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Abstract: This paper investigates the use of a pseudo-likelihood approach for infer-

ence in regression models with covariates affected by measurement errors. The max-

imum pseudo-likelihood estimator is obtained through a Monte Carlo expectation-

maximization type algorithm and its asymptotic properties are described. The fi-

nite sample performance of the pseudo-likelihood approach is investigated through

simulation studies, and compared to a full likelihood approach and to regression

calibration under different measurement error structures, as well as continuous

or discrete covariates. In contrast to the full likelihood approach, our method is

computationally fast while remaining competitive from an inferential perspective.

Satisfactory results are also provided over regression calibration. Pseudo-likelihood

and the competing methods are finally applied to the analysis of two data sets.
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1. Introduction

The problem of errors affecting the measure of variables is common in such
areas of research as epidemiology, biology, health economics, and econometrics.
Erroneous measures of a variable may be a consequence of instrument charac-
teristics, self-reported data, or simply associated with costs of accurate obser-
vations. A large literature has been developed which emphasizes the impact of
the mismeasurement on statistical analyses. The well-known consequence is the
bias that may be induced on the parameter estimators (e.g., Armstrong (2003)).
Many correction techniques have been proposed since the ’80s to alleviate this
problem. See Carroll et al. (2006) for a detailed review focused on mismeasured
continuous variables, and Gustafson (2004) with emphasis on the misclassifica-
tion of discrete variables.

The likelihood approach to correct for measurement error affecting covariates
has the advantage over alternatives solutions of providing parameter estimators
with optimality properties (e.g., Schafer (2002) and references therein). Nev-
ertheless, the application of likelihood analysis is still limited in the literature
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(Messer and Natarajan (2008)). The reason is ascribable to the complexity of
the likelihood function, a feature which implies nonneglectable computational
efforts for inferential purposes, as, for example, likelihood maximization.

To alleviate this problem, we explore an alternative approach that maintains
the likelihood flavour and retains a high degree of efficiency while being computa-
tionally more convenient than maximum likelihood. Ours is a pseudo-likelihood
approach that simplifies the likelihood as a function of the interest parameters
only, following Gong and Samaniego (1981). Such an approach has not been fully
explored in the measurement error context. In the paper, we illustrate how the
pseudo-likelihood analysis can be applied in a broad range of problems, including
mismeasured continuous and misclassified categorical covariates as well as accom-
modating different types of error structure. We maximize the pseudo-likelihood
through a Monte Carlo expectation-maximization (MCEM) type algorithm. The
algorithm makes use of an importance sampling procedure in the E-step to over-
come many of the computational difficulties related to the specification of the
conditional distribution. Moreover, we derive the asymptotic properties of the
maximum pseudo-likelihood estimator by exploiting the results in Louis (1982).
The problem of the sensitivity of the likelihood-based analysis to violations of
the assumptions on the unobserved variables is also taken into account. We
carry out an extensive simulation study in order to evaluate the performance of
the pseudo-likelihood approach with respect to the full likelihood analysis, under
different scenarios of interest. The likelihood and pseudo-likelihood approaches
are also compared to regression calibration in case of continuous mismeasured
covariates and to a modified version of regression calibration for misclassification
problems.

The paper is structured as follows. The likelihood and the pseudo-likelihood
approaches to measurement error correction are described in Section 2, while
Section 3 is devoted to the illustration of the MCEM methodology for parame-
ters estimation. The asymptotic distribution of the maximum pseudo-likelihood
estimator is derived in Section 4. The simulation study is described in Section 5.
Robustness issues with respect to violations of the model assumptions are dis-
cussed in Section 6. Section 7 is focused on the application of the correction
methods to the analysis of two data examples, the first with two continuous
mismeasured covariates, the second with a misclassified covariate derived from
a dichotomization process. Discussion and final remarks are given in Section 8.
Mathematical details about the pseudo-likelihood analysis and the distribution
of the maximum pseudo-likelihood estimator are moved to two appendices.

2. Measurement Error Correction

2.1. Notation

Let Y be a response variable, either discrete or continuous, related to a set
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of p covariates X through a parametric regression model, with density function
fY |X(y|x;β). The inferential interest is usually on the parameter vector β. In
place of X, observations from a set of covariates W are available. The situation is
known as the error-in-variables problem, also as the measurement error problem
in case of continuous X, or the misclassification problem in case of discrete X.
If a statistical analysis is performed ignoring the presence of measurement errors,
then inference may be affected. The most relevant effect is the bias induced in
the estimators of the parameters, and its severity may be more substantial in
misclassification than in errors-in-variables problems (Gustafson and Le (2002)).

