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Abstract: A semiparametric method using a local polynomial is proposed to esti-

mate the population size at a specific time from multiple lists of an open population.

The asymptotic distribution for the proposed estimators is derived. Simulation

studies show that the proposed procedure works much better than existing meth-

ods. In addition, we provide a simple and efficient method to deal with the variable

selection problem in a log-linear model when the number of the lists is large. The

method is applied to estimate the number of drug-abusers in Hong Kong over the

period 1977-1997.
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1. Introduction

This work is motivated by estimating the number of drug users in Hong
Kong for the period 1977-1997. A Central Registry of Drug Abuse (CRDA) was
established in the Narcotics Division of the Hong Kong Government to monitor
the number of drug-abusers in Hong Kong. Reports on known or suspected
drug-abusers are compiled by different agencies and submitted to the CRDA on
a standard record sheet on a semi-annual basis. Among the agencies, there are
four major lists: Police Department, Correctional Services Department, Social
Welfare Department, and Hospitals.

Table 1 gives the four-list presence-absence data for each half-year from
1977 to 1997, where each pattern of 1’s and 0’s represents being recorded or
not being recorded in a particular list. For example, “1111” denotes a case
listed in all the lists, 1101, a case listed by the Police, the Correctional Services
Department, and the Hospitals, but not by the Social Welfare Department, etc.
There are 24 − 1 = 15 entries for each half-year, and 42 contingency tables
for the twenty-one years. At present, the Narcotic Bureau simply adds up the
distinct individuals among all the lists to form an estimate of the number of drug
abusers in Hong Kong. Certainly, there are individuals who were not ”captured”
by any of the lists. Our interest is to estimate the number of drug abusers for
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Table 1. The observed numbers of drug users in Hong Kong for each half-year
recorded during 1977-1997. The Four lists are Police Department, Correc-
tional Services Department, Social Warefare Department, and Hospitals. A
— first half-year; B — second half-year. Full table available as an online
supplementary document.

year 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

77A 1575 3325 556 2199 184 213 53 1264 127 115 31 1096 151 120 29

77B 1199 3398 527 2053 169 290 77 1154 121 178 50 824 126 116 37

78A 1415 3444 678 1945 155 254 64 1044 111 125 46 760 164 84 44
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97B 1145 3314 371 2300 94 488 76 1498 57 301 30 908 47 246 26

the 42 periods, or the number of missing drug abusers for each time period. The
pattern of overlapping among the lists provides useful information on the number
of ”uncaptured” individuals (IWGDMF (1995a,b)).

There are two complications with the drug-user data. First, at different
time points, the lists relate to different but overlapping populations; second, the
information of each individual being captured among the lists over the period was
not available. The first feature implies that it is an open population problem.
The second feature implies that our estimators must be based on the marginal
distributions.

In the literature, many methods have been proposed to handle the multiple-
list for a closed population; for example, the Poisson log-linear model (Fienberg
(1972), Cormack (1989) and IWGDMF (1995a,b)), the multinomial model (Cor-
mack and Jupp (1991)) and the sample coverage method (Chao and Lee (1992)).
There also exist methods to deal with the open population problem; for exam-
ple, Huggins and Yip (2003), Huggins, Yang, Chao and Yip (2003), Yang and
Huggins (2003) and Yang, Huggins and Clark (2003). However, estimation of an
open population size for multiple-list experiments has yet to be developed.

One obvious method to handle the open population with multiple-list prob-
lem is to regard each unit as a closed population and to estimate the population
size in each unit based on the observed individuals in that unit, using the Pois-
son log-linear model or the multinomial model. We refer to this as the simple
imputation (SI) method. Since the SI estimate of the population size for each
period is based solely on the corresponding contingency table for that period,
the results may suffer from considerable variability and thus be unreliable. For
example, the dotted line in Figure 6.3 reports the SI estimates of the number
of drug abusers in Hong Kong. These estimates are seen to be very unstable,
with variations during half-years as large as 40,000, as against baseline figures of
20,000. To assess the trend in the numbers, stable estimates of the population
sizes are needed.
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One purpose of this paper is to provide a stable estimate of the population
sizes at different time points. Our idea is based on the following observation.
The population is subject to change, but the characteristics of the population
usually vary slowly over time, so observations from adjacent units carry useful
information on the current population size. Thus it is possible to improve on the
SI estimator by including data from adjacent units. In this paper, we achieve
this by combining the local polynomial technique (Fan and Gijbels (1996)) and
the log-linear model. Compared with the SI estimator, our estimator has a much
smaller variance and a slightly larger bias, hence a considerably smaller mean
squared error.

A problem with the log-linear model is that the number of variables is K =
2k − 1, where k is the number of lists, and hence the model may be overly
complex when the number of lists is moderately large. Another purpose of this
paper is to address the issue of variable selection. The classical approach to model
selection, such as the likelihood ratio test, may be sensitive to null parameters and
thus the choice of the prespecified model. Another method for variable selection
is the subset variable selection method; it compares all possible models using
some information criterion such as the Akaike information criterion (AIC) or the
Bayesian information criterion (BIC), and selects the best one. This method can
become impractical in our situation because the computational effort required
for exhaustively searching over 2k − 1 models can be expensive when k is only
moderately large. In this paper, extending the penalized likelihood estimator
with the smoothly clipped absolute deviation (SCAD) penalty proposed by Fan
and Li (2001, 2002), and later extended by Fan, Lin and Zhou (2006) to the
nonparametric setting, we propose a model selection method that requires the
computations of only one model and a tuning parameter. The computational
effort of selecting the tuning parameter does not increase with the number of
lists. Another advantage of the SCAD penalized method over existing methods
is that the true regression coefficients that are zero are automatically estimated
as zero, with the remaining coefficients being estimated as if the correct submodel
were known in advance. Hence, the SCAD method is not sensitive to the choice
of the prespecified model.

