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Abstract: Statistical properties of several criteria for assessment of similarity be-

tween two dissolution profiles are investigated. These include the similarity factor

f2, and metrics based on the mean squared distance and the mean absolute differ-

ence. The probability density function of f2 and its first two moments are derived

under the assumption of multivariate normality, with special attention to compound

symmetry covariance structure. The intractable nature of the distribution of f2 is

demonstrated. Empirical results from a large simulation study are also presented.

Advantages and drawbacks of proceduces based on the mean absolute difference

and mean squared distance are discussed.
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1. Introduction

The U.S. Food and Drug Administration (FDA) has recently encouraged
pharmaceutical companies to explore the relationship between in vivo drug bioa-
vailability and in vitro dissolution. The in vivo bioavailability study is to inves-
tigate the rate and extent of drug absorption in humans. On the other hand,
drug absorption depends upon the dissolved state of the drug product. Lesson
(1995) suggested that in vitro dissolution testing be used as a surrogate for in
vivo bioequivalence studies to assess equivalence between the test and reference
formulations, and for postapproval changes.

On November 30, 1995, the FDA issued a guidance Immediate Release Solid
Oral Dosage Forms; Scale-up and Postapproval Changes: Chemistry, Manufac-
turing, and Controls; In Vitro Dissolution Testing; In Vivo Bioequivalence Docu-
mentation (SUPAC-IR) (Federal Register, Vol. 60, No. 230, Notices, PP. 61638-
61643). The SUPAC-IR provides recommendations to sponsors of new drug
applications (NDA’s), abbreviated new drug applications (ANDA’s), and abbre-
viated antibiotic applications (AADA’s) who intend, during the postapproval
period, to change (i) the components or compositions; (ii) the site of manufac-
ture; (iii) the scale-up/scale-down of manufacture; and/or (iv) the manufacturing
(process and equipment) of an immediate release oral formulation. For each type
of change, the SUPAC-IR also defines (i) levels of changes; (ii) recommended
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chemistry, manufacturing, and controls tests for each level of change; (iii) in
vitro dissolution and/or in vivo bioequivalence tests for each level of change; and
(iv) documentation that should support the change.

If dissolution profile similarity is demonstrated for the formulations before
and after the changes, then expensive in vivo bioequivalence testing can be
waived. Dissolution testing should be conducted on at least 12 dosage units
for both formulations. Other FDA guidances on dissolution testing include dis-
solution testing of immediate release solid oral dosage forms (1997), extended
release solid oral dosage forms (1997), and SUPAC-MR (1997).

Various procedures have been proposed for statistical assessment of disso-
lution profile similarity (Chow and Ki (1997), Sathe, Tsong and Shah (1996a,
b), Tsong, Hammerstrom, Sathe and Shah (1996, 1997), Polli, Rekhi, Augs-
burger and Shah (1997) and O’Hara, Dunne, Kinahan, Cunningham, Stark and
Devane (1996)). These methods include application of either a nested model
(Gill (1988)) or an autoregressive time series model (Chow and Ki (1997)) to the
correlations between cumulative percents dissolved at different time points, and
consideration of Mahalanobis distance (Tsong, Hammerstrom, Sathe and Shah
(1996)) as a criterion for assessment of similarity in dissolution profiles between
two formulations.

In the FDA guidance on Dissolution Testing for Immediate Release Solid
Dosage Form (1997), three statistical methods are suggested for evaluation of
dissolution profile similarity. These are Mahalanobis distance, model-fitting, and
the similarity factor f2 proposed by Moore and Flanner (1996). The methods of
Mahalanobis and model-fitting have been reviewed and discussed (Tsong, Ham-
merstrom, Sathe and Shah (1996), Sathe, Tsong and Shah (1996a)). In addition,
the SUPAC-IR uses f2 to compare the dissolution profiles between the test and
reference formulations. The SUPAC-IR suggests that two dissolution profiles are
similar if f2 is between 50 and 100. Although f2 is easy to implement, there
are statistical issues which need to be clarified and resolved for its regulatory
implementation (Liu, Ma and Chow (1997)). Recently, other criteria such as
mean absolute distance and mean squared distance have been proposed for eval-
uation of dissolution profile similarity (Tsong, Hammerstrom, Sathe and Shah
(1996)). However, literature on their estimators and the corresponding properties
is scant. In Section 2, the formal definition of the similarity factor f2 specified
in the SUPAC-IR is given. The probability density function and asymptotic
properties of f2 are also derived in Section 2. The simulation results of f2 are
presented in Section 3. Estimators for the mean absolute difference and mean
squared distance are given in Section 4. Final remarks are provided in Section 5.
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2. Distribution of the Similarity Factor f2

Let Xjki be the observed cumulative percent dissolved for dosage unit i

at sampling time point k for formulation j, where j = R,T, i = 1, . . . , I,

k = 1, . . . , n, and let R and T denote the reference and test formulation, re-
spectively. Let W be the sum of squares of differences in average cumulative per-
cent dissolved between the reference and test formulations over all sampling time
points, W =

∑n
k=1(X̄Tk. − X̄Rk.)2, where X̄jk. is the average cumulative percent

dissolved at all sampling time point k for formulation j, j = R,T , k = 1, . . . , n.

