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Abstract: Sliced Inverse Regression (Li (1991)) is a simple nonparametric estima-

tion method for the structural dimension of a regression, that is, for the dimension

of the linear subspace spanned by projections of the multidimensional regressor vec-

tor X that contains part or all of the modelling information about the regression

of a random variable Y on X. In this paper, the nonparametric estimation method

is extended to include the family of linear smoothers. No restrictions are placed

on the distribution of the regressors except for the linearity condition and exis-

tence of second moments. An asymptotic chi-square test for dimension is obtained.

Theoretical results are illustrated with a small comparative simulation study.
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regression.

1. Introduction

High-dimensional data have become increasingly common in statistical ap-

plications. In a regression setting, a traditional way to cope with dimensionality

is to impose assumptions for a specific structure on the mean regression function

such as linearity or additivity. In general though, regression studies the nature

of the relationship between Y and X at the conditional c.d.f. level.

In this framework, suppose X can be replaced by k ≤ p linear combinations

of its components, ηT
1 X, . . . ,ηT

k X, without losing information on F (Y |X) so that,

for all values of X,

F (Y |X) = F (Y |ηTX), (1)

where η is the p×k matrix with columns ηj. This formulation of the dependence

of Y on X was introduced by Cook (1994a). A similar formulation was proposed

by Li (1991). One has from (1) that the conditional c.d.f. of Y |X depends on X

only through ηTX, the coordinates of a projection of X onto the k-dimensional

linear subspace spanned by the columns of η. Consequently, ηTX contains equiv-

alent or sufficient, in the statistical sense, information for the regression of Y on

X. Most importantly, if k < p, then sufficient reduction in the dimension of

the regression is achieved, which in turn leads to sufficient summary plots of
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Y versus ηTX as graphical displays of all the necessary modelling information.

These summary plots can subsequently guide the selection of parametric models

for F (Y |X) when deemed appropriate. Alternatively, the reduced data can be

modelled nonparametrically more efficiently in that some part of the curse of

dimensionality has been overcome.

When (1) holds then it also holds with η replaced by any basis for the range

space S(η) of η. We follow Li ((1991), (1992) and call S(η) a dimension-reduction

subspace for F (Y |X), or for the regression of Y on X. The smallest dimension-

reduction subspace provides the greatest dimension reduction in the predictor

vector. There are several ways to define such a subspace. The focus here is

on the central dimension-reduction subspace, denoted by SY |X (Cook (1994b),

(1996), (1998a,b)). SY |X is the intersection of all dimension-reduction subspaces

for F (Y |X) and is trivially a subspace, but not necessarily a dimension-reduction

one. The existence of central subspaces can be ascertained by placing fairly

weak restrictions on aspects of the joint distribution of Y and X (Cook (1994a),

(1996)).

Sliced inverse regression (SIR), introduced by Li (1991), is a simple non-

smooth nonparametric estimation method for SY |X and its dimension. Aragon

and Saracco (1997) developed a smoother version of SIR by pooling multiple

slicings together, and Zhu and Fang (1996) used kernel smoothers to estimate

the central subspace. In this article, the family of general linear smoothers is

used to estimate the central dimension reduction subspace, and a new test for

the dimension of SY |X is developed. The method imposes no restrictions on the

predictors except for the linearity condition which will be discussed in the next

section.

The regression context is presented and existing dimension estimation meth-

ods, with emphasis on SIR (Li (1991)), are reviewed in Section 2. The proposed

estimation method based on linear smoothers is introduced and described in Sec-

tion 3. In Section 4, a test statistic for dimension is derived and proved to be

asymptotically chi-square distributed for both the homoskedastic and the het-

eroskedastic cases. In Section 5, a small simulation study compares the power

of the two testing methods for dimension. Local linear smoothing is used for

the proposed method. A concluding discussion is presented in Section 6. The

lengthier proofs are given in the appendix.

2. Background: Inverse Regression and Dimension Reduction

Let SE (X|Y ) denote the subspace spanned by {E (X|Y )−E (X) : Y ∈ ΩY },
where ΩY ⊂ R is the marginal sample space of Y . Given (1), assume that

the marginal distribution of the predictors X satisfy the following condition,
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henceforth referred to as the linearity condition: for all b ∈ R
p, E (bT X|ηTX) is

linear in ηTX.

Under this linearity condition on the regressor distribution, Li (1991, Thm.

3.1) showed that the centered inverse regression curve E (X|Y ) − E (X) satisfies

E (X|Y ) − E (X) ∈ S(Σxη) or, equivalently,

SE (X|Y ) ⊂ S(Σxη) = ΣxSY |X, (2)

where Σx = Cov (X). The linearity condition on E (bTX|ηTX) is required to

hold only for the basis η of the central subspace. Since η is unknown, in practice

one may require that it hold for all possible η and this is equivalent to elliptical

symmetry of the distribution of X (Eaton (1986)). As Li (1991) pointed out, the

linearity condition is not a severe restriction, since most low-dimensional projec-

tions of a high-dimensional data cloud are close to being normal (Diaconis and

Freedman (1984), Hall and Li (1993)). In addition, there often exist transforma-

tions of the predictors that make them comply with the linearity condition.

Expression (2) leads to the use of inverse regression as an estimation tool

for a fraction of, or the entire central dimension-reduction subspace. Sliced In-

verse Regression (SIR), proposed by Li (1991), was the first dimension estimation

method based on inverse regression. In SIR, the range of the one-dimensional

variable Y is partitioned into a fixed number of slices and the p components of Z,

the standardized version of X, are regressed on a discrete version of Y resulting

from slicing its range. A very simple nonparametric estimate of the inverse regres-

sion curve E (Z|Y ) serves to estimate the central dimension-reduction subspace

via estimating Cov (E (Z|Y )), as follows: Within each slice the sample covariance

matrix of X is computed and a weighted sum of the sample covariance matrices

across slices serves as an estimate of Cov (E (Z|Y )). Li (1991) computed a test

statistic that is asymptotically chi-square distributed with (p − d)(H − d − 1)

degrees of freedom, provided the regressors are normal, where d = dim(SE (X|Y ))

and H is the fixed number of slices. The test statistic can be used to esti-

mate the dimension of SE (X|Y ) by performing tests of d = j versus d ≥ j + 1,

j = 0, . . . , p − 1.