This paper is organized as follows. Section 2 describes the model and the es-
timation method. The proposed estimator is shown to be asymptotically normal.
In Section 2 we also discuss the estimation of variance and bandwidth selection.
Based on the SCAD penalty, Section 3 provides a model selection method for
the log-linear model. Section 4 presents a simulation study in which we com-
pare the proposed method with the SI method, and investigate the robustness of
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the proposed method. We apply our method by applying it to the Hong Kong
drug-abuser data in Section 5. A discussion is given in Section 6.

2. Model and Estimation Methods

2.1. Notation and model

The time axis [0, τ ] is divided into subintervals of equal length, labeled j =
1, . . . , n. Suppose we have k lists. For each time unit j, a natural way of recording
the information obtained by matching the lists is in the form of an incomplete 2k

contingency table, with one margin per list. Each cell of the table corresponds to
a subset of lists and contains the count of individuals that are recorded on exactly
that subset of lists. The cell count corresponding to individuals on none of the
lists is missing, and this is the parameter of interest. In this way, we obtain
a set of contingency tables and each contingency table corresponds to a time
point. Let ncj be the observed cell count for cell c at time j, for c = 1, . . . ,K,
j = 1, . . . , n, where K = 2k − 1, and n0j be the unobserved count. Let pc denote
the probability of an individual being in the cell c and p0 the probability of being
in the empty cell. Let Λj = E(

∑K
c=0 ncj). The main problem is to estimate Λj

for j = 1, . . . , n.
We suppose that the cell counts ncj , j = 1, . . . , n, c = 0, . . . ,K, are indepen-

dently Poisson distributed with means Λjpc. Following the literature (Cormack
(1989) and Fienberg (1972)), we use the log-linear model to reparameterize the
cell probabilities. For example, the saturated model for a 3-list experiment is
given by

log p111 = θ0,

log p011 = θ0 + θ1, log p101 = θ0 + θ2, log p110 = θ0 + θ3,

log p001 = θ0 + θ1 + θ2 + θ12, log p010 = θ0 + θ1 + θ3 + θ13, (2.1)

log p100 = θ0 + θ2 + θ3 + θ23,

log p000 = θ0 + θ1 + θ2 + θ12 + θ3 + θ13 + θ23 + θ123,

where p111 denotes the probability of an individual being in cell “111”, and so on.
The models for general k-list experiments are given similarly. The parameters
θ = (θ0, θ1, . . . , θk, . . . , θ12···k)T represent the baseline effect, main effects, and
interactions effects among the lists. For identifiability considerations, the highest
order interaction θ12···k among the lists is always set to 0.

2.2. Estimation

For ease of presentation, we temporarily assume that the parameters Λj

are reparameterized by Λj(β) where β is a set of unknown parameters. Our
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model assumptions imply that nj =
∑K

c=1 ncj is Poisson distributed with mean
(1 − p0(θ))Λj(β) and that, given nj , the frequency counts n1j , . . . , nKj follow
a multinomial distribution based on nj trials with cell probabilities qc(θ), c =
1, . . . ,K, where qc(θ) = pc(θ)/(1 − p0(θ)). The joint distribution of ncj , c =
1, . . .K, j = 1, . . . , n is then

n∏
j=1

[Λj(β)(1 − p0(θ))]nje−Λj(β)(1−p0(θ))

nj !
×

n∏
j=1

nj !
∏K

c=1 qc(θ)ncj∏K
c=1 ncj !

, (2.2)

and the log-likelihood of θ and β based on the observed cell counts ncj , c =
1, . . . ,K, j = 1, . . . , n, can be decomposed as L(θ, β) = L1(θ) + L2(β, p0(θ)),
where

L1(θ) =
n∑

j=1

K∑
c=1

ncj log(qc(θ)) + k1, (2.3)

L2(β, p0(θ))=
n∑

j=1

{
nj log

[
(1−p0(θ))Λj(β)

]
−[1−p0(θ)]Λj(β)

}
+k2, (2.4)

and k1, k2 are independent of the parameters. Thus L(θ, β) is a sum of the con-
ditional log-likelihood L1(θ) of n1j , . . . , nKj given nj and the marginal likelihood
L2(β, p0(θ)) of nj . Statistical inference on θ can be based on the conditional
likelihood L1(θ) or the unconditional likelihood L(θ, β). The comparison of in-
ference based on conditional and unconditional likelihoods is a topic which has
been discussed extensively (Fienberg (1972), Sanathanan (1972), Sandland and
Cormack (1984), Cormack and Jupp (1991) and Yip (1991)). Under suitable
regularity conditions, the estimate, and inference on θ, based on the conditional
and unconditional likelihood are asymptotically equivalent (Sanathanan (1972)).
In this paper, we estimate θ by maximizing L1(θ) and denote the estimator by
θ̂. The likelihood function L1(θ) does not include any information on β, so sta-
tistical inference on β is based on L2(β, p0(θ)). Maximization of L2(β, p0(θ̂))
with respect to β leads to a ML estimator of β. A computationally appealing
feature of this two stage method is that, instead of solving a semiparametric opti-
mization problem, we only need to do separately parametric and nonparametric
optimizations, which can significantly reduce the computational complexity.