Suppose that the measurement error or the misclassification can be mod-
eled by specifying the conditional distribution of W given X and Y . Let
fW |XY (w|x, y; δ) be the density function of the corresponding model, depending
on a set of parameters δ. In case of nondifferential error, the distribution of W

is independent of Y , so that fW |XY (w|x, y; δ) = fW |X(w|x; δ). This situation is
typical in case of instrumental measures of X. Otherwise, the error is differen-
tial, which usually occurs in the case of self-reported questionnaires. A situation
of particular interest has differential misclassification as a consequence of di-
chotomization of nondifferential mismeasured continuous covariates (Gustafson
and Le (2002)). According to a similar view, the differential error implies the dis-
tribution of Y being dependent on (X, W ), while the dependence on W decays
for nondifferential errors.

2.2. Likelihood and pseudo-likelihood approaches

Suppose that observations from Y and W are available for a sample of size
n. Given the joint density function of (Y,W , X), fY WX(y, w, x; θ), depending
on a set of parameters θ, the likelihood function for θ is obtained by integrating
out the unknown X

L(θ; y, w) =
n∏

i=1

L(θ; yi, wi) =
n∏

i=1

∫
fY WX(yi, wi,xi;θ)dxi.

The integral is replaced by a sum in case of discrete X. The likelihood function
can be re-written as follows

L(θ; y, w) =
n∏

i=1

∫
fY |XW (yi|xi, wi; β)fW |X(wi|xi; δ)fX(xi; γ)dxi, (2.1)

where θ = (βT , δT ,γT )T , fY |XW (y|x, w; β), fW |X(w|x; δ) have been defined
above and fX(x; γ) is the density function of X, depending on a set of parameters
γ. The likelihood specification allows for some additional error-free covariates Z

by rewriting the density functions as fY |XWZ(y|x, w,z; β), and so on.



1642 ANNAMARIA GUOLO

Several studies in the literature have shown the advantages of the likelihood
approach for measurement error or misclassification correction with respect to
alternatives based on weaker assumptions. In particular, the advantages are sub-
stantial in terms of large sample optimality properties of the estimators (e.g.,
Schafer and Purdy (1996) and Küchenhoff and Carroll (1997)). Despite this, the
likelihood approach has not had a considerable amount of application compared
to alternative proposals. The main reason is the computational difficulty related
to the likelihood evaluation and maximization, as the integral in (2.1) cannot
usually be expressed in closed form. Here one usually relies on quadrature meth-
ods, at least for X of low dimension (Carroll et al. (2006, Sec. 8.3)). However,
quadrature methods are less attractive because of the computational burden as
well as the curse of dimensionality that can arise when increasing the dimension
of X.

In this paper we suggest alleviating the problem through an alternative
likelihood-based estimation method. To this aim, we express the likelihood (2.1)
as a function of the interest parameter β only. Let λ = (δT , γT )T denote the
vector of nuisance parameters. When it is not feasible to eliminate λ through con-
ditioning or factorization, the analysis can rely on a pseudo-likelihood approach,
following Gong and Samaniego (1981). Thus, the likelihood maximization is car-
ried out in two steps. In the first step, the nuisance parameter λ is conveniently
estimated; then β is estimated by maximizing the pseudo-likelihood obtained
with λ held fixed at the previous value. Let λ̂ = (δ̂

T
, γ̂T )T denote the estimates

of λ from the first step. Then the estimate of β maximizes the pseudo-likelihood

pL(β; y, w, λ̂) =
n∏

i=1

pL(β; yi, wi, λ̂)

=
n∏

i=1

∫
fY |XW (yi|xi, wi; β)fW |X(wi|xi; δ̂)fX(xi; γ̂)dxi. (2.2)

The estimate of the nuisance parameter λ may be obtained from additional
information, such as validation data. However a better solution, in terms of
efficiency of the parameter estimators, is to maximize the reduced likelihood
function

rL(λ; w) =
n∏

i=1

rL(λ; wi) =
n∏

i=1

∫
fW |X(wi|xi; δ)fX(xi; γ)dxi, (2.3)

thus exploiting the information included in all the data, and not only in a portion
of the observations.
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The properties of the resulting pseudo-likelihood β estimator go back to
Gong and Samaniego (1981), who derived the asymptotic distribution of the es-
timator under some regularity conditions. In particular, the asymptotic variance-
covariance matrix is provided to properly account for the uncertainty about the
nuisance parameters estimation.

3. Monte Carlo EM Methodology

We propose a computationally convenient approach to maximizing the likeli-
hood function (2.1) as well as the pseudo-likelihood function (2.2). If we consider
X as missing data, then a MCEM strategy would provide a reasonable approach
to inference. The computational approach described in the following section ex-
ploits an importance sampling technique within the E-step. The MCEM-type
algorithm is first illustrated by referring to the likelihood analysis and then the
details for applying it to the pseudo-likelihood analysis are provided.