The statistic W is a natural summary quantity measuring the overall closeness
between two dissolution profiles. However, it is not properly scaled for easy and
routine application by chemists or pharmacists. As a result, the similarity factor
f2 was proposed (Moore and Flanner (1996)). It can be expressed in terms of W

as

f2 = 50 × log10

[(
1 +

W

n

)− 1
2 × 100

]
= 100 − 25

ln 10
ln(1 + W/n). (2.1)

Note that the cumulative percent dissolved is bounded between 0 and 100. It fol-
lows that the difference in average cumulative percent dissolved is also bounded
between 0 and 100. As a result f2 ranges approximately from 0 to 100. The
SUPAC-IR suggested that similarity between two dissolution profiles be con-
cluded if f2 is between 50 and 100, where 50 represents an average 10% difference
at all sampling time points and 100 is the upper bound of f2 when the distance
at all sampling time points is 0.

Let D = (X̄T1.−X̄R1., . . . , X̄Tn.−X̄Rn.)
′
. Assume that D ∼ N(µ

D
,Σ), where

µ
D

= µ
T
− µ

R
= (µD1, . . . , µDn)

′
and Σ is an n × n positive definite covariance

matrix. Since W = D′D we have

E(W/n) = µ
′
D

µ
D

/n + tr[Σ]/n = µ2
D + σ2

D, (2.2)

where µ2
D and σ2

D denote the mean square in the population average differences
and the mean of variances over all sampling time points, respectively.

The probability density function of f2 is given by

f(v) =
∫ ∞

0
· · ·
∫ ∞

0

n−1∏
i=1

[ ∞∑
k=0

gk(τi)f1+2k(vi)

]

×
∞∑

k=0

gk(τn)f1+2k


n ×

(
10

100−v
25 − 1

)
−∑n−1

i=1 λivi

λn


× 1

λn

×
∣∣∣∣n × ln(10)

25
× 10

100−v
25

∣∣∣∣ dv1 · · · dvn−1, (2.3)
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where gk(τi) = e−τi/2 × (τi/2)k

k! , f1+2k is the density function of the chi-square

distribution with 1 + 2k d.f., τi =
(
µ′

D
ei

)2
/λi, and λi and ei are the eigenvalues

and eigenvectors of Σ, respectively.
Under the assumption of compound symmetry for Σ, the expected value and

variance of W are given by

E(W ) =
n∑

k=1

µ2
Dk +

2n
I

(σ2
e + σ2

s), (2.4)

Var (W ) =
8
I
[σ2

s(
n∑

k=1

µDk)2 + σ2
e

n∑
k=1

µ2
Dk] +

8n
I2

(σ2
e + σ2

s)
2[1 + (n − 1)K2], (2.5)

where K = σ2
s

σ2
e+σ2

s
, σ2

e + σ2
s is the variability of the cumulative dissolved observed

at a sampling time point, and σ2
s represents the covariance between different

sampling time points.
Even assuming normality, (2.3) is very complicated. Failure to find the

closed form of the expected value of f2 prevents us from constructing confidence
interval by any means including bootstrap confidence interval since we do not
know the parameter that the confidence interval is constructed for. If W/n ≤ 1,
the expected value and variance of f2 may be approximated by a Taylor series
expansion about E(W ):

E(f2) ≈ 100 − 25
ln 10

ln[1 + E(
W

n
)] +

25
2 ln 10

[
1

n + E(W )
]2Var (W ), (2.6)

Var (f2) ≈ [
25

(ln 10)(n + E(W ))
]2Var (W )

+
1
4
{ 25
(ln 10)[n + E(W )]2

}2{E[W − E(W )]4 − [Var (W )]2}

−(
25

ln 10
)2

1
[n + E(W )]3

E[W − E(W )]3. (2.7)

To utilize f2, we need to find the population parameters that the similarity
factor tries to estimate or test. From (2.6), if we only take the first two terms of
the approximate expected value of f2, E(f2) ≈ 100− 25

ln 10 ln[1 + µ2
D + σ2

D]. Then
the possible range of E(f2) is from 0 to 100, and the upper limit of 100 is reached
when both µ2

D and σ2
D are equal to 0.

The expected value of f2 may also be approximated by a Taylor series ex-
pansion about E(D) = µ

D
:

θ = 100 − 25
ln 10

ln[1 + µ2
D]. (2.8)
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Note that θ ≥ 100 − 25
ln 10 ln[1 + µ2

D + σ2
D]. Thus if one considers θ as the crite-

rion, application of f2 to the assessment of dissolution profile similarity will be
conservative.

From (2.6), E(f2) is a function of E(W/n). As a result, two dissolution
profiles are concluded similar if E(W/n) is smaller than some pre-specified al-
lowable upper limit. It follows that the statistical hypotheses corresponding to
the similarity between dissolution profiles may equivalently be formulated as a
one-sided hypothesis in terms of mean square of population average differences
and mean variability as

H0 : µ2
D + σ2

D ≥ ∆ v.s. Ha : µ2
D + σ2

D < ∆, (2.9)

where ∆ is some positive allowable upper limit for concluding dissolution simi-
larity.