Consider the estimate of Λj . Since the subpopulation sizes are unobservable,
it may be difficult to correctly specify the parametric form for Λj(β). One obvious
way is to take β = (Λ1, . . . , Λn)T and treat Λj , j = 1, . . . , n, as n independent
parameters. This fully nonparametric method leads to the SI estimates Λ̂j =
nj/(1 − p0(θ̂)), j = 1, . . . , n. As mentioned in the introduction, the SI estimates
suffer from unacceptably large variation.
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To improve the accuracy of the estimates of the Λj , we assume the Λj can be
embedded into a smooth function Λ via Λj = Λ(tj) with tj = jδn and δn = τ/n.
Let λ(t) be the population-normalized intensity of the drug-user process at time
t ∈ [0, τ ], and η be the size of the underlying population, so that we can write
Λj = η

∫ tj
tj−δn

λ(s)ds and take Λ(t) to be η
∫ t
t−δn

λ(s)ds.
Since Λ is differentiable, for any fixed t0 and each t close to t0, a Taylor

expansion gives,

Λ(t) ≈ Λ(t0) + Λ′(t0)(t − t0) = β1 + β2(t − t0). (2.5)

Inserting Λj = β1+β2(tj−t0) and θ = θ̂ into (2.4) and introducing a kernel func-
tion K with a bandwidth h, we obtain the local log-likelihood for β = (β1, β2)T

as

`(β) =
n∑

j=1

{
nj log

(
(1 − p0(θ̂))[β1 + β2(tj − t0)]

)
−(1 − p0(θ̂))[β1 + β2(tj − t0)]

}
Kh(tj − t0), (2.6)

where Kh(u) = K(u/h)/h. The kernel and the bandwidth are introduced to
ensure that essentially only those data near t0 are used to estimate Λ(t0). Note
that β1 and β2 are dependent on t0, and so is `(β). Maximizing `(β) gives the
estimator β̂ = (β̂1, β̂2)T , and Λ(t0) is estimated by Λ̂(t0) = β̂1. The whole curve
Λ̂(·) is obtained by running the above local linear procedures with t0 varying in
[0, τ ]. The Λj are estimated by Λ̂j = Λ̂(tj), j = 1, . . . , n. We refer to these as
local linear ML estimates.

2.3. Asymptotic properties

In this subsection, we state the results concerning the asymptotic normal-
ity of the proposed estimators. The proof of the results can be found in the
appendix. The asymptotics are developed as the underlying population size η

goes to infinity. The notation “ d→” means “converges in distribution to”. Before
considering asymptotic properties of θ̂, we first note that with the restriction∑

pc(θ) = 1, the number of free θ’s in (2.1) is K − 1. Remove any component,
say θ0, from θ and, by a slight misuse of notation, we use θ to denote the free
parameters remaining, with parameter space the (K − 1)-dimensional Euclidean
space RK−1.

Theorem 1. Let θ̂ be the conditional MLE of θ, θ0 be the true value of θ, and
I(θ) = (irs(θ))(K−1)×(K−1) be the matrix defined by

irs(θ) =
K∑

c=1

1
qc(θ)

∂qc(θ)
∂θr

∂qc(θ)
∂θs

, r, s = 1, . . . ,K − 1.
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with θj, j = 1, . . . ,K − 1, being the jth component of θ. Then I(θ0) is nonsin-
gular, and if

∫ τ
0 λ(t)dt > 0,

η
1
2 (θ̂ − θ0) d−→ N(0, Σ) as η → ∞, (2.7)

where Σ = [
∫ τ
0 λ(t)dt]−1/2[I(θ0)]−1.

Theorem 2. For any t0 ∈ (0, τ), let Λ̂(t0) be the local linear ML estimator
of Λ(t). Assume that λ(·) is positive and twice continuously differentiable at t0
and that the kernel K(·) is a symmetric probability density with bounded support.
Assume h → 0, n → ∞, nh → ∞ and η/n → C ∈ (0,∞) as η → ∞. Then, as
η → ∞,

(nh)
1
2

(
Λ̂(t0) − Λ(t0) −

1
2
h2Cτλ′′(t0)u2

)
d−→ N

(
0,

v0Cτ2λ(t0)
1 − p0(θ0)

)
, (2.8)

where u2 =
∫ ∞
−∞ x2K(x)dx and v0 =

∫ ∞
−∞ K2(x)dx.

Remark 1. The condition
∫ τ
0 λ(t)dt > 0 assumed by Theorem 1 guarantees

that when η → ∞, the number of observed individuals will also tend to ∞
(in probability). This condition is clearly fulfilled when λ(·) is positive and
continuous at any point t0 ∈ (0, τ).

Remark 2. The condition η/n → C ∈ (0,∞) means that when the underlying
population size grows to infinity, the number of observation intervals grows to
infinity at the same rate. One implication of this assumption is that when η (or
n) is large, Λ(t) = η

∫ t
t−δn

λ(s)ds ≈ Cτ
∫ t
t−δn

λ(s)ds/δn ≈ Cτλ(t), so that the Λ̂j

are virtually the estimates of the intensity λ(·) of the drug user process at the
end points of the observation intervals (up to a constant Cτ).