SIR has been proven to be a simple and useful first method for reducing

the dimension in a regression problem. Nonetheless, it requires normality of the

regressor vector X for the chi-square asymptotic test for dimension to apply (Li

(1991)) and the variance of the conditional distribution of X given Y has to

be constant. Bura and Cook (2001b) studied and stated the minimal necessary

conditions on both the regressor and the conditional distribution of X|Y for

the SIR test statistic to be asymptotically chi-square. They also introduced the

weighted chi-square test where the only distributional requirement is finite second

moments. Additionally, several testing techniques based on inverse regression
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that use the same simple nonparametric estimation method as Li (1991), and

that try to lift the normality assumption in SIR, have been developed (Schott

(1994), Velilla (1998), Ferré (1998)).

SIR utilizes simple non-smooth nonparametric estimates of the inverse re-

gression curves which may miss important relevant information as the continuous

nature of the data is ignored. To address this limitation, Aragon and Saracco

(1997) combined many slicings to produce a pooled slicings based estimate of the

dimension reduction subspace. The latter is consistent but the asymptotic prop-

erties were derived only for the one-dimensional case. Bura and Cook (2001a)

developed parametric inverse regression (PIR) that fits continuous parametric

curves to the p inverse regressions and requires no distributional assumptions

except for finite second moments of X and F (X|Y ).

Nevertheless, selecting appropriate parametric curves may be difficult. Zhu

and Fang (1996) used kernel smoothers to estimate Cov (E (Z|Y )) without im-

posing distributional restrictions on X except for finite fourth moments. They

proved that the kernel estimate is asymptotically normal and can, therefore, be

used to provide a test for dimension. Fung, He, Liu and Shi (2000) replaced

slicing by B-spline basis functions and estimated both the dimension and the

central subspace using canonical correlations between the predictors and the ba-

sis functions of the response. An important aspect of their methodology is that

it is also applicable to weakly dependent stationary sequences.

In this article, we generalize and extend SIR and the kernel method to the

family of linear smoothers. Spline-basis smoothers belong to this family so the

proposed methodology covers the development of Fung, He, Liu and Shi (2000)

even though the estimation is not based on canonical correlation analysis. The re-

sulting estimate of SE (X|Y ) is shown to be asymptotically normal. The associated

asymptotic chi-square test for dimension requires only finite second moments for

both the regressor vector and the conditional distribution of X|Y at the expense

of imposing regularity conditions on the smoother.

3. Nonparametric Inverse Regression

Let X? = (x?
1, . . . , x

?
p)

T be the centered regressor vector, i.e., X? = X−E (X).

In the inverse regression setting, Y is the explanatory variable. The regression

relationship can be modeled as

X?|Y = m(Y ) + ε,

or, X?
j |Y = mj(Y ) + εj, j = 1, . . . , p, where ε denotes the error vector and the

regression function m(Y ) = E (X?|Y ) is unknown but centered so that the model

is consistent with the fact that the expectation of X? equals zero. We assume
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that the error vector has zero mean and a p×p positive definite covariance matrix

Σx|y.

If a random sample of size n is drawn from (Y,X?), the model becomes

X?
ij|Yi = mj(Yi) + εij for j = 1, . . . , p, i = 1, . . . , n. Equivalently, in a matrix

format, the model is written as

X?
n|Y = M(Y ) + En, (3)

where X?
n = (X?

ij), M(Y ) = (mj(Yi)−m̄j), with m̄j =
∑n

i=1 mj(Yi)/n, and En =

(εij), i = 1, . . . , n, j = 1, . . . , p. Define the nonparametric estimate of mj(Yi) by

m̂j(Yi) =
∑n

k=1 X?
kjW̃nk(Yi), j = 1, . . . , p, i = 1, . . . , n, where {W̃nk(Yi)}n

k=1 is a

sequence of weights which may depend on the whole vector YT = (Y1, . . . , Yn).

Then, the nonparametric estimate of the centered mj(Yi) is given by

X̂?
ij = m̂j(Yi) − ¯̂mj =

n∑

k=1

X?
kjWnk(Yi), (4)

where Wnk(Yi) = W̃nk(Yi) −
∑n

i=1 W̃nk(Yi)/n. In a matrix format, we write

X̂?
n =




X̂?T
1
...

X̂?T
n


=




∑n
k=1 X?

k1Wnk(Y1)
∑n

k=1 X?
k2Wnk(Y1) · · · ∑n

k=1 X?
kpWnk(Y1)∑n

k=1 X?
k1Wnk(Y2)

∑n
k=1 X?

k2Wnk(Y2) · · · ∑n
k=1 X?

kpWnk(Y2)
...

...
. . .

...
∑n

k=1 X?
k1Wnk(Yn)

∑n
k=1 X?

k2Wnk(Yn) · · · ∑n
k=1 X?

kpWnk(Yn)




=




Wn1(Y1) Wn2(Y1) · · · Wnn(Y1)

Wn1(Y2) Wn2(Y2) · · · Wnn(Y2)
...

...
. . .

...

Wn1(Yn) Wn2(Yn) · · · Wnn(Yn)







X?
11 X?

12 · · · X?
1p

X?
21 X?

22 · · · X?
2p

...
...

. . .
...

X?
n1 X?

n2 · · · X?
np




,

X̂?
n = M̂(Y ) = WnX

?
n. (5)

The estimate of E (X?
n|Y ) is linear in X?

n and Wn is a matrix of weights that

depends only on Y . Smoothers of this type are called linear and include many

regression fitting techniques in the literature. For example, specific choices of

weight sequences result in least squares, kernel, splines, nearest neighbor, or-

thogonal series and local polynomial smoothers.

