictors consistently. To this end, we propose the following FAR

algorithm for Model (2.1) when the dimension p is ultrahigh.

Algorithm 1 Forward Additive Regression Algorithm

Step 1. (Initialization). Set S(0) = ∅. Let the step index ` = 0.
Step 2. (FAR Updating).

(2.1) Evaluation. In the `th step (` ≥ 1), given S(`−1), we construct a candidate

model M(`−1)
j = S(`−1) ∪ {j} for every j ∈ A\S(`−1). Then, we compute

the residual sum squares RSS
(`−1)
j = YT{In − H̃

(`−1)
j }Y for M(`−1)

j , where

H̃
(`−1)
j = U

(M(`−1)
j )

{UT

(M(`−1)
j )

U
(M(`−1)

j )
}−1UT

(M(`−1)
j )

is a projection matrix and

In ∈ Rn×n is the identity matrix.

(2.2) Screening. We obtain a` = arg min
j∈A\S(`−1)

RSS
(`−1)
j , and update S(`) = S(`−1) ∪{a`}.

Step 3. (Solution Path). Iterate Step 2 [n/mn] times, yielding a total of [n/mn]
nested candidate models, where [c] denotes the largest integer no larger than the value
c. We then collect those models a solution path S = {S(`) : 1 ≤ ` ≤ [n/mn]}, with
S(`) = {a1, . . . , a`}.

The FAR algorithm extends the FR for linear models proposed by Wang

(2009) to nonparametric additive models using B-spline smoothing techniques.
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The algorithm is computationally efficient and easy to implement. The first

step of the FAR is similar to that of the NIS of Fan, Feng and Song (2011).

That is, they both select a predictor that achieves the minimum RSS from all

marginal regression models. In the remaining steps, and in contrast to existing

screening methods, which treat all predictors independently, the FAR keeps all

preselected predictors in the models and evaluates the conditional contributions

of new predictors to the response. Thus, the FAR selects the important predictors

that are marginally independent of the response. At the same time, it avoids

adding unimportant predictors that have high correlations with the important

variables. Note that this FAR procedure is similar to the work of Cheng et al.

(2018), who proposed a groupwise forward selection procedure for linear models.

However, there are some conceptual differences between the two. First, the

working models are different. Cheng et al. (2018) focused on a linear model and

suggested a groupwise forward regression, whereas we study a nonparametric

additive model. This difference is the same as that between Yuan and Lin (2006),

who use a group LASSO to select variables in a groupwise manner in linear

models, and Huang, Horowitz and Wei (2010), who studied variable selection

in nonparametric additive models using an adaptive group LASSO. Second, in

the additive model, we need to estimate the unknown nonparametric components

using mn B-spline basis functions. Here, mn is allowed to go to infinity, in theory.

In the theoretical proofs, we deal with the difference between the estimated fnj(·)
and the true function fj(·), which adds further challenges.

Remark: although the FAR procedure is computationally easy and efficient,

it incurs a greater computational burden than that of marginal variable screening

methods, such as the NIS. The computational complexity of each step of the FAR

is similar to that of the NIS. Because the computational complexity of the NIS is

O(nmnp), the computational complexity of the FAR is O(Knmnp), where K is

the user-specified number of steps. If we choose K = [n/mn], the computational

complexity becomes O(n2p), which is still linearly related to the dimensionality

of the predictors.

3. Theoretical Properties

In this section, we present the regularity assumptions for the FAR algorithm

and establish its screening consistency property. Despite the iterative marginal

screening methods being able to address the drawbacks of simple marginal screen-

ings in practice, they lack some theoretical justification. The following theorems
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fill this gap by studying the theoretical properties of the FAR algorithm.

The following technical assumptions are required to establish the screening

consistency of the FAR.