From (2.9), inference about the similarity factor f2 is for population average
differences and population variances jointly. The joint statistical inference for
average and variability can be very difficult since more unknown parameters are
involved. We can not make inference to the individual components based on
f2 without additional assumptions about unknown parameters. For comments
regarding f2 for the assessment of dissolution similarity, see Liu, Ma and Chow
(1997).

From (2.6) and (2.7), if we only take the first two terms of the expansion
of f2 under µ

D
= 0, σ2

s + σ2
e = 27.6312, I = 12, n = 7 and σ2

s = 2.76312, the
approximate expected value of f2 is about 81.285, and the first term of approx-
imate variance of f2 is about 24.099. But, if we take the first three terms of
the expansion of f2 under the same condition, then the approximate expected
value of f2 is about 82.395 and the second term and the third term of approx-
imate variance of f2 are about 5.2775 and 12.9148, respectively. As a result,
the approximate variance of f2 is about 16.462. The approximate variance of f2

therefore fluctuates more than the approximate mean of f2.

3. Simulation on Sample Statistic of f2

We conducted a simulation to investigate the distribution of f2. The as-
sumptions for our simulation are given below.
(1) The differences in the average cumulative percent dissolved between the test

and reference formulation follow a multivariate normal distribution.
(2) The differences in the average cumulative percent dissolved are constant at

all sampling time points.
(3) The covariance matrices of test and reference formulations have the same

compound symmetry structure.
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Under compound symmetry, W can be expressed as W = λ1Y1+λ2Y2, where
Y1 and Y2 are independent, Y1 follows a noncentral chi-square distribution with 1
d.f. and noncentral parameter τ1 = (µ′

D
en)2/λ1, λ1 = 2

I (σ2
e +nσ2

s), and Y2 follows
a noncentral chi-square distribution with (n − 1) d.f. and noncentral parameter
τ2 = µ′

D
Σ−1µ

D
−τ1, λ2 = 2σ2

e
I . If µ

D
= 0 then τ1 = 0 and τ2 = 0. We invoked the

RANGAM function of SAS version 6.06 on a DEC work station for independent
central chi-square random variables when the µ

D
= 0. If µ

D
= 31 then τ2 = 0,

where 1 is a n × 1 unit vector. We used the SAS function RANUNI and CINV
to generate random samples when the µ

D
= 31. The similarity factor f2 was

then calculated for each sample. Our simulation explored 5 magnitudes of total
variability: 27.6312, 138.156, 276.312, 552.624 and 594. For each total variability,
the ratio of inter-unit variability to the total variability, denoted by K, was chosen
from 0.1 to 0.9 by an interval of 0.1. Four different sample sizes of 6, 12, 18 and 24
units were considered for each formulation. Because the number of sampling time
points for a dissolution testing is usually greater than 2, we considered 5 different
numbers of sampling time points: 3, 4, 5, 6 and 7 in this simulation. Because
f2 is invariant to unequal spacing between sampling time points, we do not have
to specify the length of interval between time points. The mean, variance, the
lower 5 % quantile of the empirical distribution, and the empirical probability
of concluding similarity according to the criterion based on f2 specified in the
SUPAC-IR were obtained based on ten thousand (10,000) random samples for
each of 900 combinations. Because the results are consistent, we only present
those for the combination µ

D
= 0 and µ

D
= 31, total variability=27.6312, K =

0.1 to 0.9 by 0.2; I = 6 to 24 by 6; and n = 3 to 7 by 2. Other results can
be obtained from the authors upon request. The empirical mean and variance
are given in Tables 1 and 2 for µ

D
= 0 and µ

D
= 31, respectively, with the

approximate mean computed by (2.6) and the approximate variance by the first
term of (2.7). The results of simulation are summarized below.
(1) Figure 1 displays the histogram of the empirical distribution of f2 for I = 12,

n = 7, K = 0.5, µ
D

= 0, and total variability 27.6312. From Figure 1,
the empirical distribution of f2 is skewed to the left. On the other hand,
Figure 2 gives the histogram of the empirical distribution of f2 with the
same combination as Figure 1 except for µ

D
= 31. As displayed in Figure 2,

the empirical distribution of f2 is skewed with a long-tail to the right. When
µ

D
= 0, W is a linear combination of a central chi-square variable with 1

degree of freedom and a central chi-square variable with (n − 1) degrees of
freedom. Since W and f2 have negative correlation, the empirical distribution
of f2 is skewed to the left. If µ