Let d = dim(SE (X|Y )). Obviously, d ≤ p = dim(X) = dim(X?). Fix q so

that q ≥ p and consider estimating E (X?|Y ) at q of the n Y -values using the

same smoothers for all p X?-components. The resulting Wn is a q × n weight

matrix, so that X̂?
n = WnX

?
n is a q × p matrix estimate of the conditional mean

of X?.
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4. An Asymptotic Test for Dimension

Theorem (3) in the Appendix will be used to compute the asymptotic distri-

bution of the linear smoother of the regression function. Let e
(n)
i be the n-vector

with one in the ith place and zeroes elsewhere. Also, let

ξn = H−1/2
n vec(WnX

?
n −WnM(Y )) = H−1/2

n (Ip ⊗Wn)vec(En)

= H−1/2
n

n∑

i=1

(Ip ⊗Wne
(n)
i )ε

(n)
i = H−1/2

n

n∑

i=1

Ainε
(n)
i ,

where Hn is the covariance matrix of vec(WnX
?
n), and

Ain = Ip ⊗Wne
(n)
i i = 1, . . . , n. (6)

So far, we have made no other assumptions about Σx|y except that it is a p × p
positive definite matrix. The development that follows depends on whether the

covariance structure of the error vector depends on Y , that is, on whether the
errors are homoscedastic or heteroscedastic. The two cases will be considered

separately.

4.1. Σx|y is constant

If Σx|y does not depend on Y , then Cov (En) = Σx|y ⊗ In. Therefore

Hn = Cov (vec(WnX
?
n)) = Cov ((Ip ⊗Wn)vec(X?

n))

= (Ip ⊗Wn)Cov (X?
n)(Ip ⊗WT

n ) = Σx|y ⊗WnW
T
n . (7)

Then, by Theorem 3 in the Appendix, we have that ξn
D−→ Npq(0, Ip ⊗ Iq) if

max1≤i≤n trace[AT
in(AnAT

n )−1Ain]−−−→
n→∞

0, where Ain is defined in (6). But,

max
1≤i≤n

trace[AT
in(AnAT

n )−1Ain]

= max
1≤i≤n

trace[(Ip ⊗ e
(n)T
i WT

n )(Ip ⊗WnW
T
n )−1(Ip ⊗Wne

(n)
i )]

= max
1≤i≤n

trace(Ip ⊗ e
(n)T
i WT

n (WnW
T
n )−1Wne

(n)
i )

= p max
1≤i≤n

trace(e
(n)T
i WT

n (WnW
T
n )−1Wne

(n)
i ).

Therefore, provided max1≤i≤n trace[e
(n)T
i WT

n (WnW
T
n )−1Wne

(n)
i ]−−−→

n→∞
0, we

have H−1/2
n vec(WnX

?
n − WnM(Y ))

D−→ Npq(0, Ip ⊗ Iq). Consider the asymp-

totic distribution of nλ vec(WnX
?
n − WnM(Y )), for some λ > 0. The ex-

ponent λ signifies the rate of convergence of vec(WnX
?
n − WnM(Y )) and de-

pends on the smoothers that are used in the estimating procedure. Let H̃n =
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Cov (nλWnX
?
n) = n2λ (Σx|y ⊗WnW

T
n ) and assume it has a positive definite

limit matrix H̃ . Then, H̃
−1/2

n (WnX
?
n − WnM(Y ))

D−→ Npq(0, Ip ⊗ Iq) if and

only if nλ vec(WnX
?
n − WnM(Y ))

D−→ Npq(0, H̃). For any m × l matrix A,

define ‖A‖max = max |aij | over all 1 ≤ i ≤ m, 1 ≤ j ≤ l.

Lemma 1. If Gn = n2λ WnW
T
n −−−→

n→∞
G, where G is a q × q positive definite

matrix, then nλ vec(WnX
?
n −WnM(Y ))

D−→ Npq(0,Σx|y ⊗G) provided

‖Wn‖max = o(n−λ) (8)

and Conditions (II) and (III) of Theorem 3 hold.

Proof. By Theorem 3 we have that a sufficient condition for the result to hold

is max1≤i≤n trace[AT
in(AnAT

n )−1Ain] −→ 0 as n → ∞ which is equivalent to

max1≤i≤n ‖Ain‖2
max −→ 0 by Lemma 2.4.2 in Bunke and Bunke ((1986), p.96).

This is in turn equivalent to max1≤i≤n ‖nλ Wne
(n)
i ‖max −→ 0 or, ‖Wn‖max =

o(n−λ).

Recall that Wn is a q × n matrix of rank q, which was assumed to be

greater than or equal to p. Observe that rank(WnM(Y )) ≤ min(rank(Wn),

rank(M(Y )) = rank(M(Y )). Therefore, d = rank(M(Y )) ≥ rank(WnM(Y )),

and the estimate of M(Y ), X̂?
n = WnX

?
n, can be used to estimate a lower

bound on d. Note that rank(WnM(Y )) = rank(M(Y )) if S(M(Y ))∩N(Wn) =

{0}, where N(Wn) is the null space of Wn (see Harville (1997, Thm 17.5.4)).

Consequently, to ensure that the estimate of M(Y ) yields an estimate of d,

we may require that N(Wn) = {0}. Furthermore, since Wn is a matrix that

depends only on Y , in the inverse regression context where the conditioning is

on Y , WnM(Y ) is a fixed matrix and the Eaton and Tyler (1994) result can be

used to obtain the asymptotic distribution of the singular values of WnX
?
n.

