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We require the following lemmas to prove Theorem 1.

Lemma 1. For any candidate model M which is bounded, where |[M| <
Cy < oo, under Assumption (A2), with probability converging to one,

. UL, U Ui, u
clmgl < min Ay MM < max Amax —MEM < cgmgl
IM|<Cy n IM|<Cy n

where ¢, and ¢y are two positive constants.
Lemma 1 comes from Huang, Horowitz and Wei (2010) which was based
on Zhou, Shen and Wolfe (1998). It restricts the eigenvalue of B-spline

matrix.

Lemma 2. Let Xy,--- , X, be the triangular array of i.i.d. zero-mean ran-
dom wvariables. Suppose that M, = (EX?)Y?/(E|X,>)Y® > 0 and that

for some b, — oo slowly, n*/°M, /b, > 1. Then uniformly on 0 < x <
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n'/6 M, /b, — 1, we have

P(Sn/Val 2 )
2[1 — ¢(z)]

A

-1 < 3—>0,

S

where S, = Y X, V2 =31 X2, ®() is the cumulative distribution

function of the standard normal distribution and A is a positive constant.
Lemma 2 follows Lemma 5 in Belloni et al. (2012) and Theorem 7.4 in

de la Pena, Lai and Shao (2009). This lemma was also used in Fan and

Zhong (2016).

Lemma 3. For two candidate models Mi,M,, with My N My = 0, we
have

neymy,' < inf w0y Qv Uy

< sup 0'U(, QuuyUwpu < neam,, b,

[[uf=1

where Q) = In—U(M){U(TM)U(M)}*lU(TM) and ¢, and cy are two positive
constants defined in Lemma 1.
Proof. First, we prove sup, - uTU(TMl)Q(MQ)U(Ml)u < ncym,; L.

By spectral decomposition, we have Q) = CAC™, where Cisanxn

matrix with jth column being c; corresponding to the jth eigenvector such
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that cjc; =1 and cjc, = 0 for j # k, and A is a diagonal matrix with the
diagonal elements being the eigenvalues A; of Qa4,)-

Then

WU, Quuta) Uy u
— uT ’(I‘Ml)CACTU(Ml)u

< uTU?Ml)CCTU(MI)u X Amax[Q(M2)]

T

= U0y LU X Amax[Qaty)]

T

= UTU(Ml)U(Ml)u X Amax[Q(MQ)]

IA

ncom,* (A.1)

where the last inequality from Lemma 1 and note that the eigenvalue of
idempotent matrix Qay,) is 0 or 1.

Next, we will prove inf)jy—; uTU(TMl)Q(MQ)U(Ml)u > neym;, b, We can
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rewrite Q) Uqag,) in matrix notation, that is,

QU = Uy = Uy (Ui, Ury) ' Uiy Uity
I

= (U Umy))
—(Uluyy Uma) " U,y Uy

I

= Unnume) - {A2)
_<UE/\/12)U(M2)>_1U(TM2)U(M1)

Hence, we have

u' Ui, Q) Uuyu

= u"[[, = Uy, Urty) (U Uimn) " 1(U R o, Untiuns)
1

~(Ulup Um) Uy Uy

neimy, ' % [I[L =Utu,) Uny) (Ulng,) Uiny)) 1 ulf?

v

Y]

neym (A.3)

where in the first inequality we use Lemma 1 and spectral decomposition,
and the second in inequality comes from the fact [[[I, U1,y Uny) (U(TMQ)U(MQ))_I]TuH >

|lu|]| = 1. This completes the proof of Lemma 3. O
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Proof of Theorem 1: In the Forward Additive Regression algorithm, we
expect to detect all the py relevant predictors in an acceptable number of
steps. If we can identify at least one new relevant predictor in every at most
K steps, then all relevant predictors will be identified within at most py K
steps. To prove this conclusion, we assume that no relevant predictor has
been detected in the first [ steps, given the model S%) has already been
selected. We then evaluate how likely at least one relevant predictor will
be detected in the next step. To this end, we study what will happen if the
(I + 1)th selected predictor is still irrelevant given the existence of S in
the model.

For an ease of the presentation, we define H ) = U(M){U(TM)U(M)}_IU(TM)

for any model M. Then, we have

H(S(lo+l+1)) - U(S(lo+l+1)){U(TS(10+1+1))U(3(10+Z+1))}_1U?3(10+1+1))
- —1

U’ U’
o (SUo+D) (SCo+D)
_ (U(3<lo+l>), anzﬂ) U 50y Uny i
T T
Al 4141 Alg+1+1

-1

UT

u’ U(s(lo+l)) U’ U (SUo+0)

(SUo+D) (SUo+D) = Glg+i+1

T
Alg+1+1

T U T
Al +i4+1  Ug+it+l aly+1+1

U(s(lo+l))

where SU"*) denotes the union of SU) and the first [ irrelevant predictors

(A.4)
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selected after SU), and a; 4,41 denotes the index for the selected predictor
in the (I + 1)th step after S(),