3.1. Monte Carlo EM algorithm

Let y and w be the n-dimensional vectors of sample observations from Y

and W , and let `(θ;y, w) = log L(θ; y, w) be the log-likelihood function derived
from (2.1). Let also x be the n-dimensional vector of values from the unobserved
X. Following the idea underlying the EM algorithm, we take `(θ; y, w, x) to be
the joint log-likelihood of the augmented data (y, w,x). Each iteration of the
EM algorithm alternates an E-step and a M-step. Let θr be the current value
of θ in the r-th iteration of the algorithm. The (r + 1)-th E-step entails the
calculation of

Q(θ|θr) = E {`(θ; y, w, x)|y, w; θr} , (3.1)

where the expectation is with respect to the conditional distribution of the un-
observed variable X given (Y, W ). In particular, we can decompose Q(θ|θr) as
a sum of three components, the first being the log-likelihood related to the main
model for the response, the second being the log-likelihood for the error model,
and the third being the log-likelihood for the unobserved X, namely

Q(θ|θr)=E {`(θ; y|x, w)|y, w; θr}+E {`(θ; w|x)|y, w; θr}+E {`(θ; x)|y,w; θr}.
(3.2)

Then, the M-step performs the maximization of (3.1) with respect to θ, resulting
in a new estimate θr+1. Given a starting point θ0, the iteration between the
E-step and the M-step is repeated until convergence.

Since the analytical evaluation of the expectation in (3.1) is usually not
practical, we estimate it by means of a Monte Carlo approximation (Wei and
Tanner (1990)). Let f(x|y, w; θ) be the density function of the model relating
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X to (Y, W ). Suppose that M random samples x∗
r,1, . . . , x

∗
r,M , are simulated

from f(x|y, w;θr). Then, the Monte Carlo approximation of Q is

Qm(θ|θr) =
1
M

M∑
m=1

{
`(θ; y|x∗

r,m, w) + `(θ;w|x∗
r,m) + `(θ;x∗

r,m)
}

. (3.3)

The specification of f(x|y,w; θr) is usually difficult or even impractical in mea-
surement error problems. We propose to overcome this difficulty by means of im-
portance sampling. We can draw random samples of X from the density function
f(x; θr) of f(x|w; θr), which we assume has the same support as f(x|y, w; θr).
The importance density f(x|w; θr) or f(x; θr) can be known, as for example from
previous studies, or it can be estimated on validation data. Alternative flexible
choices of the importance density are discussed in Section 6. The importance
sampling Monte Carlo version of (3.3) is

Qm(θ|θr) =
1
M

M∑
m=1

kr,m

{
`(θ;y|x∗

r,m, w) + `(θ; w|x∗
r,m) + `(θ; x∗

r,m)
}

, (3.4)

where kr,m are importance weights. If the importance density is f(x; θr), then
kr,m = f(x∗

r,m|y, w; θr)/f(x∗
r,m; θr); else, if the importance density is f(x|w; θr),

then kr,m = f(x∗
r,m|y,w; θr)/f(x∗

r,m|w; θr). The expression of the importance
weights can be simplified. If we focus for example, on the importance density
f(x|w;θr), then

kr,m =
f(x∗

r,m|y, w; θr)
f(x∗

r,m|w; θr)
=

f(y|x∗
r,m, w; θr)

f(y|w;θr)
.

The value of the weights can be approximated by exploiting the available Monte
Carlo random samples x∗

r,m, m = 1, . . . ,M ,

kr,m ≈
f(y|x∗

r,m, w; θr)

M−1
∑M

m=1 f(y|x∗
r,m, w; θr)

,

thus involving only the distribution of Y given X, which is usually known. A sim-
ilar expression can be obtained when using the importance weights from f(x; θr).

The same MCEM procedure is straightforwardly adaptable to maximize the
logarithm of the pseudo-likelihood p`(β; y, w, λ̂) = log pL(β; y, w, λ̂). Suppose
that an estimate λ̂ of the nuisance parameter λ is available. Then, given a start-
ing point βr, the maximization of p`(β; y, w, λ̂) through an EM-type algorithm
entails the maximization of

Q(β|βr; λ̂) = E
{

p`(β; y|x,w)|y, w;βr, λ̂
}

+ E
{

p`(λ; w|x)|y,w; βr, λ̂
}

+E
{

p`(λ; x)|y, w; βr, λ̂
}

. (3.5)
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The expectation in (3.5) can be simplified by removing the last two terms, since
they do not depend on the interest parameter β. It follows that the Monte Carlo
approximation of (3.5) is

Qm(β|βr; λ̂) =
1
M

M∑
m=1

p`(β; y|x∗
r,m, w, λ̂),

where x∗
r,1, . . . , x

∗
r,M , are M random samples from f(x|y, w; βr, λ̂). As be-

fore, an importance sampling technique can be useful when simulating from
f(x|y,w; βr, λ̂) is not feasible. The maximization of Qm(β|βr; λ̂) with respect to
β can be performed by means of familiar routines available in standard softwares.