D
= 31, then τ2 = 0. Therefore, W is a linear

combination of a noncentral chi-square variable with 1 degree of freedom
and noncentrality parameter τ1 = 9nI/2(σ2

e + nσ2
s) and a central chi-square
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variable with (n − 1) degrees of freedom. Comparing with the central chi-
square, the density function of a noncentral chi-square variable is shifted to
the right by the noncentrality parameter τ1.
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Figure 1. Histogram of f2. Number of tablets=12 per formulation, number
of time points=7, total variability=27.6312, sigma(e)=sigma(s), µ = 0.
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Figure 2. Histogram of f2. Number of tablets=12 per formulation, number
of time points=7, total variability=27.6312, sigma(e)=sigma(s), µ = 3.
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Table 1. The mean (the approximate mean (2.6)) and varance (the first
term of approximate variance (2.7)) of the empirical distribution of f2.
Total variance = 27.6312, µ

D
= 0.

n I K = 0.1 K = 0.3 K = 0.5 K = 0.7 K = 0.9
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

3 6 77.7 67.2 78.1 70.9 78.3 78.5 79.0 92.7 80.5 120.7
(77.8) (65.2) (78.2) (75.5) (79.2) (95.9) (80.6) (126.6) (82.5) (167.5)

12 83.7 50.1 83.7 51.9 84.1 57.8 84.6 69.7 85.8 86.3
(83.8) (54.1) (84.2) (62.6) (84.9) (79.6) (86.1) (105.0) (87.7) (139.0)

18 86.5 39.2 86.8 41.5 87.1 46.2 87.4 55.6 88.4 69.6
(86.9) (45.6) (87.2) (52.8) (87.8) (67.1) (88.8) (88.5) (90.2) (117.2)

24 88.6 32.0 88.7 34.9 89.0 37.8 89.3 45.3 90.0 57.2
(88.8) (39.0) (89.1) (45.1) (89.7) (57.3) (90.5) (75.6) (91.6) (100.1)

5 6 76.6 40.9 76.9 47.2 77.5 59.0 78.6 78.0 80.2 114.0
(76.6) (39.9) (77.2) (52.2) (78.3) (76.7) (80.0) (113.6) (82.3) (162.7)

12 82.7 32.2 82.9 36.6 83.5 44.6 84.3 59.6 85.6 81.6
(82.8) (33.1) (83.3) (43.3) (84.2) (63.7) (85.6) (94.2 ) (87.5) (135.0)

18 85.9 25.0 86.1 29.5 86.6 36.6 87.1 47.3 88.2 66.6
(86.0) (27.9) (86.4) (36.5) (87.2) (53.7) (88.4) (79.4 ) (90.0) (113.8)

24 88.0 21.5 88.2 23.9 88.6 30.0 89.2 40.0 89.9 55.0
(88.1) (23.8) (88.5) (31.2) (89.1) (45.8) (90.2) (67.8 ) (91.5) (97.2 )

7 6 76.0 29.2 76.5 36.1 76.9 49.7 78.3 70.8 80.2 110.1
(76.1) (29.1) (76.7) (42.2) (77.9) (68.5) (79.7) (108.0) (82.2) (160.6)

12 82.4 23.3 82.7 28.6 83.2 38.8 84.2 53.8 85.4 83.5
(82.4) (24.1) (82.9) (35.0) (83.9) (56.8) (85.4) (89.6 ) (87.4) (133.2)

18 85.6 19.3 85.9 23.7 86.3 32.2 87.0 43.1 88.0 65.7
(85.7) (20.3) (86.1) (29.5) (87.0) (47.9) (88.2) (75.5 ) (89.9) (112.3)

24 87.7 15.9 88.0 19.6 88.4 26.8 89.1 36.5 89.9 54.2
(87.8) (17.4) (88.2) (25.2) (88.9) (40.9) (90.0) (64.5) (91.4) (95.9)

n: Time points
I: The number of tablets
K: The ratio of σ2

s/(σ2
s + σ2

e)

(2) In general, the empirical mean decreases as the total variance increases. The
mean of the empirical distribution increases as the ratio of inter-unit variabil-
ity to the total variability increases or the number of dosage units increases,
as shown in Table 1 and Table 2. The empirical means for µ

D
= 0 are larger

than for µ
D

= 31. For µ
D

= 0, the empirical means obtained by simulation
are numerically larger than the approximate mean calculated from (2.6), al-
though they are quite close.

(3) In general, the variance increases as the total variability increases, and de-
creases as the sample size increases. In addition, it increases as the ratio
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of inter-unit variability to the total variability increases or as the number of
sampling time points decreases for any fixed combination of sample size and
total variability. Large differences between the empirical variance and the
first term of (2.7) reflect the fact that the Taylor’s expansion of the loga-
rithm diverges if W/n is greater than 1. The empirical variances are larger
than the approximate variances when µ

D
= 31 while they are in general

smaller when µ
D

= 0.