To ease the computation of the asymptotic distribution of the singular values

of WnX
?
n, nλ(WnX

?
n−WnM(Y )) will be pre- and post-multiplied by convenient

choices of nonsingular matrices. Assume that Gn = n2λ WnW
T
n −−−→

n→∞
G, where

G is positive definite and let Σ̂x|y be a consistent estimate of Σx|y. Then, the

multivariate version of Slutsky’s theorem and Lemma 1 yield

nλ (Σ̂
−1/2
x|y ⊗ G−1/2

n )vec(WnX
?
n −WnM(Y ))

D−→ Npq(0, Ip ⊗ Iq). (9)

The mean E (X) is usually unknown, so we let vec(X̃n) = (Σ̂
−1/2
x|y ⊗ G−1/2

n )×
vec(WnX̂n), where X̂n = Xn − X̄n, with X̄n = 1nX̄

T . Clearly, rank(X̃n) =

rank(WnX̂n), and inference on d can be based on X̃n. The testing procedure
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uses the test statistic

Λj = n2λ
min(p,q)∑

i=j+1

l2i , (10)

where li, i = 1, . . . ,min(q, p), denote the singular values of X̃n. The choice of Λj

is motivated by the fact that rank(G−1/2
n (WnM(Y ))Σ̂

−1/2
x|y ) ≤ rank(M(Y )) =

d, and by the simplicity of the asymptotic covariance structure in (9). The

asymptotic distribution of Λj is given in the following theorem which is proved

in the appendix.

Theorem 1. Assume all conditions of Lemma 1 hold. Let Σ̂x|y be a consistent

estimate of Σx|y. If k = rank(Ĝ
−1/2
n (WnM(Y ))Σ̂

−1/2
x|y ) ≤ rank(M(Y )) = d,

then Λk, as defined in (10), is asymptotically distributed as a χ2
(p−k)(q−k) random

variable.

The asymptotic distribution of Λk can be used to estimate a lower bound

on the rank d of M(Y ), which is also the dimension of the subspace SE (X|Y ).

Furthermore, if the weights are selected so that N(Wn) = {0}, the test yields

an estimate of d. The computation of a consistent estimate of Σx|y is deferred

to Section 4.3.

The d eigenvectors of the nonparametric estimate of M(Y ) that correspond

to its d largest eigenvalues, yield estimates of d of the basis vectors of ΣxSY|X.

They can be scaled back to estimates of basis vectors of the central dimension-

reduction subspace for the uncentered X through multiplication by Σ̂
−1
x on the

left.

4.2. Σx|y depends on Y

Assume that Σx|y = (σij(Y ))p
i,j=1 = Σx|y(Y ) is a p × p matrix of continu-

ous functions of Y . In this case the covariance structure of Xn|Y , or equiva-

lently the covariance structure of the error matrix, can no longer be represented

by the Kronecker product of Σx|y and Iq, since Var (Xjj|Y = Yi) = σjj(Yi),

Cov (Xij , Xik|Y = Yi) = σjk(Yi) for i = 1, . . . , n, j, k = 1, . . . , p, j 6= k. The

covariance matrix of Xn|Y is a np × np symmetric matrix of p2 blocks of order

n × n, where the ijth block is given by

diag(σij(Y1), σij(Y2), . . . , σij(Yn)) =




σij(Y1) 0 · · · 0

0 σij(Y2) · · · 0
...

...
. . .

...

0 0 · · · σij(Yn)



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for i, j = 1, . . . , p. The covariance matrix H̃n of nλ vec(WnX
?
n) is a qp × qp

block matrix, whose ijth block is given by

n2λ Wndiag(σij(Y1), σij(Y2), . . . , σij(Yn))WT
n (11)

for i, j = 1, . . . , p. The following lemma is a direct analogue to Lemma 1 in the
constant covariance case.

Lemma 2. Suppose that Σx|y(Yn) → Σx|y, as n → ∞, for all Yn in the Y -

sample space, where Σx|y is non-singular. If n2λWnW
T
n has a positive definite

limit matrix G = (glm), then H̃n has a positive definite limit matrix H̃, and

nλ vec(WnX
?
n − WnM(Y ))

D−→ Npq(0, H̃) provided ‖Wn‖max = o(n−λ) and

Conditions (II) and (III) of Theorem 3 hold.

Proof. Since σij(Yk) → σij as k → ∞, we have that for all ε > 0 there exists k0

such that for all k ≥ k0, σij − ε < σij(Yk) < σij + ε. Without loss of generality,

we can assume that
∑∞

k=1 nWlkWmk = glm > 0 (the development is analogous

for the case glm < 0; when glm = 0, or when σij = 0, the limit is 0). Then, for a

sufficiently large k1 ≥ k0 we have

(σij − ε)
∑

k≥k1

nWlkWmk <
∑

k≥k1

σij(Yk)nWlkWmk < (σij + ε)
∑

k≥k1

nWlkWmk.

There are two cases: (i) σij > 0 and (ii) σij < 0. Case (i) is equivalent to

σij − ε > 0, and similarly (ii) is equivalent to σij + ε < 0, for sufficiently small ε.
Therefore, for case (i) and all ε > 0 with min(glm, σij) > ε, there exists k2 ≥ k1

such that

(σij − ε)(glm − ε) ≤
∑

k≥k2

σij(Yk)nWlkWmk ≤ (σij + ε)(glm + ε) (12)

or, equivalently (since all products of ε are negligible),
∑n

k σij(Yk)nWlkWmk −→
σijglm, as n → ∞. Case (ii) is analogous to case (i) with the inequalities in (12)

reversed.

Therefore, the ijth block of H̃n satisfies nWndiag(σij(Y1), . . . , σij(Yn))WT
n

→ σijG, which yields that H̃n → Σx|y⊗G = H̃ . Since the Kronecker product of

two positive definite matrices is positive definite (see Harville (1997), p.369), H̃

is positive definite. By a direct application of Slutsky’s theorem, we obtain that

H̃
−1/2

n vec(WnX
?
n−WnM(Y ))

D−→ Npq(0, Ip⊗Iq) if and only if nλ vec(WnX
?
n−

WnM(Y ))
D−→ Npq(0, H̃) and the rest of the proof is the same as the proof of

Lemma 1.

Let Σ̂x|y(Y ) be a weakly consistent estimate of Σx|y(Y ), for all Y in the

relevant sample space. Let Ĥn be a qp × qp matrix whose ijth block is nWn×
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diag(σ̂ij(Y1), σ̂ij(Y2), . . . , σ̂ij(Yn)WT
n . It is easy to see that Ĥn is also weakly con-

sistent for H̃. By Slutsky’s theorem we have
√

n Ĥ
−1/2

n vec(WnX
?
n−WnM (Y ))

D−→ Npq(0, Ipq = Ip ⊗ Iq), and d was not affected by this transformation. Ad-

ditionally, Lemma 3 in the Appendix states the conditions under which Ĥn is

L2-consistent for H̃ .