Remark 3. The θ̂ in (2.6) is an estimate of the parameter θ. Therefore, the
variance of Λ̂(t0) should in general contain an extra term reflecting the uncer-
tainty introduced by replacing θ by an estimator. However, from Theorem 2 and
its proof, the variance of Λ̂(t0) performs as well as if θ were known. This occurs
due to the fact that the rate of convergence of θ̂ is faster than that of Λ̂(t0), so
that the uncertainty from θ̂ can be ignored.

2.4. Variance estimation and the bandwidth selection
It can be shown that the covariance matrix of (β̂1(t0) − β1(t0), h(β̂2(t0)) −

β2(t0))T can be estimated by

(nh)−1(Ân)−1Σ̂n(Ân)−1, (2.9)



184 HUAZHEN LIN, PAUL S. F. YIP AND FENG CHEN

where,

Ân =
1
n

n∑
j=1

njxtjx
T
tj(

β̂1(t0) + β̂2(t0)(tj − t0)
)2 Kh(tj − t0),

Σ̂n =
h

n

n∑
j=1

(
nj

β̂1(t0) + β̂2(t0)(tj − t0)
− (1 − p0(θ̂))

)2

xtjx
T
tjK

2
h(tj − t0),

in which xt = (1, (t − t0)/h)T . The variance of Λ̂(t0) is estimated by entry (1, 1)
of matrix (2.9).

Our simulation shows that when p0 is larger, the variance formula (2.9)
tends to underestimate the true variance. This might be due to the fact that
when 1 − p0 is close to 0, the number of listed individuals will be too small
for p0(θ̂) to estimate p0 reliably, so that the variance of θ̂ will make a prac-
tically nonnegligible contribution to the variance of Λ̂(t0). For this reason, a
parametric bootstrap procedure is recommended to estimate the variance of Λ̂j ,
j = 1, . . . , n. The procedure is as follows. Get estimates θ̂ and Λ̂j , j = 1, . . . , n

using the proposed method; generate a set of B i.i.d. bootstrap samples where
each bootstrap sample {n∗

cj ; c = 1, . . .K, j = 1, . . . , n} is generated accord-
ing to the independent distributions n∗

cj ∼ Pois(Λ̂jpc(θ̂)); for each bootstrap
sample, calculate the estimates of the Λj , j = 1, . . . , n. So for each j, we
have B bootstrap samples for Λ̂j , {Λ̂∗(1)

j , . . . , Λ̂∗(B)
j }, and we take their variance

(B/(B − 1))[
∑B

i=1(Λ̂
∗(B)
j )2/B − (

∑B
i=1 Λ̂∗(B)

j /B)2] as an estimate of the variance
of Λ̂j . Our numerical study shows this procedure works reasonably well when
B ≥ 100.

One issue in the use of the local linear method described in this paper is
the selection of the bandwidth h which trades off variance and bias. Although a
suitable bandwidth for Λ̂(t) might be selected subjectively by visually examining
the fitted curves with different bandwidths, an automatic bandwidth selection
procedure based on the data is useful to provide an indication of a suitable
bandwidth range. Here, since the estimate of Λj is of interest, we take the
bandwidth that minimizes the Cumulated Mean Squared Error (CMSE) given
by

CMSE =
n∑

j=1

{
Bias2[Λ̂j ] + V ar[Λ̂j ]

}
wj .

The estimation of the variance of Λ̂j can be obtained from (2.9), or by the
bootstrap method as explained in the preceding paragraph. However, the biases
of nonparametric estimates are generally difficult to estimate, since they involve
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higher order derivatives (see Theorem 2). For this reason, we use the empirical
bias method proposed by Ruppert (1997), which we find to work well in our
simulations and in our example.

3. Variable Selection

The number of variables in the log-linear model is 2k − 1, where k is the
number of lists. Hence, the variable selection is an important problem when k is
only moderately large. Fan and Li (2001, 2002) proposed a family of new variable
selection methods based on a nonconcave penalized likelihood. Their methods
are different from traditional ones in that they delete insignificant variables by
estimating their coefficients as 0, and simultaneously select significant variables
and estimate regression coefficients. LASSO, proposed by Tibshirani (1996),
is a member of this family with an L1 penalty. From their simulations, Fan
and Li (2001) showed that the penalized likelihood estimator with smoothly
clipped absolute deviation (SCAD) penalty outperforms the best subset variable
selection in terms of computational cost and stability. In addition, they showed
that SCAD improves the LASSO in terms of estimation biases. Furthermore,
they demonstrated that with a proper choice of tuning parameter and penalty
functions, for example, SCAD, the penalized likelihood estimator possesses an
oracle property. Motivated by the work of Fan and Li (2001, 2002), we select
variables and estimate coefficients simultaneously by maximizing the penalized
log likelihood function

Q(θ) = L1(θ) − N

K∑
j=1

p%(|θj |), (3.1)

where N =
∑n

j=1 nj , p%(·) is a penalty function, % is a tuning parameter, and θj

is the jth component of θ. The coefficients of redundant variables are estimated
as 0 automatically, with probability tending to 1, and the non-zero components
are estimated as well as in the case where the correct submodel is known; hence,
the objectives of variable selection and coefficients estimation are simultaneously
achieved by maximizing (3.1). Using local quadratic approximations (Fan and Li
(2001)) and the Newton-Raphson algorithm, we can maximize (3.1) by iterating
the following equation untill convergence,

θ(k+1) = θ(k) −
{

∂2L1(θ(k))
∂θ∂θT

− NΣ%(θ(k))
}−1

×
{

∂L1(θ(k))
∂θ

− NΣ%(θ(k))θ(k)

}
, (3.2)
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where Σ%(θ) = diag{p′%(|θ1|)/|θ1|, . . . , p′%(|θK |)/|θK |}. The estimator from the
full model can be used as starting value θ(0) of the iteration.