The maximization of the pseudo-likelihood (2.2) relies on assuming that an
estimate λ̂ of the nuisance parameter λ is available. A simple solution is to max-
imize the logarithm of the reduced likelihood r`(λ; w) = log rL(λ; w). When it
is not practical to express the integral in (2.3) in closed form, a MCEM approach
can still be applied. In this case, given a starting point λr, the maximization of
r`(λ) through an EM algorithm entails the maximization of

Q(λ|λr) = E {r`(λ;w|x)|w; λr} + E {r`(λ; x)|w; λr} ,

or of its approximation

Qm(λ|λr) =
1
M

M∑
m=1

r`(λ; w|x∗
r,m),

where x∗
r,1, . . . , x

∗
r,M , are M random samples from f(x|w; λr). Again, an impor-

tance sampling technique can be useful when simulating from f(x|w; λr) is not
feasible.

The MCEM-type algorithm described above allows likelihood and pseudo-
likelihood analysis to be suitable for problems with high-dimensional unobserved
covariates X, thus overcoming the curse of dimensionality affecting the quadra-
ture approximations of integrals. Furthermore, both nondifferential and differ-
ential measurement error or misclassification can be taken into account. No
restrictions are assumed on the error structure, and this is appealing because it
allows broad applicability of the method.

3.2. Remarks

In case of discrete X, the specification of the density f(x|w; θr) involves the
reclassification probabilities pr(X = x|W = w; θr), the marginal probabilities
of W = w, pr(W = w; θr), and of X = x, pr(X = x; θr), so that

pr(X = x|W = w; θr) =
pr(W = w|X = x;θr)pr(X = x; θr)

pr(W = w; θr)
. (3.6)
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In case of univariate dichotomous X, the misclassification probability pr(W
= w|X = x; θr) required in (3.6) is related to the sensitivity SN = pr(W =
1|X = 1; θr), and to the specificity SP = pr(W = 0|X = 0;θr), which can
be both known, for example, from the characteristics of the instruments used.
Alternatively, SN and SP can be estimated from additional data. Similarly, the
marginal distribution of W can be estimated from the data, while the marginal
distribution of X, after some simple algebra, is

pr(X =0) =
pr(W = w; θr)w {1−pr(W =w;θr)}1−w−SNw(1−SN)1−w

(1−SP )wSP 1−w−SNw(1−SN)1−w
,

and pr(X = 1) = 1 − pr(X = 0). A similar result holds in case of univariate
categorical X, with r categories. Let Π= Πwx = pr(W = w|X = x; βr) be the
r× r misclassification matrix, w ∈ {1, . . . , r}, x ∈ {1, . . . , r}. Then, the marginal
distribution of X can be derived as the solution of the system of linear equations

pr(W = 1)
pr(W = 2)

...
pr(W = r)

=


Π11 Π12 · · · Π1r

Π21 Π22 · · · Π2r
...

...
. . .

...
Πr1 Πr2 · · · Πrr

·


pr(X = 1)
pr(X = 2)

...
pr(X = r)

=Π·


pr(X = 1)
pr(X = 2)

...
pr(X = r)

 .

4. Asymptotics

4.1. Maximum likelihood estimator distribution

The asymptotic distribution of the maximum likelihood estimator θ̂ can be
approximated by a multivariate normal distribution with mean θ and variance-
covariance matrix Iθ(θ̂)−1, where Iθ(θ̂) is the observed information matrix for
θ evaluated at θ = θ̂, namely

n−1/2
(
θ̂ − θ

)
L→ MV N

{
0, Iθ(θ̂)−1

}
,

with L→ indicating the convergence in law. The quantity Iθ(θ̂) is provided by the
well-known result of Louis (1982) as the sum of