As in the constant covariance case, let X̃n = Ĥ
−1/2

n vec(WnX̂n). The fol-

lowing theorem summarizes the results of the present section.

Theorem 2. Assume that all conditions of Lemma 3 hold. If k = rank(Ĝ
−1/2
n ×

(WnM(Y ))Σ̂
−1/2
x|y ) ≤ rank(M(Y )) = d, then the test statistic Λk, defined in (10),

is asymptotically distributed as a χ2
(p−k)(q−k) random variable.

The inferential procedure on d is the same as in the constant covariance case,

provided Σx|y(Y ) can be estimated consistently.

4.3. A consistent nonparametric estimate of Σx|y

Stone (1977) presented a method of obtaining consistent nonparametric es-

timates of moments of the conditional distribution of X given Y , based on con-

venient choices of weights. Using Stone’s terminology (1977), consistent esti-

mates originate from consistent weight sequences: a sequence of weights {Wn}
is consistent if whenever (X,Y ), (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are i.i.d., and

E ‖X‖r < ∞, then Ê n(X|Y ) → E (X|Y ) in Lr, as n → ∞.

Assume that E (X2
j ) < ∞, for all j = 1, . . . , p. Let

σ̂ii(Y ) = Ê n(X?2
i |Y ) − Ê n(X?

i |Y )2

=
n∑

j=1

Wnj(Y )X?2
ij − (

n∑

j=1

Wnj(Y )X?
ij)

2, (13)

σ̂ij(Y ) = Ê n(X?
i X?

j |Y ) − Ê n(X?
i |Y )Ê n(X?

j |Y )

=
n∑

k=1

Wnk(Y )X?
ikX

?
jk − (

n∑

k=1

Wnk(Y )X?
ik)(

n∑

k=1

Wnk(Y )X?
jk) (14)

for i 6= j, i, j ∈ {1, . . . , p}, where {Wn} produces L2 consistent estimates. An

easy application of the Cauchy-Schwartz inequality shows that both (13) and (14)

are L1-consistent and therefore weakly consistent estimates of the corresponding

population moments.

If Σx|y is constant, let Σ̂x|y be the p × p matrix with entries given by (13)

and (14), computed at any point in the Y -sample space. If Σx|y depends on Y ,

let Σ̂x|y(Yk) be the p×p matrix with entries given by (13) and (14), computed at

Yk for k = 1, . . . , n. Then, by the above discussion, Σ̂x|y is a weakly consistent
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estimate of Σx|y. Of course, in order to obtain consistent estimates of second

moments we need to use consistent weight sequences. Stone (1977) shows how
to construct k nearest neighbor (k-NN) and local linear consistent estimates. He

proves that general kernel smoothers are not necessarily consistent, but they can
be made so by imposing further regularity conditions on the kernel function.

An important drawback of Stone’s construction of consistent weights is that it
requires significant computational effort.

In addition to Stone’s results, if the weights are such that the resulting esti-

mates Ê n(.|Y ) are uniformly bounded functions of Y , then the second moment
estimates are L2 consistent as shown in Lemma 4 in the Appendix. Also, ac-

cording to Lemma 3 in the appendix, if σ̂ij(Yk) are L2 consistent for σij(Yk)
for all i, j = 1, . . . , p, k = 1, . . . , n, and Cov (σ̂ij(Yk), σ̂ij(Yl))−−−→

n→∞
0 for all k,

l = 1, . . . , n, l 6= k, then Ĥn, as defined in (11), is a L2-consistent estimate of the

asymptotic covariance of nλ WnX
?
n.

5. Application: Local Linear Smoothers

Local polynomial fitting (Fan and Gijbels (1996)) leads to a linear smoother
of the form (5). Local polynomial smoothers are selected because they pos-

sess a number of attractive properties among linear smoothers: they are design

adaptive; they have appealing bias and variance performance; they do not need
modification at the boundaries; they have best minimax efficiency among all

linear smoothers.
Local polynomial fitting is based on the Taylor expansion of the regression

function which is modelled locally by a simple polynomial model. The latter is

fitted locally using a weighted least squares regression. Each observation is as-
signed a kernel weight that downweighs observations far from the point where the

regression curve is estimated. Here we focus attention to local linear fitting, that
is, we require that the inverse regression curve is a twice differentiable function.

Let

Y =




1 (Y1 − Y )
...

...

1 (Yn − Y )


 ,

Xj = (X1j , X2j , . . . , Xnj)
T . The local linear estimate of mj(Y ) is given by

m̂j(Y ) =
n∑

i=1

Wn(
Yi − Y

h
)Xij , (15)

where Wn((Yi − Y )/h) = W̃ni(Y ) in the notation of Section 3. The weights are

given by Wn(t) = (1, 0)S−1
n (1, th)T K(t)/h, where Sn = (Sn,j+l)0≤j,l≤1, Sn,j =∑n

i=1 Kh(Yi − Y )(Yi − Y )j (Fan and Gijbels (1996), Chapter 3). Here Kh(·) =
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K(·/h)/h, where h is the bandwidth controlling the size of the local neighbor-

hood, and K is a kernel function that is assumed to be a symmetric probability

density function with bounded support. Fan and Gijbels (1996) also show that

Wn(t) = (1, 0)S−1
n (1, t)T K(t){1 + oP (1)}/nhf(Y ). From this and since we are

conditioning on the observed Yi’s, the weights Wn in (15) satisfy condition (8)

in probability with λ = 1/2, provided
√

nh → ∞ as h → 0 and n → ∞. Also,

h and n should vary jointly in such a way that n2λWn(t)W T
n (t) = nWn(t)W T

n (t)

has a positive definite limit.