A good penalty function p%(·) should result in an estimator with the fol-
lowing three properties: unbiasedness for large coefficients to attenuate overall
bias, sparsity (many small coefficients are estimated as zero) to reduce model
complexity, and continuity to avoid unnecessary variation in model prediction.
Necessary conditions for unbiasedness, sparsity and continuity have been derived
by Antoniadis and Fan (2001) and Fan and Li (2001). A simple penalty function
that satisfies the three requirements is the SCAD penalty,

p′%(θ) = %

{
I(θ ≤ %) +

(a% − θ)+
(a − 1)%

I(θ > %)
}

for some a > 2 and θ > 0, (3.3)

that involves two unknown tuning parameters % and a. In practice, we can search
for the best pair (%, a) over a two-dimensional grid using some suitable criterion,
such as AIC or BIC or cross-validation. Using Bayesian risk analysis tools with
a normal prior distribution for θ, Fan and Li (2001) found that a ≈ 3.7 is an
appropriate choice in a wide variety of situations. This value will be used in our
numerical example.

Let the true value of θ = (θT
1 ,θT

2 )T be θ0 = (θ10, . . . , θK0)T = (θT
10,θ

T
20)

T .
Without loss of generality, assume that θ20 = 0. Following Fan and Li (2001),
we can prove that if SCAD penalty is taken and % → 0, then there exists a local
maximizer θ̂ of Q(θ) such that ‖θ̂ − θ0‖ = Op(η−1/2). Hence by choosing a
proper %, there exists a

√
η consistent penalized maximum likelihood estimator.

Furthermore, again using the method of Fan and Li (2001), we can prove that
this estimator must possess (1) the sparsity property, and (2) the oracle property,
i.e., the asymptotic distribution of θ̂1 is the same as the asymptotic distribution
of θ̂1 when θ2 = 0. In other words, when the true parameters have some zero
components, they are estimated as 0 with probability tending to 1, and the non-
zero components are estimated as well, asymptotically, as in the case where the
correct submodel is known.

4. Simulation

In this section we present simulations to investigate the performance of our
estimator, which include testing its robustness to possible dependence among the
populations. The performance of the estimator Λ̂j is assessed via the cumulated
square errors (CSE), CSE = (1/n)

∑n
j=1(Λ̂j−Λj)2, or the root mean square error

(RMSE) at tj RMSE =
√

E(Λ̂j − Λj)2, j = 1, . . . , n. In both simulations, we
use the Gaussian kernel. We considered different scenarios with the simulation
replicated 5,000 times in each one.
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Table 2. Simulation details for three lists: lists 1 and 2 are dependent and
each is independent of list 3.

P (S1) P (S2|S1) P (S2|S1) P (S3) p0

Scenario 0 3/4 6/7 1/7 3/4 0.054
Scenario 1 1/3 2/3 1/3 3/4 0.111
Scenario 2 1/4 2/3 1/3 1/2 0.250
Scenario 3 1/4 4/5 1/5 1/5 0.480
Scenario 4 1/7 3/7 1/10 1/8 0.675

Simulation 1. The purpose here was to compare the performances of the
proposed two-stage method and the SI method. The number of periods was
n = 100, and the number of lists was 3. Lists 1 and 2 were assumed to be
dependent but independent of list 3. The dependence structures considered are
itemized in Table 2, where Si denotes the event of “being captured by list i”, Si

denotes the event of “not being captured by list i”, and p0 denotes the probability
of not being captured by any list, changes from 0.111 to 0.675, corresponding
Scenario 1 to 4, respectively. The function Λ was set to Λ(t) = 8, 000 + 1.5(t −
50)2 + 10t. The observed data ncj were independently generated according to
Poisson distributions with means Λjpc, j = 1, . . . , n, c = 1, . . ., K = 23 − 1.
Scenario 0 is for testing (2.9).

Table 3 gives the results using the proposed method with bandwidth h =
4 and using SI methods, including the bias, the empirical standard deviation
(SD) and RMSE of the estimates. Comparisons were made for time periods
j = 10, 25, 50, 75, 90, which correspond to the 10th, 25th, 50th, 75th and 90th
percentiles of the distribution of the observed time. The results show that the
proposed method greatly reduces the variance of the SI estimators for all cases,
and reduces the bias of the SI estimators for p0 = 0.48 and p0 = 0.675, so that
the RMSE for the proposed method was about 1/10 of that of SI results, on
average.