I1(θ|θ̂) = − ∂2

∂θ∂θT Q(θ|θ̂) and I2(θ|θ̂) = −var

{
∂

∂θ
`(θ; y, x|w)|y; θ̂

}
,

both evaluated at θ̂. The matrix I1(θ|θ̂) can be estimated by

− ∂2

∂θ∂θT Qm(θ|θ̂) = − 1
M

n∑
i=1

M∑
m=1

km,i
∂2

∂θ∂θT `(θ; yi,wi, x
∗
m,i),
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with x∗
m,i,m = 1, . . . ,M , being a random importance sample from the final

iteration of the EM algorithm for the i−th individual, and km,i being the corre-
sponding importance weights. Similarly, an estimate of I2(θ|θ̂) results from the
sum of

n∑
i=1

{
1
M

M∑
m=1

km,i
∂

∂θ
`(θ; yi, wi, x

∗
m,i)

∣∣∣∣
θ=

bθ

}
{

1
M

M∑
m=1

km,i
∂

∂θ
`(θ; yi,wi, x

∗
m,i)

∣∣∣∣
θ=

bθ

}T

and

− 1
M

n∑
i=1

M∑
m=1

km,i
∂

∂θ
`(θ; yi, wi,x

∗
m,i)

{
∂

∂θ
`(θ; yi, wi, x

∗
m,i)

}T
∣∣∣∣∣
θ=

bθ

.

4.2. Maximum pseudo-likelihood estimator distribution

Following Gong and Samaniego (1981), the distribution of the maximum
pseudo-likelihood estimator β̂ of the interest parameter β can be still approxi-
mated by a multivariate normal distribution. However, in this case, although the
mean is still equal to β, the covariance matrix must be derived in order to take
into account the uncertainty in estimating the nuisance parameter λ in the first
step of the algorithm. For ease of notation, let p`(β; yi,wi, λ) = p`i(β; λ) and
r`(λ;wi) = r`i(λ). Then, it can be shown that, under some regularity conditions
(Gong and Samaniego (1981), Liang and Self (1996)),

n−1/2
(
β̂ − β

)
L→ MV N (0,Σ) ,

where the covariance matrix Σ can be expressed as

Σ = I−1
ββ

(
Σββ − IβλI−1

λλΣλβ − ΣT
λβI−1

λλIT
βλ + IβλI−1

λλΣλλI−1
λλIT

βλ

)
I−1

ββ . (4.1)

See also Carroll et al. (2006, Sec. A.6.6). The sandwhich matrix Σ is composed
of the term Iββ , that is the covariance of the score function for β evaluated at
the true value (β, λ), and the middle term, the covariance of the score function
for β with λ = λ̂, accounting for the uncertainty of λ̂ in estimating λ. The
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components of the information matrix Σ are

Iββ = −
n∑

i=1

E

{
∂2p`i(β;λ)

∂β∂βT

}∣∣∣∣∣
λ=

bλ

, Iλλ = −
n∑

i=1

E

{
∂2r`i(λ)
∂λ∂λT

}
,

Iβλ = −
n∑

i=1

E

{
∂2p`i(β;λ)

∂β∂λT

}∣∣∣∣
λ=

bλ
,

Σββ =
n∑

i=1

∂p`i(β; λ)
∂β

∣∣∣∣
λ=

bλ

{
∂p`i(β;λ)

∂β

∣∣∣∣
λ=

bλ

}T
,

Σλβ =
n∑

i=1

∂r`i(λ)
∂λ

{
∂p`i(β; λ)

∂β

∣∣∣∣
λ=

bλ

}T
, Σλλ =

n∑
i=1

∂r`i(λ)
∂λ

{
∂r`i(λ)

∂λ

}T
.

The matrices Iββ and Iλλ can be computed by exploiting Louis (1982) formula
and a similar approach provides an expression also for Iβλ. Matrix Σββ can be
approximated by

n∑
i=1

{
1
M

M∑
m=1

km,i
∂

∂β
p`(β; yi, wi, x

∗
m,i, λ)

∣∣∣∣
λ=

bλ

}
{

1
M

M∑
m=1

km,i
∂

∂β
p`(β; yi,wi, x

∗
m,i, λ)

∣∣∣∣
λ=

bλ

}T

,

where x∗
m,i is a random importance sample from the final iteration of the im-

portance sampling EM algorithm with associated importance weights km,i. Ma-
trices Σλβ and Σλλ can be approximated similarly. Details are reported in Ap-
pendix A.1.

5. Simulation Studies

Extensive simulation studies have been performed with the aim of investi-
gating the behavior of the likelihood and the pseudo-likelihood methods under
different scenarios. The results are compared to those from the naive analysis
and from regression calibration, which is one of the most common methods for
measurement error correction, as described in the following section.