In the simulation study of the following section, the first step of the LOWESS

(Cleveland (1979)) smoothing procedure is used to provide a local linear smoother

with a nearest neighbor bandwidth and the tricube kernel. The robustification

steps are dropped from the calculations.

For computational simplicity, Σx|y is estimated according to Cleveland’s

(1979) proposal and not by constructing consistent weights as suggested in Sec-

tion 4.3:

Σ̂x|y =
(X̂n −WnX̂n)T (X̂n −WnX̂n)

tr(I−Wn)(I −Wn)T
.

5.1. Simulation results

The power of the chi-square test based on slicing and the chi-square test

based on local linear smoothing are compared via a small simulation study. For

all regression models to be considered in this section, three sample sizes are

used: n = 100, 200, 400. For each sample size, the p-values corresponding to

the test statistics for selected dimensions for both tests were collected over 1,000

replications. The matrix Wn of weights has full rank, so that its null space is

zero. The LOWESS chi-square test is, then, a test of dimension for SE (X|Y ).

Two models will be considered. For the first, the response Y is generated

according to the model

Y = X1 + X2 + X3 + X4 + 0.5ε, (16)

where X1, . . . , X5, ε are i.i.d. standard normal variates. Model (16) is (6.1) in Li

(1991), with central subspace the one-dimensional SY |X = S((1, 1, 1, 1, 0)T ).

The symbols Lj and Λj signify the SIR chi-square test statistic (Li (1991))

and the LOWESS test statistic for testing d = j versus d ≥ j + 1, respectively.

The numerical entries of the rows of Table 1, corresponding to the test statistics

indexed by 0, are empirical estimates of the power of the corresponding test.

They represent the proportion of times the corresponding null hypothesis d =

0 is rejected, when the nominal significance level is 0.05 and 0.01, indicated

parenthetically. The entries for the test statistics indexed by 1 are empirical

estimates of the size of the test. The symbol H stands for number of slices, and
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q for the number of randomly selected points at which the conditional inverse

mean E (X|Y ) is estimated by the first step of the LOWESS smoother. The

results for only one value of the smoothing parameter are reported. The value

of the smoothing parameter signifies the proportion of the data used for the

estimation at each data point. The values were selected by eyeballing the five

inverse regression plots, without the help of any automatic bandwidth selection

techniques. Computations were carried out in Arc (Cook and Weisberg (1999)),

a regression package written in the Xlisp-Stat language (Tierney (1990)). The

software can be obtained from the author upon request.

Table 1 indicates that both tests correctly estimate the dimension to be

one across sample size, number of slices and q. Also, both chi-square tests have

similar power with the SIR chi-square test performing better when the number of

slices, or equivalently q, is larger. Additional non-reported simulations indicate

the level of the LOWESS chi-square test depends on both the choice of smoothing

parameter and q. Of course, this is not surprising as the LOWESS chi-square

test for dimension requires the selection of both the bandwidth and number of

points q where the inverse regression curves are estimated. SIR, on the other

hand, requires the choice of only one tuning parameter, i.e., the number of slices.

In Table 2 the power and size results for the model

Y = (4 + X1)(2 + X2 + X3) + 0.5ε (17)

Table 1. Empirical Power and Size for the SIR and the LOWESS chi-square

tests applied to (16).

X ∼ N5(0, I5), bandwidth= 0.8

n = 100

SIR chi-square LOWESS chi-square

H 6 10 15 q 6 10 15

L0 1 (1) 1 (1) 1 (.997) Λ0 .994 (.959) .967 (.790) .529 (.191)

L1 .054 (.01) .036 (.008) .028 (.002) Λ1 .047 (.009) .037 (.004) .031 (.006)

n = 200

SIR chi-square LOWESS chi-square

H 10 20 30 q 10 20 30

L0 1 (1) 1 (1) 1 (1) Λ0 1 (1) 1 (.993) .941(.757)

L1 .043(.007) .039(.009) .033(.007) Λ1 .056(.01) .033(.01) .021(.002)

n = 400

SIR chi-square LOWESS chi-square

H 20 30 40 q 20 30 40

L0 1 (1) 1 (1) 1 (1) Λ0 1 (1) 1 (1) 1(1)

L1 .052 (.005) .048 (.011) .045 (.005) Λ1 .04 (.005) .028 (.007) .01 (.001)
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are tabulated. The error term ε is a standard normal variate and

X1 = W1, X2 = V1+
W2

2
, X3 =−V1+

W2

2
, X4 = V2+V3, X5 = V2−V3. (18)

The only restriction placed on V and W is that they be independent. The

variables V1, V2, V4 are i.i.d. t(4), V3 ∼ t(3), V5 ∼ t(5), and W1, W2 are i.i.d.

Gamma(0.25) random variables. The row entries of Table 2 are to be interpreted

in a way analogous to Table 1. Model (17) was used by Velilla (1998). The central

subspace is two-dimensional and the joint predictor distribution (18) satisfies the

linearity condition by construction (see Velilla (1998), p.1092-93), even though

X does not have an elliptically contoured distribution. Also, the conditional

variance of the predictors given the response is non-constant, as can be seen

from a scatterplot matrix (not shown) of the simulated data.

In this case, the LOWESS chi-square test outperforms the SIR chi-square

test both with respect to power and size. SIR tends to miss the second dimen-

sion much more often. These results are in accordance with the theory, as the

predictor distribution is not normal and there is significant heteroskedasticity in

the conditional distribution of X|Y . Still, the benefits of continuous local linear

fitting appear to yield as the sample size and q increase. This phenomenon was

also observed in the first example.

Table 2. Empirical Power and Size for the SIR and the LOWESS chi-square

tests applied to (17).