Figure 6.1 shows the estimates (dashed) and 95% confidence limits (dotted-
linear) for Λ, with p0 = 0.675, from a typical sample with a bandwidth h = 4
chosen by minimizing the estimated CMSE, denoted by ECMSE. The typical
sample was selected in such a way that its CSE-value is the median of the 5,000
CSE-values. In order to choose the bandwidth, we first gave a series of values of
h. For each pre-selected bandwidth h, we computed

ECMSE =
n∑

j=1

{
b̂ias

2
{Λ̂(tj , h)} + V̂ ar{Λ̂(tj , h)}

}
,
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Table 3. The average, the SD and the MSE over the 5,000 replications at
time point j = 10, 25, 50, 75, 90.

Time

p0 Method 10 25 50 75 90

true 10500 9187.5 8500 9687.5 11300

0.111 proposed bias 31.73 37.25 37.51 38.24 32.96

SD 29.40 26.34 25.05 26.95 30.18

RMSE 43.26 45.62 45.11 46.78 44.69

SI bias 1.49 5.69 6.57 7.02 1.73

SD 156.34 149.70 142.60 149.25 161.20

RMSE 156.35 149.81 142.75 149.41 161.21

0.25 proposed bias 32.11 37.63 37.07 37.19 33.23

SD 39.76 33.95 32.62 35.62 40.32

RMSE 51.11 50.68 49.38 51.50 52.25

SI bias 8.10 11.88 10.76 11.27 5.64

SD 264.75 252.37 246.44 262.95 286.99

RMSE 264.87 252.65 246.67 263.19 287.05

0.48 proposed bias 31.69 36.69 36.66 37.35 32.79

SD 80.65 70.87 65.56 74.53 85.50

RMSE 86.65 79.81 75.12 83.36 91.57

SI bias 76.49 56.22 63.32 64.02 64.52

SD 736.36 693.27 680.09 712.31 759.88

RMSE 740.32 695.55 683.03 715.19 762.61

0.675 proposed bias 31.02 37.36 36.42 36.06 32.16

SD 81.46 71.32 66.34 74.23 86.15

RMSE 87.17 80.51 75.68 82.52 91.96

SI bias 71.71 48.96 49.90 68.31 63.43

SD 740.54 695.37 662.97 702.02 762.06

RMSE 744.00 697.09 664.84 705.34 764.69

where b̂ias{Λ̂(tj , h)} = ν1h
2 + ν2h

3 and ν1, ν2 were estimated by fitting the
polynomial regression

E[Λ̂(tj , b)] = ν0 + ν1b
2 + ν2b

3

to the data {(b, Λ̂(tj , b)), b = h±r, r = 0, 0.1, 0.2, 0.3, 0.4}. The variance estimate
V̂ ar{Λ̂(tj , h)} was obtained by the bootstrap method described in Section 2.
The plot of ECMSE vs h is shown in Figure 6.2. From Figure 6.1, we see that
the proposed procedure with the bandwidth choice method produces reasonable
estimates of the true population size function (solid line). Figure 6.1 also displays
the SI estimates (dotted line), and shows that the SI estimator has large variance
and leads to unreasonable variability of the results.

We also examined the accuracy of (2.9) when p0 was small. The standard
deviations, denoted by SD in Table 4, of 500 estimated Λ̂j , based on 500 simu-
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Figure 6.1. The estimated function Λ̂j using the proposed methods (dashed),
and their 95% confidence interval (dotted-linear) using the bandwidth h = 4
chosen by minimizing ECMSE, as well as the true value (solid), and SI
(dotted) estimators for a typical sample with p0 = 0.675.

Figure 6.2. The ECMSE against h for a typical sample from Ssimulation 2.
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Table 4. True and estimated standard errors when using bandwidth = 5 for
Scenario 0 and 1 at time points j = 10, 25, 50, 75, 90.

p0 = 0.054 p0 = 0.111
time SD SDave(SDstd) SD SDave(SDstd)
10 24.921 25.251(4.716) 27.510 25.824(5.126)
25 24.494 23.095(4.533) 25.948 23.753(4.675)
50 23.633 22.082(4.451) 25.042 22.904(4.322)
75 24.822 23.408(4.544) 27.027 24.512(4.844)
90 28.983 26.260(5.388) 30.397 26.464(5.294)

lations, can be regarded as the true standard errors. The average and the stan-
dard deviation of 500 estimated standard errors, denoted by SEave and SEstd,
summarize the overall performance. Table 4 presents the results at the points
j = 10, 25, 50, 75, 90. It suggests that our standard error formula is basically
consistent with the true standard deviation when p0 is small.

Simulation 2. This simulation was used to investigate the robustness of the
proposed method to the possible dependence among population sizes at different
periods. We applied our estimation procedure to a situation where the underlying
target population Nt is modeled by an AR(1) process

Nt|Nt−1, . . . , N1
d= Bin(Nt−1, γ) + sgn(Λt − γΛt−1)Pois(|Λt − γΛt−1|), t ≥ 2

N1
d= Pois(Λ1). (4.1)

It can be seen that E[Nt] = Λt and that if γ is small so that Λt − γΛt−1 > 0 for
all t = 2, 3, . . ., then V ar[Nt] = Λt. We chose Λt = 8, 000 + 1.5(t− 500)2 + 10t as
before, and γ = 0.5. The results are shown in Table 5. A comparison with Table
3 shows that our estimator behaves almost as well as in the case of independent
Nt’s.

Simulations were also carried out under a stronger dependence structure
within a similar scheme as in Table 5, except that γ = 0.9. Similar results
were obtained, suggesting that our method is robust against possible dependence
among the populations to some extent.