5.1. Regression calibration

Regression calibration (henceforth RC) (Rosner, Willett, and Spiegelman
(1989)) is a frequently used method originally developed to correct for continuous
mismeasured covariates X. The method develops in two steps. In the calibration
step, the unknown values of X are estimated by the conditional expectation of X

given W , that is X∗
RC = E(X|W ); in the regression step, a standard analysis is
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performed with X replaced by X∗
RC . Standard errors can be computed through

resampling techniques, such as the bootstrap. The method yields consistent
estimates of the parameters in linear regression but only approximately consistent
estimates in nonlinear regression models (Carroll et al. (2006, Chap. 4)). A
drawback of the method is that it is not suited to deal with differential errors.
Moreover, aside from additive homoschedastic measurement error structures the
results from RC may be misleading.

In the misclassification framework, an attempt at transposing the substitu-
tion idea underlying RC is due to Dalen et al. (2006). They propose to calibrate
the values of X, as in the first step of RC, and then to perform the regression step
with X replaced by the categorized version of X∗

RC . However, the simulation
studies performed by Dalen et al. (2006) show that the method is not successful
in improving the naive results, since high levels of bias are still retained in the
estimators.

5.2. Implementation of the MCEM algorithm

We implement the MCEM algorithm described in the previous paragraph
by using the R programming language (R Development Core Team (2009)), ver-
sion 2.10.1. The convergence of the MCEM algorithm is speeded up by substi-
tuting the maximization of the Qm(θ) function in the M-step with a one-step
Newton-Raphson procedure. Let ∆(θ) and H(θ) be, respectively, the gradient
and the Hessian of Qm(θ|θr), both evaluated at θ = θr. Their expression can
be obtained by exploiting the results of Louis (1982), see Appendix A.1. Thus,
according to the one-step Newton-Raphson method, the M-step provides the
updated vector θr+1 as θr+1 = θr − H(θr)−1∆(θr)T .

A standard stopping rule for the deterministic EM algorithm is to stop when
the relative difference between estimates in successive iterations is such that

max
i

(
|θr+1,i − θr,i|
|θr,i + ε1|

)
< ε2, (5.1)

where ε1 and ε2 are predetermined constants. We adopt the same stopping rule,
choosing ε1 = 0.001 and ε2 = 0.005, as suggested by Booth and Hobert (1999).
To reduce the risk of a premature stop, the algorithm is applied until the stopping
rule (5.1) is satisfied for three consecutive iterations.

5.3 Simulation details

We focus on regression models with a continuous or a discrete response vari-
able, namely a linear and a logistic regression model. Scenarios with continuous
or categorical covariates are taken into account. Either differential or nondiffer-
ential errors are considered. The simulation settings are specified as follows.
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(a) Misclassification model. We consider a logistic regression model logit{pr(Y =
1|X,Z)} = β0 + βXX + βZZ, with a discrete covariate X and an additional
continuous covariate Z correlated with X. Let X be a binary covariate, with
pr(X = 1) = 0.8. Values of Z are simulated from Normal(0.5 − x, 1.0).
The misclassification model is assumed to be nondifferential, with sensi-
tivity SN and specificity SP . The parameters of interest are set equal
to (β0, βX , βZ)T = (0.0, 1.0, 1.0)T , while the misclassification parameters
(SN, SP ) take values in {(0.9, 0.8), (0.8, 0.8), (0.8, 0.7)}.

(b) Multidimensional continuous X. We consider a logistic regression model
logit{pr(Y = 1|X1, X2)} = β0 + βX1X1 + βX2X2, with continuous cor-
related covariates X1 and X2. Value of X1 and X2 are simulated from
Normal(µ1, σ

2
1) and Normal(µ2, σ

2
2), respectively, with correlation ρX1X2 . The

measurement error is assumed to be nondifferential, W1 = X1 + ε and
W2 = X2 + ε, with W1 and W2 independent of each other given (X1, X2),
and ε being Normal(0.0, σ2

U ). The parameters of interest are set equal to
(β0, βX1 , βX2)

T = (0.0, 1.0, 1.0)T , the measurement error components are set
equal to (σ2

U , µ1, σ
2
1, µ2, σ

2
2)

T = (1.0, 0.0, 0.8, 0.0, 1.0)T , and the correlation
parameter ρX1X2 takes value in {0.0, 0.2, 0.5}.