(A1) The nonparametric components {fj , j = 1, . . . , p} belong to a class of func-

tions F , the rth derivative of which, f (r), exists and satisfies a Lipschitz

condition of order α. That is,

F = {f(·) : |f (r)(s)− f (r)(t)| ≤ K|s− t|α for s, t ∈ [a, b]},

for some positive constantK, where r is a nonnegative integer and α ∈ (0, 1],

such that d = r + α > 1.

(A2) The support of each predictor, Xj , is [a, b], where a and b are finite real num-

bers. The marginal density function gj of Xj satisfies 0 < K1 ≤ gj(Xj) ≤
K2 <∞ on [a, b], for j = 1, . . . , p, for some constants K1 and K2.

(A3) The number of nonzero components p0 is fixed and there is a constant

cf > 0, such that minj∈T ‖fj‖2 ≥ cf .

(A4) The random errors {εi, i = 1, . . . , n} are independent and identically dis-

tributed (i.i.d.) with conditional mean zero. For any K3 > 0, there exists a

positive constant K4, such that E{exp(K2|εi|)|xi} < K4.

(A5) There exist constants logp = O(ncp) with 0 < cp < 2d/(2d+ 1).

These technical assumptions are standard conditions for high-dimensional

nonparametric regression models. See Huang, Horowitz and Wei (2010); Fan,

Feng and Song (2011), and Fan and Zhong (2018). In particular, (A1) is the

Lipschitz condition, which is commonly assumed in the nonparametric literature

to require that the function is sufficiently smooth. (A2) is the same as Condition

(A4) in Huang, Horowitz and Wei (2010) and Condition (B) in Fan, Feng and

Song (2011). (A3) is the same as (A1) in Huang, Horowitz and Wei (2010), and

(A4) is identical to Condition (E) in Fan, Feng and Song (2011). (A5) allows us

to deal with the ultrahigh-dimensionality with p = O{exp(ncp)}.
Next, we establish the screening consistency property of the FAR method in

the following theorem.

Theorem 1 (Screening Consistency Property). Suppose conditions (A1)-(A5)

hold and K0 > c2var(Y )/c21c3c
2
f , where c1, c2, and c3 are the positive constants

defined in the proofs. Then we have that as n→∞,

P (T ⊂ S(p0K0))→ 1.
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Theorem 1 states that the FAR algorithm can detect all relevant predictors

within p0K0 steps, with probability tending to one. The theorem remedies the

lack of a theoretical justification of the INIS for nonparametric additive models.

Note that we implicitly require that p0K0 < [n/mn] in the practical implemen-

tation, because the FAR algorithm can run for at most [n/mn] steps.

Furthermore, we follow Wang (2009) to select the best model using the ex-

tended BIC (Chen and Chen (2008)), which is defined as

BIC(M) = logσ̂2(M) + n−1mn|M|(logn+ 2logpmn), (3.1)

whereM is an arbitrary candidate model, with |M| < [n/mn], and σ̂2(M) = (n−
|M|)−1YT{In−H(M)}Y, where H(M) = U(M){UT

(M)U(M)}−1UT

(M). We define

m̂ = arg min1≤m≤[n/mn] BIC(S(m)) and Ŝ = S(m̂). In the following theorem, we

show theoretically that the FAR algorithm using the extended BIC also enjoys

the sure-screening property. That is, the set of truly relevant predictors can be

contained in the selected model Ŝ.

Theorem 2 (BIC). Under model (2.1), suppose conditions (A1)-(A5) hold.

Then, as n→∞,

P
(
T ⊆ Ŝ

)
→ 1.

Although the FAR algorithm with the extended BIC rule satisfies sure-

screening consistency, in practice, we recommend applying a sophisticated reg-

ularization method for nonparametric additive models after the screening step.

Examples included the COSSO of Lin and Zhang (2006) and adaptive grouped

LASSO of Huang, Horowitz and Wei (2010). This helps to refine the selection of

relevant predictors and achieve better theoretical properties, such as the oracle

property and selection consistency.