X distributed as in (18), bandwidth= 0.8

n = 100

SIR chi-square LOWESS chi-square

H 6 10 15 q 6 10 15

L0 1(1) 1(1) 1(1) Λ0 .989 (.953) .967 (.873) .849(.707)

L1 .054 (.014) .074 (.028) .112 (.046) Λ1 .277 (.144) .27 (.129) .27 (.13)
L2 .001 (0) .004 (0) .006 (.002) Λ2 .015 (.001) .018 (.003) .019 (.003)

n = 200

SIR chi-square LOWESS chi-square

H 10 20 30 q 10 20 30
L0 1 (1) 1 (1) 1(1) Λ0 1(.999) .988(.978) .915(.819)

L1 .133 (.051) .134 (.066) .164 (.081) Λ1 .366 (.232) .35 (.218) .248 (.125)

L2 .004 (0) .007 (.001) .008 (.002) Λ2 .02 (.005) .016 (.004) .008 (.002)

n = 400

SIR chi-square LOWESS chi-square

H 20 30 40 q 20 30 40

L0 1 (1) 1(1) 1(1) Λ0 1(1) .999(.998) .996(.99)

L1 .24 (.136) .265 (.166) .236 (.129) Λ1 .454 (.324) .279 (.179) .192 (.121)

L2 .008 (.002) .012 (.002) .011 (.001) Λ2 .011 (.005) 0(0) 0(0)
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In addition to the results reported here, a number of other choices for band-

width were considered. The conclusions were consistent with the above remarks.

This limited simulation-based comparison of the two tests serves only to illus-

trate that both tests agree and compare well power-wise. There is more to be

investigated with respect to optimal choices of bandwidth and q. In addition,

the q points in this simulation study were randomly drawn from n available ones.

It could be argued that the sampling scheme should try to reflect local trends

in the data more accurately. For example, more densely data-populated areas

should be sampled at a higher rate than others.

6. Discussion

Li (1991) proposed the SIR chi-square test procedure for multivariate regres-

sion analysis problems when X is normal. SIR is based on a regressogram-type

nonparametric fitting of the inverse regression curves. In this paper, the contin-

uous nature of the data is taken into account, and the nonparametric estimation

technique is extended to include all linear smoothers. The regressor distribution

is only required to have finite second moments. An asymptotic chi-square test for

dimension is obtained, as well as an estimate of the central dimension reduction

subspace, or a portion thereof. The result extends to heteroskedastic data.

The extension to smoothing comes at the price of increased complexity. The

smoother must satisfy certain regularity conditions. Also, two tuning parameters

need to be selected by the user: the bandwidth and the number of points where

the estimation takes place. The latter is directly analogous to the number of

slices in SIR. Optimal choice of number of points and their allocation, without

affecting the estimation of dimension, is an open problem. Nevertheless, the

simulation study seems to indicate that the estimation is fairly robust across

different choices of number of points. On the other hand, optimal choice of

bandwidth is an extensively explored issue in nonparametric curve fitting and

many options are available.
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Appendix

Let F be a non-empty set of p-dimensional distribution functions with 0

mean and positive definite covariance matrix. Let M>
p be the space of all p × p
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positive definite matrices and M(F) = {
∫
Rp xxT dF (x) : F ∈ F} ⊂ M>

p . Let

{ε(n)
i }i=1,...,n, n=1,... be an array of random p-vectors whose distribution functions

belong to F . For all n, let ε
(n)
1 , ε

(n)
2 , . . . , ε

(n)
n be independent and set En =

(ε
(n)
1 , . . . , ε

(n)
n )T .

Assume that {An} = {(A1n, . . . ,Ann)}, n = 1, . . . is a sequence of non-

stochastic s × pn-matrices with Ain ∈ Ms×p, and rank(Ain) = s, i = 1, . . . , n.

Let Hn =
∑n

i=1 Ain Cov (ε
(n)
i ) AT

in denote the positive definite covariance matrix

of
∑n

i=1 Ainε
(n)
i and ξn = H

−1/2
n

∑n
i=1 Ainε

(n)
i .

The following is a central limit theorem providing conditions under which

ξn is asymptotically normal (Bunke and Bunke (1986), Theorem 2.4.3). It is

a generalization of a theorem proved by Eicker (1966). Let λmin[Σ] denote the

minimum eigenvalue of a symmetric matrix Σ. The notation ‖x‖, for x ∈ R
p, is

used to denote the Euclidean norm on R
p.

Theorem 3. [Bunke and Bunke, 1986] The conditions

(I) : max
1≤i≤n

tr[AT
in(AnAT

n )−1Ain] −→ 0 as n → ∞,

(II) : sup
F∈F

∫

‖x‖>c
‖x‖2dF (x) −→ 0 as c → ∞,

(III) : inf
Σ∈M(F)

λmin[Σ] ≥ r > 0,

are sufficient for all sequences {ε(n)
i }, with ε

(n)
i ∼ F , to fulfill

A: ξn
D−→ Ns(0, Is) as n → ∞,

B: max
1≤i≤kn

P (‖H−1/2
n Ainε

(n)
i ‖ > δ) −→ 0 for all δ > 0.

Proof of Theorem 1. Consider the singular value decomposition

G−1/2WnM(Y )Σ
−1/2
x|y = ΓT

1

[
D 0

0 0

]
ΓT

2 ,

D a k×k diagonal matrix with the positive singular values of G−1/2WnM(Y )×
Σ

−1/2
z|y along its main diagonal. Partition the q×q matrix ΓT

1 as (Γ11,Γ12), where

Γ11 is q × k and Γ12 is q × (q − k); partition the p× p matrix ΓT
2 as (Γ21,Γ22)

T ,

where ΓT
21 is k × p, and ΓT

22 is (p − k) × p. By the Eaton-Tyler result (Eaton

and Tyler (1994)) about the asymptotic distribution of the singular values of a

matrix, the limiting distribution of the smallest min(q−k, p−k) singular values of
√

n (G
−1/2
n WnXnΣ̂

−1/2
z|y ) is the same as the limiting distribution of the singular
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values of the (q − k) × (p − k) matrix
√

n (ΓT
12G

−1/2
n WnXnΣ̂

−1/2
z|y Γ22). By (9)

we have that

√
n vec(ΓT

12G
−1/2
n WnXnΣ̂

−1/2
z|y Γ22)

D−→ N(p−d)(q−d)(0, Ip−k ⊗ Iq−k). (19)