Table 2. The mean (the approximate mean (2.6)) and variance (the first
term of approximate variance (2.7)) of the empirical distribution of f2.
Total variance = 27.6312, µ

D
= 3 · 1.

n I K = 0.1 K = 0.3 K = 0.5 K = 0.7 K = 0.9
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

3 6 71.0 74.1 71.6 88.9 72.2 104.4 73.1 124.7 74.3 160.6
(70.7) (60.8) (71.5) (77.8) (72.4) (97.7) (73.5) (120.5) (74.6) (146.2)

12 73.1 53.9 73.8 70.5 74.4 84.5 75.1 103.3 75.8 129.9
(72.9) (44.6) (73.6) (58.1) (74.2) (72.8) (75.0) (88.8 ) (75.8) (106.0)

18 73.8 41.5 74.3 55.7 75.1 72.1 75.6 84.6 76.1 104.3
(73.7) (34.9) (74.2) (45.8) (74.7) (57.4) (75.3) (69.6 ) (75.9) (82.5 )

24 74.2 34.0 74.7 45.4 75.0 57.6 75.8 74.3 76.1 87.4
(74.1) (28.6) (74.5) (37.7) (74.9) (47.2) (75.4) (57.1 ) (75.9) (67.5 )

5 6 69.8 47.3 70.8 64.9 71.5 85.1 72.5 109.1 74.1 153.0
(69.8) (40.9) (70.7) (61.3) (71.8) (85.2) (73.1) (112.6) (74.5) (143.4)

12 72.3 35.6 73.0 52.7 73.9 70.9 74.8 95.8 75.9 126.8
(72.3) (30.5) (73.0) (46.7) (73.9) (64.3) (74.7) (83.5 ) (75.7) (104.2)

18 73.2 27.3 73.7 43.1 74.5 60.0 75.2 78.6 76.2 103.7
(73.2) (24.1) (73.8) (37.1) (74.4) (51.0) (75.1) (65.7 ) (75.8) (81.2 )

24 73.6 21.6 74.2 34.7 74.9 50.0 75.5 66.3 76.1 85.0
(73.7) (19.8) (74.2) (30.7) (74.7) (42.0) (75.2) (54.0 ) (75.8) (66.4 )

7 6 69.4 35.2 70.3 54.6 71.2 75.7 72.5 101.9 74.0 147.7
(69.4) (32.4) (70.4) (54.3) (71.6) (79.9) (72.9) (109.2) (74.5) (142.2)

12 72.1 27.5 73.0 46.3 73.8 65.5 74.6 90.5 75.8 121.9
(72.0) (24.5) (72.8) (41.8) (73.7) (60.7) (74.6) (81.3 ) (75.6) (103.4)

18 73.0 21.1 73.8 38.1 74.4 55.3 75.2 77.0 75.9 100.6
(73.0) (19.4) (73.6) (33.4) (74.3) (48.2) (75.0) (64.0 ) (75.8) (80.6 )

24 73.5 17.3 74.1 31.0 74.7 46.6 75.4 63.6 76.3 85.1
(73.5) (16.0) (74.0) (27.6) (74.6) (39.8) (75.2) (52.6 ) (75.8) (65.9 )

n: Time points
I: The number of tablets
K: The ratio of σ2

s/(σ2
s + σ2

e)

(4) When the total variance is 27.6312 and the average cumulative percent dis-
solved is between 80 and 90, the coefficient of variation (CV) is between
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5.8% and 6.6%. This range of CV represents an upper limit of within-batch
variability for most of the immediate released drug products. The empirical
probability of concluding similarity is almost 100% for all combinations for
µ

D
= 0 and µ

D
= 31. For the total variability of 552.624 which represents

a within-batch CV about 30%, the empirical probability of concluding sim-
ilarity can go above 85% for some combinations for µ

D
= 31, as shown in

Table 3. The empirical probability of concluding similarity increases as the
the number of the dosage units increases and decreases as the total variance
increases. In addition, it increases as K increases when the total variance
is 552.624. The empirical probability of concluding similarity for µ

D
= 0 is

larger than that for µ
D

= 31.

Table 3. The empirical probability of concluding similarity between dissolu-
tion profiles. Total variance = 552.624, µ

D
= 0 and µ

D
= 3.

n I K = 0.1 K = 0.3 K = 0.5 K = 0.7 K = 0.9
µ

D
= 0 µ

D
= 3 µ

D
= 0 µ

D
= 3 µ

D
= 0 µ

D
= 3 µ

D
= 0 µ

D
= 3 µ

D
= 0 µ

D
= 3

3 6 34.4 32.8 36.7 34.3 40.1 38.8 46.4 44.9 51.6 51.3
12 64.5 60.2 64.8 61.8 67.7 64.0 69.8 66.4 69.5 67.9
18 82.0 76.6 82.4 77.5 81.7 77.7 81.6 77.3 80.3 75.9
24 90.2 85.3 90.8 85.7 89.1 85.0 88.3 83.3 86.3 82.5

5 6 24.9 24.2 29.0 28.3 35.7 33.7 43.6 43.2 51.9 50.0
12 64.2 57.1 65.3 60.3 68.9 64.3 70.6 66.6 68.8 66.9
18 84.3 78.2 84.3 77.8 83.8 78.3 81.7 77.9 80.6 77.2
24 94.0 88.9 92.8 87.0 90.1 85.8 88.3 84.1 86.6 82.5