5. An Example: Number of Drug Users in Hong Kong

In this section we re-examine the drug-user data in Table 1. The number of
drug-users was known to have changed over the period from 1977 to 1997. The
observed numbers of drug-users fluctuated around 10,000.

The proposed variable selection method in Section 3 was applied to the data
set with the tuning parameter % chosen by minimizing

AIC = −2L1(θ̂) + 2p and BIC = −2L1(θ̂) + log(N)p,
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Table 5. The average, the SD and the MSE over the 5,000 replications at
time point j = 10, 25, 50, 75, 90 for the data with the dependent populations.

Time

p0 Method 10 25 50 75 90

true 10500 9187.5 8500 9687.5 11300

0.111 proposed bias 21.96 24.45 24.46 23.54 21.45

SD 49.48 44.36 43.37 45.68 50.54

RMSE 54.13 50.66 49.80 51.39 54.90

SI bias 1.12 3.74 4.71 2.82 0.66

SD 157.73 146.45 141.57 151.57 163.53

RMSE 157.73 146.50 141.65 151.59 163.53

0.250 proposed bias 23.52 24.76 23.67 24.43 23.34

SD 55.66 50.55 47.36 52.21 57.08

RMSE 60.42 56.29 52.95 57.64 61.67

SI bias 11.32 15.85 11.17 12.99 9.93

SD 272.06 256.08 247.41 260.22 284.32

RMSE 272.30 256.57 247.66 260.54 284.49

0.480 proposed bias 25.75 25.29 25.18 25.26 24.50

SD 91.76 81.56 75.39 84.12 95.24

RMSE 95.31 85.39 79.48 87.84 98.34

SI bias 65.79 69.07 74.56 68.18 69.74

SD 733.67 699.45 674.26 709.06 747.32

RMSE 736.61 702.85 678.37 712.33 750.57

0.675 proposed bias 22.83 26.46 25.78 26.40 26.22

SD 151.53 134.20 123.76 141.39 164.01

RMSE 153.24 136.78 126.42 143.83 166.09

SI bias 120.87 154.43 169.47 142.00 200.17

SD 1412.90 1314.61 1270.48 1364.86 1452.73

RMSE 1418.06 1323.65 1281.73 1372.22 1466.46

where p is the number of non-zero components in θ̂. The AICs’ and BICs’
results suggest % = 0.15, which find θ̂0 = −8.4918, θ̂1 = 0.9638, θ̂3 = 0.7679,
θ̂4 = 1.9445, θ̂12 = 1.9736, θ̂34 = 0.7323, and the others estimated as zero. These
results suggest that the four lists can be divided into two nearly independent
pairs: Police Department and Correctional Services Department, and the Social
Welfare Department and Hospitals. While the two within-pair interactions are
rather strong, there basically is no interaction between the two pairs. Another
interesting implication of θ2 = 0 and θ12 > 0 is that the drug users recorded by
the Correctional Services Department might have all been recorded by the Police
Department.

We used the local linear technique to estimate the number of drug users in
Hong Kong for all the 42 half-year periods during 1977-1997. Figure 6.3 plots the
estimated numbers of the drug users (solid line) and their pointwise approximate
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Figure 6.3. The estimated numbers (solid) of drug users, with 95% confi-
dence limits (dotted-linear), for the bandwidth h = 1.5 using the proposed
method and the SI (dotted) method in Hong Kong during the period from
1977 to 1997, as well as the observed numbers (dashed).

95% confidence limits (dotted-linear line), with the bandwidth h = 1.5 chosen
by minimizing ECMSE. We also plot the SI (dotted line) estimates and the
number of the observed drug users (dashed line) in Figure 6.3. It can been seen
that, while the local linear ML estimates are fairly stable, the SI estimates show
extraordinarily large variation. It is also clear that a simple summation of the
observed numbers from different lists greatly underestimates the total number of
drug users by a factor of around 4.6, on average.

Our estimates and the observed numbers of drug-users achieve peaks and
troughs roughly at the same times and both curves show similar increasing then
decreasing trend over time, which suggests that the proposed methods and the
bandwidth selection are reasonable. These results also shows a seasonal pattern
in the number of drug-users. The peaks are roughly in the years 1975, 1985 and
1995, and the waves seem to recur after periods of about 10 years. An explanation
of this would require additional covariate information. Apparently, peaks and
troughs are in line with the economic cycle of Hong Kong over the period. Low
unemployment rate is linked to the peaks, whereas troughs were found in the
times of high unemployment rate. This suggests that in good economic times,
people can afford to pay for drugs (especially so-called party drugs, for example,
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Ketamine). The times with high unemployment rate would reduce affordabilty
among the drug users in the community.

6. Discussion

The proposed two-stage procedure to estimate the population size in multi-
contingency tables overcomes the closed-population assumption and makes use
of the information on the population sizes without specifying the form of Λj ,
j = 1, . . . , n. It is shown that the method outperforms the SI method. The
method is especially suitable for the case where the population size changes
smoothly with time.

The popular log-linear model for the cell probabilities pc, c = 1, . . . , 2k − 1
gets too complex when k, the number of lists, is large, and makes it difficult
to interpret the fitted model coefficients. We provide an efficient and easy-to-
implement method to cope with the model selection problem.