Observe that

√
n vec(ΓT

12G
−1/2
n WnX̂nΣ̂

−1/2
z|y

=
√

n vec(ΓT
12G

−1/2
n (WnX̂n −WnM(Y ))Σ̂

−1/2
z|y Γ22)

+
√

n vec(ΓT
12G

−1/2
n WnM(Y )Σ̂

−1/2
z|y Γ22). (20)

The second term of (20) is going to 0 by Slutsky’s theorem and the singular value

decomposition of WnM(Y ), since ΓT
12G

−1/2
n WnM(Y )−−−→

n→∞
ΓT

12G
−1/2WnM(Y )

= 0. Also, observe that

√
n(WnX̂n −WnM(Y )) =

√
n(Wn(Xn + E(Xn) − X̄) −WnM(Y ))

=
√

n(WnXn−WnM(Y ))−
√

nWn(X̄−E (Xn)). (21)

By (8) and the fact that the sample mean is strongly consistent for the distri-

bution mean, the second term in (21) goes to zero. Therefore, the first term

of (20) is going to the distribution indicated in (19). Consequently, Λk has the

same asymptotic distribution as the sum of the squares of the singular values of
√

n (ΓT
12G

−1/2
n WnXnΣ̂

−1/2
z|y Γ22), which is χ2

(p−k)×(q−k) by (19).

Lemma 3. Suppose that

nWnW
T
n −−−→

n→∞
G ∈ M>

q . (22)

If σ̂ij(Y ) converges to σij(Y ) in quadratic mean for all i, j = 1, . . . , p, and all Y

in the relevant sample space, and if Cov (σ̂ij(Yk), σ̂ij(Yl)) −→ 0 as n → ∞ for all

i, j = 1, . . . , p, k, l = 1, . . . , n, k 6= l, then Ĥn is a L2-consistent estimate of H̃.

Proof. Since H̃ is the limit matrix of H̃n, it suffices to show that

Ĥn − H̃n −−−→
n→∞

0 in L2, (23)

for then it follows that Ĥn is a consistent estimate of H̃ from the triangle in-

equality.

Consider the ijth blocks of Ĥn and H̃n. We find that
∑n

k σ̂ij(Yk)(nWnk(Yl)×
Wnk(Ym)) and

∑n
k σij(Yk)(nWnk(Yl)Wnk(Ym)) are the lmth entries of the ijth
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blocks of Ĥn and H̃n, respectively, for m, n = 1, . . . , q, and i, j = 1, . . . , p.
Then (23) is true if and only if

n∑

k

σ̂ij(Yk)(nWnk(Yl)Wnk(Ym)) −
n∑

k

σij(Yk)(nWnk(Yl)Wnk(Ym))−−−→
n→∞

0

in L2, for all m, n = 1, . . . , q, and i, j = 1, . . . , p. Now,

E
[ n∑

k=1

σ̂ij(Yk)(nWnk(Yl)Wnk(Ym)) −
n∑

k=1

σij(Yk)(nWnk(Yl)Wnk(Ym))
]2

= E
[ n∑

k=1

(σ̂ij(Yk) − σij(Yk))(nWnk(Yl)Wnk(Ym))
]2

=
n∑

k=1

E
[
(σ̂ij(Yk) − σij(Yk))

2(nWnk(Yl)Wnk(Ym))2
]

+
n∑

k=1

n∑

r 6=k

E
[
(σ̂ij(Yk) − σij(Yk))(σ̂ij(Yr) − σij(Yr))

×(nWnk(Yl)Wnk(Ym))(nWnr(Yl)Wnr(Ym))
]
.

The integration can be brought inside the sum by the Bounded Convergence
Theorem (see Billingsley (1986), p.214). Since (22) holds by assumption and
σ̂ij(Yk) is consistent in quadratic mean for σij(Yk), it follows that σ̂ij(Yk)−σij(Yk)
is L2 bounded for all k = 1, . . . , n. But then, we also have that E [(σ̂ij(Yk) −
σij(Yk))

2] → 0, as n → ∞, by the L2 consistency of σ̂ij(Yk). Also, by assumption
E [(σ̂ij(Yk) − σij(Yk))(σ̂ij(Yr) − σij(Yr))]−−−→

n→∞
0. Therefore, E [

∑n
k=1(σ̂ij(Yk) −

σij(Yk))(nWnk(Yl)Wnk(Ym))]2 −−−→
n→∞

0 for all l, m = 1, . . . , q, i, j = 1, . . . , p.

Lemma 4. Let fn(Y ) = Ê n(g(X)|Y )−−−→
n→∞

f(Y ) = E (g(X)|Y ) in L2, and

f ′
n(Y ) = Ê n(h(X)|Y )−−−→

n→∞
f ′(Y ) = E (h(X)|Y ) in L2. If fn(Y ) and f ′

n(Y ) are

uniformly bounded functions of Y , then

Ĉov n(g(X), h(X)|Y ) −→ Cov (g(X), h(X)|Y ) in L2, (24)

V̂ar n(g(X)|Y ) −→ Var (g(X)|Y ) in L2. (25)

Proof. Let ‖ · ‖2 denote the L2 norm. By the triangle inequality we have

‖fnf ′
n − ff ′‖2 ≤ ‖(fn − f)f ′‖2 + ‖fn(f ′

n − f ′)‖2. (26)

Since both sequences of functions are uniformly bounded, there exists a positive
number M such that |fn| ≤ M , |f ′

n| ≤ M . Therefore,

‖fn(f ′
n − f ′)‖2 ≤ M‖f ′

n − f ′‖2. (27)
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Now, since f ′
n(Y )−−−→

n→∞
f ′(Y ) in L2, there exists a subsequence of f ′

n that con-

verges to f ′ almost everywhere. Thus, |f ′| ≤ M a.e., which implies that

‖(fn − f)f ′‖2 ≤ M‖fn − f‖2 a.e. (28)

From (26), (27), (28) we conclude that fn(Y )f ′
n(Y )−−−→

n→∞
f(Y )f ′(Y ) in L2.

Hence, (24) holds, of which (25) is a trivial consequence.
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