7 6 19.9 19.0 24.6 23.1 32.6 30.6 44.3 42.7 51.0 50.8
12 63.0 56.6 66.1 60.0 69.4 64.4 70.2 68.0 70.6 67.2
18 86.8 80.1 85.5 79.6 84.3 79.5 82.7 77.4 79.7 77.0
24 96.1 90.3 94.2 88.0 91.1 86.3 89.3 84.4 85.6 82.8

n: Time points
I: The number of tablets
K: The ratio of σ2

s/(σ2
s + σ2

e)

4. Mean Squared Distance and Mean Absolute Difference

In general, the metrics for assessing dissolution similarity can be classi-
fied into two groups. The first group is based on functions of absolute differ-
ences in population averages of cumulative percent dissolved between test and
reference formulations. The other is based on functions of the squared differ-
ences in population averages between test and reference formulations. That is,
g(
∑n

k=1 wk(µTk − µRk)2) or g(
∑n

k=1 wk|µTk − µRk|), where wk is the weight of
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the kth time point. The sum of weights over all time points should be 1. For ex-
ample if wk = 1/n, then they are functions of mean squared distance and mean
absolute difference, respectively. We only consider the simplest case of equal
weights and identity function. Note that θ in (2.8) is also based on mean squared
distance. We shall see that even for the simplest case, the inference based on∑n

k=1(µTk − µRk)2 or
∑n

k=1 |µTk − µRk| can be very complicated. The proofs
of the following theorems and lemmas are straightforward and can be obtained
from the authors upon request.

Theorem 1. Under the assumption of multivariate normality with compound
symmetry covariance, we have the following properties:

(1) Let SSW = 2[
∑I

i=1(XTki − X̄Tk.)2 +
∑I

i=1(XRki − X̄Rk.)2]. An unbiased esti-
mator of

∑n
k=1(µTk − µRk)2 is given by

T =
n∑

k=1

[(X̄Tk. − X̄Rk.)2 − 1
2I(I − 1)

SSW ]; (4.1)

(2) the distribution of T is that of a linear combination of independent noncen-
tral chi-square random variables: 2

I [(σ2
e + nσ2

s)χ
2(1, τ1) + σ2

eχ
2(n − 1, τ2)] −

1
I(I−1){σ2

eχ
2[2(n − 1)(I − 1)] + (σ2

e + nσ2
s)χ

2[2(I − 1)]}.
If the targeted parameter of f2 based on the squared differences in population

averages is θ, then an estimate of θ is θ̂ = 100 − 25 log10[1 + 1
nT ]. The fact that

T can be negative makes its distribution very complicated.
An alternative test statistic may be given as

Ta =
∑n

k=1(X̄Tk. − X̄Rk.)2
1

I(I−1)

∑n
k=1[

∑I
i=1(XTki − X̄Tk.)2+

∑I
i=1(XRki − X̄Rk.)2]

=
W

SSW /2I(I − 1)
.

(4.2)
The numerator W was defined earlier and the denominator is the sum of the
pooled within group sums of squares over all time points. Under the assumption
of normality with constant difference for all time points and a compound symme-
try covariance, the distribution of Ta is that of a ratio of two linear combinations
of noncentral chi-square variables:

2
I (σ2

e + nσ2
s)χ2(1, τ1) + 2

I σ2
eχ

2(n − 1, τ2)
1

I(I−1){σ2
eχ

2[2(n − 1)(I − 1)] + (σ2
e + nσ2

s)χ2[2(I − 1)]} . (4.3)

Let

θa =
E(W )

E(SSW )/2I(I − 1)
=

I
∑n

k=1 µ2
Dk

2n(σ2
e + σ2

s)
+ 1. (4.4)
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From equation (4.4), θa ≥ 1 and θa = 1 only if µ
D

= 0. If σ2
s = 0 then Ta

follows a noncentral F distribution with degrees of freedom n and 2n(I − 1) and
noncentrality parameter τ1 + τ2. Hence, θa is reduced to (n + τ1 + τ2)/n and
E(Ta) = (I−1)(n+τ1+τ2)

[n(I−1)−1] . Then [n(I−1)−1]
[n(I−1)] Ta is an unbiased estimator of θa. If

σ2
e = 0 then Ta follows a noncentral F distribution with degrees of freedom 1

and 2(I − 1) and noncentrality parameter τ1. Hence, θa is reduced to 1 + τ1 and
E(Ta) = (I−1)(1+τ1)

(I−2) . Then (I−2)
(I−1)Ta is an unbiased estimator of θa. If σ2

s �= 0 and
σ2

e �= 0 then the evaluation of E(Ta) becomes very difficult. The assessment of
similarity between dissolution profiles based on θa can again be formulated as
testing a one-sided hypothesis:

H0 : θa ≥ ∆ v.s. Ha : θa < ∆, (4.5)

where ∆ is the prespecified upper similarity limit determined by cumulative av-
erage difference and both intra and inter-unit variabilities. Further investigation
of Ta is needed.

Next, we investigate inference based on the metric
∑n

k=1 |µTk − µRk|. We
start with a single sampling time point, i.e., n = 1.