(c) Replicates of X. We consider a logistic regression model logit{pr(Y = 1|X)}
= β0 + βXX, with a continuous covariate X. Values of X are simulated
from Normal(µX , σ2

X). Two replicated nondifferential mismeasured versions
of X are taken into account, W1 = X + ε1, W2 = X + ε2, where W1 and W2

independent given X, ε1 is Normal(0.0, σ2
1), and ε2 is Normal(0.0, σ2

2). The
availability of multiple surrogates for one unobserved X is typical in occupa-
tional exposure studies (Weller et al. (2007)). The parameters of interest are
set equal to (β0, βX)T = (0.0, 1.0)T , while those of the measurement error
component are chosen equal to (σ2

1, σ
2
2, µX , σ2

X)T = (1.0, 0.7, 0.8, 1.0)T .
(d) Differential misclassification due to dichotomization. We consider a linear

regression model Y = β0 +βV V + ε, with ε being a standard normal variable.
The predictor of interest, V , is the dichotomization of the continuous X at
threshold c, namely

V =
{

1, if X > c

0, if X ≤ c
,

as often arises in medical studies. We consider values of X generated from
Normal(µX , σ2

X) and c assuming values in {−1.0,−0.5, 0.0}. Suppose that a
nondifferential mismeasured version of X, W , is available together with its
dichotomization, V ∗, at threshold c. Gustafson and Le (2002), and previously
Flegal, Keyl, and Nieto (1991), show that the misclassification induced by V ∗

is differential. According to their notation, we refer to this kind of misclassi-
fication as being differential due to dichotomization. In our simulation study,
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we consider the nondifferential measurement error relating W to X being
classical, W = X + U , with U being Normal(0.0, σ2

U ). The parameters of in-
terest are set equal to (β0, βV )T = (0.0, 2.0)T , while those of the measurement
error components are chosen equal to (σ2

U , µX , σ2
X)T = (1.0, 0.0, 1.0)T .

In each scenario, the inferential interest is on the parameter vector β of the
model relating Y to X and to Z, if present. The parameter identifiability in
each scenario is guaranteed, provided that additional information is available. In
simulation settings a) and b), we suppose that an internal validation dataset of
size equal to 10% of the main data is available (see Appendix A.2). Instead, in
simulation setting c) the additional information is represented by the replicates
of X, while in simulation setting d) by the threshold c being fixed. The distri-
bution of X is supposed to be correctly specified for all the examined scenarios.
The problem of possible misspecification of the model is discussed in Section 6.
We performed 500 replications of the simulation experiment, each of them with a
sample size of n = 600. As starting points for the MCEM procedure, we took the
naive estimate for β and the estimate of (δ, γ) provided by the method of mo-
ments on the observations from W . Standard errors of the maximum likelihood
and pseudo-likelihood estimators were obtained by means of the procedure de-
scribed in Section 4, while the standard error for the RC estimators derived from
a bootstrap approach, with 100 bootstrap samples. The Monte Carlo sample size
m was chosen equal to 500 in case of continuous response and to m = 1,000 in
case of discrete response.

5.4. Simulation results

Results of the simulation studies performed under scenarios a)-d) are re-
ported in Tables 1−4. They refer to the naive analysis (Naive), the regression
calibration approach (RC ), the likelihood (Lik), and the pseudo-likelihood anal-
ysis (pLik). In case of misclassified variables, regression calibration follows Dalen
et al. (2006) (Round-RC ).

Correction methods are compared in terms of bias of the estimators of the
parameters (Bias) and associated standard errors (SE). The empirical standard
error of the estimates is also reported (Sim-SE). Finally, the efficiency of the
methods with respect to the likelihood approach is evaluated by computing the
ratio of the mean squared error of the estimators to that of the maximum likeli-
hood estimator (Relative MSE).

The simulation results highlight that the naive approach provides estimators,
which are notably more biased than alternatives, usually underestimating the
value of the parameters of interest. The poor performance of the method persists
under all the examined scenarios, and it is worse for large measurement error.
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Table 1. Bias, estimated standard error (SE), empirical standard error (Sim-
SE), and relative mean squared error (Relative MSE) of the estimators of
βX and βZ , for model a) in Section 5.3, with sensitivity SN and specificity
SP . Parameter estimators: naive analysis (Naive), regression calibration in
the version of Dalen et al. (2006) (Round − RC), likelihood analysis (Lik),
pseudo-likelihood analysis (pLik).

βX = 1.0 βZ = 1.0
Relative Relative

Bias SE Sim-SE MSE Bias SE Sim-SE MSE

(SN, SP) = (0.9, 0.8)

Naive -0.45 0.24 0.23 0.49 -0.09 0.11 0.10 0.72
Round-RC -0.45 0.24 0.25 0.49 -0.09 0.11 0.12 0.70

Lik 0.03 0.35 0.41 1.00 -0.01 0.12 0.13 1.00
pLik 0.01 0.36 0.39 0.96 0.01 0.12 0.13 0.97

(SN, SP) = (0.8, 0.8)

Naive -0.62 0.21 0.20 0.38 -0.11 0.11 0.11 0.67
Round-RC -0.62 0.21 0.21 0.38 -0.11 0.11 0.11 0.69