When additional covariate information is available for each individual, one
can formulate log-linear models for capture probabilities that incorporate this
information. Further research is needed to accommodate heterogeneity among
individuals for an open population.
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Appendix. Proofs

Proof of Theorem 1. First note that, given N =
∑n

j=1 nj , the (conditional)
likelihood of the parameter θ based on ncj , c = 1, . . . ,K; j = 1, . . . , n, is

expL1(θ) =
N !∏K

c=1 nc·!

K∏
c=1

(qc(θ))nc· ,

where nc· =
∑n

j=1 ncj . We now apply proposition (iv) in Subsection 5e.2 of
Rao (1973). Since the parameterizations (2.1) are smooth enough for qc(θ),
c = 1, . . . ,K, to have continuous first-order partial derivatives, we only need to
verify the non-singularity of I(θ0) and the strong identifiability condition, ie.,
that for any δ > 0 there exists an ε > 0 such that

inf
|θ−θ0|>δ

K∑
c=1

qc(θ0) log
qc(θ0)
qc(θ)

≥ ε. (A.1)
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Denote the sum on the left-hand side of (A.1) by f(θ). Introduce the (K − 1)-
dimensional vectors bc, c = 0, . . . ,K, so that (2.1) can be written as log pc =
θ0 + bT

c θ. By the model specification, we have θ0 = − log(
∑K

c=0 ebT
c θ). Straight-

forward calculations show that

∂f(θ)
∂θ

=
K∑

c=1

(qc(θ) − qc(θ0))bc,

∂2f(θ)
∂θ∂θT

=
K∑

c=1

qc(θ)bcbT
c −

K∑
c=1

qc(θ)bc

K∑
c=1

qc(θ)bT
c .

Since for any θ in the parameter space, the qc(θ) are all positive and the dimen-
sion of bc is smaller than K, we can prove [∂2f(θ)]/(∂θ∂θT ) is positive definite.
So f(θ) has vanishing partial derivatives at θ0 and is strictly convex over the
parameter space. This shows that θ0 is the unique minimizer of f(θ). By the
continuity of f(θ), we have (A.1). The non-singularity of I(θ0) follows imme-
diately if we write I(θ) = [∂2f(θ)]/(∂θ∂θT ). By proposition (iv) in Subsection
5e.2 of Rao (1973) and the notes at the end of that subsection, we have, as
N → ∞ along a deterministic sequence,

√
N(θ̂ − θ0) d→ N(0, I(θ0)−1). (A.2)

This distributional convergence still holds if N → ∞ in probability, but in our
case this is clearly true when η → ∞, since N has a Poisson distribution with
mean η

∫ τ
0 λ(s)ds > 0. Therefore, we still have (A.2) as η → ∞. As a result (2.7)

follows from the fact that N/η →
∫ τ
0 λ(t)dt in probability and Slutsky’s theorem.

Proof of Theorem 2. Let cn = (nh)−1/2, Λ(t) = Λ(t0) + Λ′(t0)(t − t0), xt =
(1, (t−t0)/h)T , and β̂

∗
= c−1

n (β̂1−Λ(t0), h(β̂2−Λ′(t0)))T . Suppose β̂ = (β̂1, β̂2)T

maximizes (2.6). Then β̂
∗

maximizes

`n(β∗) = h
n∑

j=1

{
nj

[
log{cnxT

tjβ
∗ + Λ(tj)} − log{Λ(tj)}

]
−(1 − p0(θ̂))cnxT

tjβ
∗
}
× Kh(tj − t0).

Using a Taylor series expansion, we obtain that

`n(β∗) = W T
n β∗ +

1
2
β∗T Anβ∗(1 + op(1)),

where

Wn = hcn

n∑
j=1

{
nj

xtj

Λ(tj)
− (1 − p0(θ̂))xtj

}
Kh(tj − t0),
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An = −hc2
n

n∑
j=1

(
nj

xtjx
T
tj

Λ2(tj)

)
Kh(tj − t0).

It can be shown that, with ui =
∫ ∞
−∞ xiK(x)dx,

An = −1−p0(θ0)
τ2Cλ(t0)

(
u0 u1

u1 u2

)
(1 + op(1)) , −A + op(1).

By applying the Convexity Lemma (see Pollard (1991)), we obtain that β̂
∗

=
A−1Wn + op(1). Hence the asymptotic normality of β̂

∗
will follow from that of

Wn, which we establish next.
By the definition of Wn, it can be shown that Wn = Wn1 + Wn2 where

Wn1 = hcn

n∑
j=1

{
nj

xtj

Λ(tj)
− (1 − p0(θ0))xtj

}
Kh(tj − t0),

Wn2 = hcn

n∑
j=1

(
p0(θ̂) − p0(θ0)

)
xtjKh(tj − t0).

By the mean value representation, it can be shown that Wn2 = op(1). Hence
the asymptotic normality of Wn follows from that of Wn1. It can be proved that
(Fan (1992))

E[Wn1] =
c−1
n h2λ′′(t0)(1 − p0(θ0))

2τλ(t0)

(
u2

u3

)
(1 + op(1)),

and, since nj is Poisson, we have

V ar[Wn1] =
1 − p0(θ0)
Cτ2λ(t0)

(
v0 v1

v1 v2

)
(1 + op(1)),

where vi =
∫ ∞
−∞ xiK2(x)dx. Using the assumption of a Poisson distribution for

nj and λ(t0) > 0, it can be shown that Liapounov’s condition is satisfied, and
hence β̂

∗
is asymptotically normal. This establishes Theorem 2.
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