Lemma 1. If X̄ follows a normal distribution with mean µ and variance σ2/I,
then
(1) |X̄ | is asymptotically unbiased for |µ| as I → ∞;
(2) |X̄ | is a consistent estimator of |µ| for µ �= 0;
(3) The moment generating function of |X̄| is given as

eµt+ σ2t2

2I Φ(
tσ√
I

+
µ
√

I

σ
) + e−µt+ σ2t2

2I Φ(
tσ√
I
− µ

√
I

σ
),

where Φ(·) denotes the cumulative distribution function of the standard nor-
mal distribution;

(4) An unbiased estimator of |µ| does not exist (the proof is given in Appendix);
(5) The asymptotic distribution of |X̄| is, for large I, |X̄ | ∼ N(|µ|, σ2/I) for

µ �= 0;
(6) The bias of |X̄| is given by

E(|X̄ |) − |µ| =




√
2
π

σ√
I
, if µ = 0,

2µ[Φ(
√

Iµ
σ ) − 1] + 2 σ√

I
φ(

√
Iµ
σ ), if µ > 0,

2µΦ(
√

Iµ
σ ) + 2 σ√

I
φ(

√
Iµ
σ ), if µ < 0,

(4.6)

where φ(·) denotes the probability density function of the standard normal
distribution;
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(7) The variance of |X̄ | is given as µ2 + σ2/I −{µ[2Φ(
√

Iµ
σ )− 1] + 2 σ√

I
φ(

√
Iµ
σ )}2.

Let Z =
√

I(|X̄ | − |µ|)/σ be the standardized form of |X̄ |. Then the moment
generating function of Z is

MZ(t) = e−t
√

I|µ|/σM|X̄|(
√

It/σ) −→




e
1
2
t2 , if µ > 0,

2e
1
2
t2Φ(t), if µ = 0,

e
1
2
t2 , if µ < 0, as I → ∞.

However, when µ = 0, the asymptotic distribution of the standardized form Z

does not converge to the standardized normal distribution as I → ∞.
Assume that the X̄Tk. − X̄Rk., k = 1, . . . , n, follow a multivariate normal

distribution with mean µDk = µTk−µRk, k = 1, . . . , n, and compound symmetry
covariance Σ. Let σkk be the kth diagonal element of Σ. By lemma 1, we have
the following properties:
(1) Tr =

∑n
k=1 |X̄Tk. − X̄Rk.| is a consistent estimator of

∑n
k=1 |µTk − µRk|;

(2) The bias of Tr is negligible if the number of individual dosage units is large,
that is, Tr is asymptotically unbiased;

(3) An unbiased estimator of
∑n

k=1 |µTk − µRk| does not exist;
(4) The moment generating function of |Dk| = |X̄Tk. − X̄Rk.| is

eµDkt+ 1
2
σ2

kkt2Φ(tσkk+
µDk

σkk
)+e−µDkt+ 1

2
σ2

kkt2Φ(tσkk−µDk

σkk
), for k = 1, . . . , n;

(5) The expectation of Tr is
∑n

k=1{µDk[2Φ(µDk
σkk

) − 1] + 2σkkφ(µDk
σkk

)}.
If µ

D
= 0, for large I, the limit of moment generating function of the

standardized form Zk = (|Dk| − |µDk|)/σkk is given by MZk
(t) = 2e

1
2
t2Φ(t),

E(Zk) = M
′
Zk

(0) =
√

2
π and Var (Zk) = M

′′
Zk

(0) − (E(Zk)2) = 1 − 2
π . On

the other hand, the moment generating function of Tr is complicated because
|X̄Tk. − X̄Rk.|, k = 1, . . . , n, are correlated.

If µDk �= 0 for all time points, use the delta-method with g(y) = |y| to get
|D| = (|X̄T1.−X̄R1.|, . . . , |X̄Tn.−X̄Rn.|)′ ∼ N(|µ

D
|,Σ∗), where |µ

D
| = |µ

T
−µ

R
|,

Σ∗ = (∂|Dk|
∂Dk

|D=µ
D
)
′
Σ(∂|Dk|

∂Dk
|D=µ

D
) and

(
∂|Dk|
∂Dk

|D=µ
D
) =

{
1, if µDk > 0,
−1, if µDk < 0.

Since Tr =
∑n

k=1 |X̄Tk. − X̄Rk.| = 1
′ |D|, the asymptotic distribution of Tr is then

given as N(
∑n

k=1 |µTk − µRk|, 1′
Σ∗1), where 1

′
Σ∗1 =

∑n
k=1 σkk + 2

∑∑
i<j σij

(∂|Di|
∂Di

|D=µ
D
)
′

(∂|Dj |
∂Dj

|D=µ
D
). So the asymptotic variance of Tr depends on not

only the sign of µ
D

but also on whether µDk = 0, k = 1, . . . , n.
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5. Discussion

The SUPAC-IR issued on November 30, 1995 by the U.S. FDA adopted
the similarity factor f2 proposed by Moore and Flanner (1996) as one criterion
for assessing dissolution similarity. Any criteria for assessing similarity between
dissolution profiles should be based on population parameters. However, f2 is
a sample statistic obtained from dissolution testing, and it will change with the
observed time. In addition, the corresponding population parameter that f2

tries to estimate is unknown, and the consumer’s and the producer’s risk is very
difficult to evaluate. On the other hand, if one takes f2 as a biased estimate for
θ then the consumer’s and the producer’s risk may be evaluated. If one takes
f2 as an estimate for equation (2.6) then the criterion based on f2 is in fact a
one-sided hypothesis. If one takes f2 as an estimate of θ then it tests two-sided
similarity.