Using the rule of the matrix inversion in block form, we show that

_ T —1r77T
Hsuorin) = Qustorn) Uy yri1 (Uay iy Qustor) Uang i)™ Uy Qsttorn) HHsuo )

Then, we consider the difference of the residual sum of squares between
the models with and without the a;,,;;1th predictor. Denote RSS(SU0+))
and RSS(SU*+1) by the residual sums of squares based on the model

S+l and Sto++1)  respectively. We define

Q(l) = RSS(SUT) — RSS(SotH)
= YT{In - H(S<ZO+Z>)}Y — YT{In — H(S(lo+l+1))}Y
= YT{H(S(lo+l+1)) - H(S(lo-H))}Y

_ T T —17T1T
- Y Q(S(l0+l))UalO+l+l (UalOJrlJrl Q(S(l0+l))U(llO+l+1) Ual0+l+1 Q(S(ZO‘H))Y

L Y Q(stt0+) U (U Qsto0)U;) ™ U7 Qqstigrn Y
1
Z max YTQ(S(ZOJrl))UjU;Q(s(loJrl))Y (A5)

negm,, ! jeT/sto)

where the first inequality is because of the assumption that the a;,,;+1th

predictor is also not relevant and a;, ;41 is the predictor added in the (Io +
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[+1)th step which corresponds to the minimum RSS and the last inequality
is implied by Lemma 3 and the fact that (7/S(0)) NSttt =),
We denote Wi(X;) = (Yu(X1), -, ¥e(Xn;))" where £ = 1,...,my,
then we have U; = (¥,(X4),..., ¥, (X;)). Thus,

mn

1
max Z YTQ(S(ZO+Z))‘IJk<Xj)‘I’z(Xj>Q(3(lo+l))Y

neamyt jeT/sto) £

m
- max U (X, Y2 A6
nszﬁl FeT/SW0) 1<k<my, | k( J)Q(5(10+z)) | ( )

Q)

v

m

2
' TT(X. U
ney <j€7'/$(1l{)l>?1xgk§mn| i J)Q(S<’0+l>) (T)’Y(T)|

v

2
- G Qenn]) (A7)

€T /S0 1<k<my,

where the last inequality because Y = Uy + & which is the matrix

form of (2.3), & = (&,---,&)" € R™

Next, we deal with the first term, that’s max [P% (X5 Qstotny Umy(nl-

€T /800 1<k<my,

Note that Q(S(l0+l))U(7’) = Q(S(lo+l))U(7-/S(l0)) because Q(S(l0+l))U(7-m$(lO)) =
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0. Then, we consider that

||Q(s<lo+l>)U(T)’Y(T) I = ’Y(TT/g(lo))U(TT/g(lm)Q(3<lo+l>)U(T/sao))’)’(T/g(zm)

- Z Z ’ij\IIE(Xj)Q(S<lo+l>)U(T/s(lo))’Y(T/s(lo))
jeT/Slo) k=1

1/2 1/2
< Z Zfﬁk Z ZOI]E(XJ')Q(S(lo+l>)U(T/s(lo>)’7(7'/3<lo>))2
jeT/8lo) k=1 jeT/8o) k=1
< ||7<T/3<ZO))|I\/ (po— T NS@Nm,  max  |[TF(X;)Qstorn Uzston¥r/ston]

€T /800 1<k<m,

Because St (T /SW)) = (), it is implied by Lemma 3 that [|Qsuo+0y U yen > =

HQ(s<lo+l))U(T/g(lo))')’(T/s(lo))||2 > nclmglllfyms(zo))ﬂ? Hence, we have

Ul (X, U
jeT/s&l)E}lxgkgmn| £ (X)) Q(stor0) U rysio Yz /st

||Q(s<lo+l>)U(T)’)’(T) [ > neym,,! H'Y(T/5<lo>) |
H’Y(fr/s(lo))H\/(po — [T NS8@)m, ~ /(po— |T NSW@)|)m,,

Based on the proof of Theorem 1 in Huang, Horowitz and Wei (2010), there
are positive constants cs such that ||v;[* > cscjm,, where j € T and ¢

controls the minimum signal of the true components. Thus, [|[v7/suw) | =

\/ZjeT/SW 2kl Ve = \/ZjeT/S“o) [vl* > \/(po — T NSW|)escimy.
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Therefore, the first term in the parenthesis of (A.7)

max W5 (X5) Qs Ueryyem|

€T /800 1<k<my,

(A.8)

= WX, U
jeT/Sgolf,lfcgkng x ( J)Q(s(lo+l)) (T/5<lo>)’)’(7’/5(lo))|

nclmgl\/(po — T NSW|)escimy,
V(po =T NS )m,

= ciy/czemm, b (AL9)

Next, we can handle the second part in the parenthesis of (A.7).

max W (X5)Qsto+0)&|

7eT /800 1<k<m,

S max |lIlr]£(Xj)Q($(lO+l))6‘ + max |\Il’]1;(Xj)Q(S(l0+l))€‘

€T /S0 1<k<my, €T /S0 1<k<my,

where € = (81,"' ,€n)T, (5 = ((51,"' ,5n)T with (51 = §:1<fj(Xij) —
i (Xiz))-
For ease of the presentation, we define W;(X;) = Qsu+n)¥r(X;) €