4. Numerical Studies

4.1. Monte Carlo simulation

In this section, Monte Carlo simulations are carried out to investigate the

finite-sample performance of the FAR approach and to compare it with existing

screening procedures such as the SIS and ISIS (Fan and Lv (2008)), DC-SIS (Li,

Zhong and Zhu (2012)), DC-ISIS (Zhong and Zhu (2015)), and NIS and INIS

(Fan, Feng and Song (2011)). To implement the FAR, NIS, and INIS, we set

mn = [n1/5] + 2 = 5.

In the simulation, we choose n = 200 and p = 1,000. The FAR can choose at

most [n/mn] = 40 covariates. Following Fan and Lv (2008), we set the selected
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model size [n/logn] = 37. To make the comparison as fair as possible, we stop

the FAR algorithm when it selects 37 predictors. For all iterative screening

methods, we execute the screening procedure once only. That is, we select the

first [n/(2logn)] = 18 predictors using the marginal screening method in the first

step, and then choose the remaining 19 covariates in the following iteration step.

Each experiment is repeated 100 times. We follow Li, Zhong and Zhu (2012)

to evaluate the finite-sample performance using the following two criteria: (1) the

proportion of which a single relevant predictor is selected from 100 replications,

denoted by Ps; and (2) the proportion of which all true predictors are selected

from 100 replications, denoted by Pa. We claim that larger Ps and Pa lead to

better performance. Ideally, both Ps and Pa are equal to one, which means that

all truly relevant predictors are added to the reduced model.

Example 1. In this example, we generate data from the following model:

Y = 3f1(X1) + f2(X2)− 1.5f3(X3) + f4(X4) + ε, (4.1)

where f1(x) = − sin(2x), f2(x) = x2 − 25/12, f3(x) = x, and f4(x) = exp(x) −
2/5 · sinh(5/2), ε ∼ N(0, 1). We generate the covariates x = (X1, . . . , Xp)

T from

a multivariate normal distribution MVN(0,Σ). Here, we consider two matri-

ces Σ = (σij)p×p: (1) an AR(1) structure, σij = ρ|i−j|; and (2) a compound

symmetry (CS) structure, σij = ρ, for i 6= j . We also consider three levels of

correlations, ρ = 0.2, 0.5 and 0.8.

The empirical results are shown in Table 1. For the AR(1) structure with

large ρ, the four adjacent truly relevant predictors are highly correlated. Thus,

both screening methods and the FAR are able to select these predictors with a

large probability. When ρ = 0.2, we ignore the performance of the SIS and DC-

SIS. On the other hand, for the CS structure with large ρ, all pairs of variables

have a high correlation, which makes any marginal screening methods perform

worse. This is because marginal screening methods tend to add some unimpor-

tant variables that are highly correlated with large true signals. The iterative

screenings can refine the selection. However, the FAR method outperforms the

other methods in all cases, especially when the correlations are high.

Note that the computational complexity of the FAR is O(Knmnp), where

K is the number of steps. In this example, the computational time for each run

of the NIS is 1.9 seconds on average, based on 100 simulations on a personal

computer (64-bit windows 10 system, Intel (R) i7-6650U CPU, 2.21 GHz, 16GB

RAM). The computational time for the FAR is 157.3 seconds, on average, which

is less than three minutes. If we choose K = 10, the computational time for the
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Table 1. The proportions Ps and Pa in Example 1. The selected model size is 37.

(1) AR Structure (2) CS Structure
Ps Pa

Ps Paρ Method X1 X2 X3 X4 X1 X2 X3 X4

0.2

FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SIS 0.87 0.51 1.00 1.00 0.46 0.77 0.09 1.00 1.00 0.08
ISIS 0.88 0.42 1.00 1.00 0.39 0.68 0.11 1.00 1.00 0.07
DC-SIS 1.00 0.95 1.00 1.00 0.95 1.00 0.31 1.00 1.00 0.31
DC-ISIS 1.00 0.89 1.00 1.00 0.89 1.00 0.51 1.00 0.51 1.00
NIS 1.00 0.96 1.00 1.00 1.00 1.00 0.79 0.97 1.00 0.77
INIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5

FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SIS 1.00 1.00 1.00 1.00 1.00 0.64 0.04 0.99 1.00 0.04
ISIS 1.00 1.00 1.00 1.00 1.00 0.53 0.04 0.98 1.00 0.00
DC-SIS 1.00 1.00 1.00 1.00 1.00 1.00 0.18 0.99 1.00 0.18
DC-ISIS 1.00 1.00 1.00 1.00 1.00 1.00 0.42 0.97 0.97 0.38
NIS 1.00 1.00 1.00 1.00 1.00 0.95 0.59 0.81 1.00 0.49
INIS 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00 0.97

0.8

FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SIS 1.00 1.00 1.00 1.00 1.00 0.36 0.06 0.83 0.91 0.00
ISIS 1.00 1.00 1.00 1.00 1.00 0.27 0.08 0.69 0.84 0.01
DC-SIS 1.00 1.00 1.00 1.00 1.00 1.00 0.14 0.83 0.88 0.11
DC-ISIS 1.00 1.00 1.00 1.00 1.00 0.98 0.34 0.71 0.78 0.18
NIS 1.00 1.00 1.00 1.00 1.00 0.94 0.55 0.71 1.00 0.37
INIS 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.93 1.00 0.91

Table 2. The proportions Ps and Pa in Example 2. The selected model size is 37.

t = 0 t = 1
Ps Pa

Ps PaMethod X1 X2 X3 X4 X1 X2 X3 X4

FAR 1.00 1.00 1.00 1.00 1.00 0.98 0.81 1.00 1.00 0.79
SIS 1.00 0.03 1.00 1.00 0.03 0.00 0.02 1.00 1.00 0.00
ISIS 1.00 0.05 1.00 1.00 0.05 0.00 0.00 1.00 1.00 0.00
DC-SIS 1.00 0.31 1.00 1.00 0.31 0.00 0.05 1.00 1.00 0.00
DC-ISIS 1.00 0.28 1.00 1.00 0.28 0.86 0.05 1.00 1.00 0.04
NIS 1.00 0.81 1.00 1.00 0.81 0.00 0.28 1.00 1.00 0.00
INIS 1.00 1.00 1.00 1.00 1.00 0.97 0.49 1.00 1.00 0.48

FAR decreases to 22.6 seconds. Note that even when K = 10 is smaller, the FAR

selects all relevant predictors in this example. As expected, the computational

cost of the FAR is heavier than that of the marginal variable screening, but is

acceptable for better variable selection performance, in practice.
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Example 2. Following Meier, Geer and Bühlmann (2009) and Fan, Feng and

Song (2011), we generate the data from the following additive model:

Y = 5f1(X1) + 3f2(X2) + 4f3(X3) + 6f4(X4) +
√

1.74ε, (4.2)

where f1(x) = x, f2(x) = (2x − 1)2, f3(x) = sin(2πx)/{2 − sin(2πx)}, and

f4(x) = 0.1sin(2πx) + 0.2cos(2πx) + sin(2πx)2 + 0.4cos(2πx)3 + 0.5sin(2πx)3.

The covariates are simulated according to the random-effect model

Xj =
Wj + tU

1 + t
, j = 1, . . . , p,

where W1, . . . ,Wp and U are i.i.d.. Uniform(0, 1), and ε ∼ N(0, 1). When t = 0,

the covariates are all independent. In this case, both the INIS and FAR exhibit

the same satisfactory performance in terms of adding all important covariates.

Other methods have some difficulty selecting a variable that is quadratically

correlated with the response. When t = 1, the pairwise correlation of covariates

is 0.5, in which case, marginal screening methods fail to detect the first two

variables. Both the FAR and the INIS can perform reasonably well.