The distribution of f2 is unnecessarily complicated in order to produce an
acceptable range of 50 to 100. As a result its sampling error can not be analyti-
cally quantified, and its expectation and variance require numerical integration.
In addition, a value of f2 between 50 and 100 computed from a sample of 24
dosage units does not guarantee dissolution similarity in a population of millions
of dosage units because of sampling error. Thus the similarity factor is based on
convenience, although it does measure the similarity of two dissolution profiles
and is easy to perform. The proposed critical value 50 was based on review-
ers’ practical understanding of similarity of two true profiles. However, f2 as
an estimate does not have the desirable properties often expected in statistical
science.

If the targeted parameter is based on functions of the mean squared distance
in population averages of cumulative percent dissolved, unbiased estimators of
the mean squared distance in population averages of cumulative percent dissolved
can be derived as shown in Section 4. Its distribution, however, is also quite com-
plicated and its observed value may be negative. On the other hand, one can
directly apply W/n or Mahalanobis distance to assess similarity of dissolution
profiles. Mean squared distance W/n is easier to compute than Mahalanobis dis-
tance. But it needs an estimate of the covariance for the sampling distribution.
Hence it is much more complicated for computing the sampling distribution and
confidence limits. Mahalanobis distance is, on the other hand, the standardized
form of W/n with a well-known sampling distribution. It involves the estimation
of the covariance matrix in calculating the point estimate but not the sampling
distribution. Hence, the small sample problem for covariance matrix estimation
in Mahalanobis distance would be exactly the same as for W/n. Asymptotically,
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the sample Mahalanobis distance is unbiased for the corresponding population
parameter (Anderson (1984)). Since the sampling distribution of W/n is well
understood, statistical inference based on W/n under (2.9) can be easily carried
out. However, W/n is not scaled and is not invariant to scale change. In addi-
tion, the sampling distribution of W/n involves estimation of the noncentrality
parameters of noncentral chi-square distributions. As demonstrated in the pre-
vious section, the sampling distributions of estimators for criteria based on the
mean squared distance are quite complicated. Bootstrap techniques may there-
fore be an attractive approach to evaluating the sampling distributions of θ̂, Ta

and Tr.
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Appendix

Proof of equation (2.3). Since D ∼ N(µ
D

,Σ) and W = D′D, by properties
of multivariate normality, W can be written as a linear combination of indepen-
dent noncentral chi-square random variables: W =

∑n
i=1 λiYi, where λ

′
is are the

eigenvalues of Σ and Yi follows a noncentral chi-square distribution with 1 degree

of freedom and noncentral parameter τi =
(
µ′

D
ei

)2
/λi, and ei is the eigenvector

of Σ corresponding to λi.

Because the joint density function of Y1, . . . , Yn can be written as

f(y1, . . . , yn) =
n∏

i=1

fi(yi) =
n∏

i=1

[ ∞∑
k=0

gk(τi)f1+2k(yi)

]
,

where gk(τi) = e−τi/2× (τi/2)k

k! , and f1+2k(yi) is the density function of the central
chi-square distribution with 1 + 2k degrees of freedom. Then if Sj = Yj for
j = 1, . . . , n− 1, and W =

∑n
i=1 λiYi, it follows that the joint density function of

(S1, . . . , Sn−1,W ) is

f(s1, . . . , sn−1, w) =
n−1∏
i=1

[ ∞∑
k=0

gk(τi)f1+2k(si)

]

·
[ ∞∑

k=0

gk(τn)f1+2k

(
1
λn

(
w −

n−1∑
i=1

λisi

))]
/λn.

Then (2.3) follows from f2 = 100 − 25 × log10(1 + W
n ).
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Proof of Lemma 1. (4) If Y was a normal distribution with mean µ and
variance σ2, there is no unbiased estimator of |µ|.
Proof. Suppose there exists an unbiased estimator of |µ|, say g(Y ). Because
g(Y ) is an unbiased estimator, it must be a function of Y and is not a function
of µ such that E(g(Y )] = |µ|. If µ ≥ 0 then E[g(Y )] = µ and E(Y ) = µ. If
µ ≥ 0 then E[g(Y )] = µ and E(Y ) = µ. Since Y is complete sufficient for µ ≥ 0,
E[g(Y )−Y ] = 0 implies g(Y ) = Y almost surely for µ ≥ 0. Similarly g(Y ) = −Y

almost surely for µ < 0. Then g(Y ) = Y I(µ≥0) − Y I(µ<0) and g(Y ) depends on
µ, a contradiction.
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