R, where Wi(X;) = (V(X1y), -+ ¥k(Xny))". Note that [|[Wi(X;)] <
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|®(X;)|| and the centered B-splines |1 (X;;)| < 2, then

max WE) Q] = max  [@T(X))8

JET/SW0) 1<k<m, JET/SW0) 1<k<m,
n
= max Z 1(X;:)0;] < n max max (XG0 - 6
BT MG LR GO

< 20,(m, ") = Oy(nm, "), (A.10)

where the last inequality follows from Lemma 1 of Huang, Horowitz and
Wei (2010). That is, suppose that f € F and Ef(X;) = 0, then under
Assumption (A2), there exists an f, € S, satisfying||f,, — fll2 = Op(m,; ¢ +
my/*n1/?). In particular, if we choose m, = O(n?/@#1) then ||f, — f| =
O(m;%).

On the other hand, we have

max W5 (X7)Qsto+0)€]

€T /800 1<k<my,

> iy Ui(Xiy)e
V2 Ui (Xy)e?

> U (Xy)e?

max max
€T /800 1<k<my, 7eT /800 1<k<my, —
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Note that

P e 2%1 Ui (Xij)ei
GeT/s00) 1<k<mn | /S Ui (Xij)e?

< (po— [T NSW@|)m, max P (

€T /800 1<k<my,

> 2mn/a>

> i Yk (Xij)e
\/Z?zl wZQ(X-j)g?
< (po — IT NS@ym,2[1 — &(y/2my /a)](1 + o(1))

< (po—1|TN 3(l°)|)mn2exp\[/_2_(7r\/2;mn7//622/2] (1+0(1))
(po — |T NSW|) /mya

- et el) =0, (A.11)

> \/an/a>

as n — oo, uniformly for all 0 < a < 1, where the second inequal-
ity follows the above Lemma 2 on moderate deviation inequality for self-
normalized sums and the last inequality follows the fact that P(Z > z) <
exp(z2/2)/(2V/27) for a standard normal random variable Z.

Since F(e?) is bounded,

n n

max Z Vi2(X5)e? = /n max - Z Vi (Xij)ed

JET/S0) 1<k<mn \| S5 GET/SM0) 1<k<my, \| TV 4=

< +/n max 2
JeT/800) 1<k<my,

%igg = V/n0,(1) = Op(nl/Q) (A.12)
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Then, both (A.11) and (A.12) imply that

max W (X5)Qstorne| < O, (n**ml/?). (A.13)

Je€T/SM0) 1<k<m,

Thus, together with (A.10) and (A.13), we have

max W5 (X)Qsto0)&] < Op(nmy,* +n'Pm)/?). (A14)
JET /800 1<k<m,

Based on (A.9) and (A.14) as well as the assumption d > 1, the second part
in the parenthesis of (A.7) is dominated by the first term. Thus, with the

probability tending to one, we have

S

Q) > (cry/esepnmy,')? = clescin/ ey, (A.15)

3

C2

for every [. If we run the total K steps with the existence of S%) in the

model, then we have
Ko
n Y|P =0t Q) > Kociesch /e, (A.16)
=1

which is contradicted with the assumption that Ko > covar(Y)/cescs.

Therefore, we can detect at least one relevant predictor within every K|
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steps. So all relevant predictors can be detected within py K, steps with

probability tending to one.

Proof of Theorem 2 The Proof of this theorem is parallel to Theorem 2
of Wang (2009). Define I, = minlglg[mi]{l T c SW}. And by Theorem
1, we know that l,;, < poKo. Thus, we only prove that P(im < l,) — 1

as n — o0o. To this end, it suffices to show that

P ( min {BIC(S?) — BIC(S"V)} > o) — 1. (B.1)

1§l<lmin

And we note that

BIC(S") — BIC(S"*Y)

5.2
= log AQ(SU)) —n"'m,(logn + 2logpm,,)
T s+
6(25(”) B 6(25”“)) 1 1
> log |1+ ) — 3n~ "mylogp — 2n" "m,logm,
T (st
—1Q(
> log (1 + nT;”L) —n"'m,0(n”) — 2n" 'my,logm,,
n
ey /e
> log (1 + %) —n"'m,O(n) — 2n"'my,logm,,
n

where we use the fact 62 < n7|Y]|? and the assumption that logp =

(S¢+D)
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O(n) with 0 < ¢, < 2d/(2d + 1).

Using the elementary inequality log(1 + =) > min{log2, z/2}, we have

BIC(S") — BIC(S"Y)

2esc /e
> min {log27 271L_31—||fY/'||22} —n"'m,O(n*) — 2n" 'my,logm,,
2. 2
. cieaci/ca
— log2, ———— % >0 B.2
mm{ 0g2, Svar(Y) } (B.2)
as n — o0o. This completes the proof. 0O
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