Example 3. Following Fan and Lv (2008), we consider the following linear

model, which is actually a special case of the additive model:

Y = cX1 + cX2 + cX3 − 3c
√
ρX4 + ε, (4.3)

where ε ∼ N(0, 1) and c is a constant used to control the signal-to-noise ratio

(SNR). Here, we consider two kinds of SNRs: c = 5 and c = 2.5. The covariates

are simulated from a multivariate normal distribution. All Xk except X4 are

equally correlated with a Pearson correlation coefficient ρ, whereas X4 has a

Pearson correlation
√
ρ with all other p− 1 variables. This makes X4 marginally

independent of the response, although it is truly relevant for the response in the

linear model. In the simulation, we set ρ = 0.2, 0.5, and 0.8. Because X4 is

marginally independent of Y , no marginal screenings detect X4. Although both

the INIS and DC-ISIS perform very well in all cases, the empirical performance

of the FAR is even better when the correlation is high, such as ρ = 0.8.

Example 4. In this example, following Zhong and Zhu (2015), we generate our

data from the following additive model:

Y = 2f1(X1) +
√

6f2(X101) + 3f3(X201)− 0.6f4(X202) + ε, (4.4)

where ε is i.i.d. N(0, 1), f1(x) = exp(2x/3), f3(x) = sin(3πx/4 + 3/2)
/
{2 −

sin(3πx/4 + 3/2)}, f4(x) = log(x2), and
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Table 3. The proportions Ps and Pa in Example 3. The selected model size is 37.

c=5 c=2.5
Ps Pa

Ps Paρ Method X1 X2 X3 X4 X1 X2 X3 X4

0.2

FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SIS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
ISIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95
DC-SIS 1.00 1.00 1.00 0.01 0.01 1.00 1.00 1.00 0.00 0.00
DC-ISIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NIS 1.00 1.00 1.00 0.01 0.01 1.00 1.00 1.00 0.00 0.00
INIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5

FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SIS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
ISIS 1.00 1.00 1.00 0.01 0.01 1.00 1.00 1.00 0.00 0.00
DC-SIS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
DC-ISIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NIS 0.99 0.99 1.00 0.00 0.00 1.00 0.99 1.00 0.01 0.01
INIS 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.99 0.99

0.8

FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SIS 0.96 0.93 0.95 0.00 0.00 0.93 0.92 0.92 0.00 0.00
ISIS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
DC-SIS 0.95 0.92 0.94 0.00 0.00 0.91 0.89 0.93 0.00 0.00
DC-ISIS 1.00 1.00 1.00 0.97 0.97 1.00 1.00 1.00 0.94 0.94
NIS 0.90 0.85 0.93 0.00 0.00 0.76 0.80 0.82 0.00 0.00
INIS 1.00 1.00 1.00 0.88 0.88 1.00 0.99 1.00 0.80 0.79

f2(x) =


x− 4 if x < −2,

|x| if |x| < 2,

4− x if x > 2.

In this example, we first generate p-dimensional predictors x from MVN(0,Σ),

where Σ = (σij)p×p and σij = ρ|i−j|, for i, j = 1, . . . , p. Then, we replace each

Xk with X∗k = 0.8X1+ξk, with ξk from i.i.d. N(0, 1) for k = 2, 3, . . . , 100. Hence,

(X2, . . . , X100) are highly correlated with X1. We want to check whether these

screening methods and the FAR can identify X101, X201, and X202.

The results are summarized in Table 4. We can see that the marginal screen-

ing methods (SIS, NIS, DC-SIS) fail to pick out the active predictors X101, X201,

and X202. This is because the 99 unimportant covariates that present a strong

signal because of their high correlation with X1 hide the marginal signals of the

other three active predictors. However, the FAR and iterative screening proce-

dures can remove the relatively strong signals from X2, X3, . . . , X100, and then
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Table 4. The proportions Ps and Pa in Example 4. The selected model size is 37.

ρ = 0.5 ρ = 0.8
Ps Pa

Ps PaMethod X1 X101 X201 X202 X1 X101 X201 X202

FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SIS 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00
ISIS 1.00 1.00 0.02 0.03 0.00 1.00 1.00 0.02 0.01 0.00
DC-SIS 1.00 1.00 0.05 0.04 0.00 1.00 1.00 0.28 0.26 0.17
DC-ISIS 1.00 1.00 0.79 0.86 0.67 1.00 1.00 0.94 0.90 0.84
NIS 1.00 1.00 0.61 0.46 0.33 1.00 1.00 0.85 0.77 0.71
INIS 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 0.99 0.99

reveal the truly marginal signals of those active predictors. The FAR method can

be considered a conditional screening method. Once X1 is selected and kept in

the model, other spurious variablesX2, X3, . . . , X100, have a lower chance of being

selected than do truly active variables. In summary, the FAR method performs

very well in terms of variable screening for ultrahigh-dimensional nonparametric

additive models.

4.2. Cardiomyopathy microarray data

In this section, we use cardiomyopathy microarray data with (n, p) = (30,

6,319) to examine the empirical performance of the FAR method and to compare

it with other existing methods. This data set was reported by Segal, Dahlquist

and Conklin (2003), Hall and Miller (2009), and Li, Zhong and Zhu (2012). The

goal is to identify the most important genes for the overexpression of a G protein-

coupled receptor (Ro1) in mice. In this example, we use the Ro1 expression

as the response variable Y , and other gene expression levels as the covariates

x = (X1, . . . , Xp)
T.

We first standardize the data. Then, we apply the FAR, SIS, ISIS, NIS, INIS,

DC-SIS, and DC-ISIS. For the nonparametric B-spline estimation, we choose

mn = 3, which is the same as the cubic splines used in Hall and Miller (2009).

The FAR can choose at most [n/mn] = 10 covariates. As in our simulations,

we set the selected model size d = [n/logn] = 8. To compare all models fairly,

the FAR also chooses eight covariates. For the iterative methods, we choose four

covariates in the first step, and four covariates in the second step. The selection

results are reported in Figure 1.

We can see that all methods rank the gene labeled Mas.2877.0 at the top.

Both Hall and Miller (2009) and Li, Zhong and Zhu (2012) claimed that gene
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Figure 1. Gene selection results in the cardiomyopathy microarray data example.

Mas.2877.0 is the most predictive for the response. To make the problem more

challenging and to compare the performance of the different methods, we cre-

ate 20 artificial covariates that are highly correlated with gene Mas.2877.0, as

follows:

XArt.i =
4

3
XMas0.2877.0 + εi, i = 1, . . . , 20, (4.5)

where εi are i.i.d. N(0, 1). The results show that the Pearson correlation be-

tween each artificial gene and gene Mas.2877.0 is 0.8. Then, we apply the above

methods again to the real data and the 20 artificial genes. The selection re-

sults are reported in Figure 1, where a row corresponding to a method name

with the label ∗, such as FAR∗, shows the result from this method for the data

with artificial genes. The squares in black and red denote genes selected by a

particular method, and those in blue denote genes that are not selected. We

observe that gene Mas.2877.0 is selected by all seven methods. However, when

we add noise to the data set, all methods except the FAR select at least one

artificial covariate. The FAR performs robustly in the presence of noise, making

it a useful alternative approach to variable screening in ultrahigh-dimensional

nonparametric additive models.

5. Conclusion

We propose a forward additive regression (FAR) for ultrahigh-dimensional

nonparametric additive models. The FAR method estimates the nonparametric

components and selects important predictors iteratively to determine a solution

path. Compared with the penalized regression, our proposed method is computa-

tionally more efficient and, hence, is useful for ultrahigh-dimensional predictors.
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Compared with the screening methods, our proposed method identifies important

predictors that are marginally independent of the response variables. Compared

with the iterative screening methods, our method exhibits the desirable sure-

screening property. Comprehensive numerical studies using simulations and real

data confirm the effectiveness of the proposed method.

Supplementary Material

All technical proofs are included in the online Supplemental Material.
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