Lik -0.01 0.40 0.44 1.00 0.01 0.13 0.14 1.00
pLik -0.02 0.44 0.49 0.86 0.01 0.14 0.13 0.82

(SN, SP) = (0.8, 0.7)

Naive -0.69 0.21 0.22 0.37 -0.12 0.11 0.11 0.65
Round-RC -0.68 0.21 0.21 0.38 -0.12 0.11 0.11 0.69

Lik 0.04 0.43 0.52 1.00 0.02 0.13 0.14 1.00
pLik -0.07 0.48 0.52 0.80 -0.01 0.14 0.14 0.83

See, for example, Table 1, where the bias increases with the reduction of the
sensitivity and/or the specificity values. In the threshold model d), as Gustafson
and Le (2002) point out, the bias is stronger when the threshold c is larger
in magnitude. Despite a small variance with respect to other approaches, the
substantial bias of the naive estimators produces a high relative MSE.

The RC approach in case of continuous mismeasured covariates follows a
pattern similar to that of the naive analysis, although the consequences of mea-
surement error are less pronounced. Estimators of the parameters of interest still
retain some bias, as for example in Table 2. When focussing on discrete covari-
ates, the modified version of RC, suggested by Dalen et al. (2006), is dramatically
unsuccessful in correcting for misclassified X. The method maintains much of
the misclassification of the data and provides results close to the naive ones, see
Tables 1−4. This poor performance globally substantiates the findings by Dalen
et al. (2006).

Conversely, relying on a likelihood approach provides noticeable advantages
in correcting for measurement error or misclassification. Most of the measure-
ment error and misclassification is detected, thus giving rise to estimators with
a low bias, whatever scenario is of interest. The satisfactory performance is
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Table 2. Bias, estimated standard error (SE), empirical standard error (Sim-
SE), and relative mean squared error (Relative MSE) of the estimators of
βX1 and βX2 , for model b) in Section 5.3, with correlation ρX1X2 . Parameter
estimators: naive analysis (Naive), regression calibration (RC), likelihood
analysis (Lik), pseudo-likelihood analysis (pLik).

βX1 = 1.0 βX2 = 1.0
Relative Relative

Bias SE Sim-SE MSE Bias SE Sim-SE MSE

ρX1X2 = 0.0

Naive -0.62 0.07 0.07 0.16 -0.58 0.07 0.07 0.16
RC -0.13 0.31 0.27 0.56 -0.13 0.25 0.22 0.68
Lik 0.06 0.25 0.25 1.00 0.07 0.23 0.23 1.00
pLik 0.06 0.27 0.27 0.82 0.07 0.26 0.23 0.76

ρX1X2 = 0.2

Naive -0.59 0.08 0.08 0.20 -0.54 0.07 0.07 0.20
RC -0.14 0.32 0.28 0.58 -0.14 0.26 0.25 0.67
Lik 0.06 0.26 0.27 1.00 0.07 0.23 0.25 1.00
pLik 0.06 0.26 0.28 0.98 0.07 0.29 0.25 0.69

ρX1X2 = 0.5

Naive -0.55 0.08 0.08 0.31 -0.50 0.08 0.08 0.30
RC -0.15 0.44 0.36 0.43 -0.15 0.38 0.32 0.44
Lik 0.06 0.30 0.31 1.00 0.05 0.27 0.27 1.00
pLik 0.06 0.35 0.32 0.75 0.06 0.34 0.28 0.63

Table 3. Bias, estimated standard error (SE), empirical standard error (Sim-
SE), and relative mean squared error (Relative MSE) of the estimators of
β0 and βX , for model c) in Section 5.3. Parameter estimators: naive analy-
sis (Naive), regression calibration (RC), likelihood analysis (Lik), pseudo-
likelihood analysis (pLik).

β0 = 0.0 βX = 1.0
Relative Relative

Bias SE Sim-SE MSE Bias SE Sim-SE MSE

Naive 0.20 0.11 0.11 0.03 -0.31 0.09 0.10 0.14
RC -0.01 0.15 0.16 0.60 -0.05 0.15 0.15 0.77
Lik -0.01 0.12 0.13 1.00 0.01 0.14 0.15 1.00
pLik -0.01 0.14 0.13 0.67 0.02 0.15 0.14 0.78

maintained also under increasing measurement error and reducing sensitivity or
specificity. See, for example, Table 1 and Table 4. Under all the examined error
structures, there is a close agreement between the theoretically calculated stan-
dard errors and the simulated standard errors. Usually, they are both higher
than the naive standard errors as a consequence of taking into account the mea-
surement error variability.

Results remain satisfactory when applying the pseudo-likelihood approach.
The bias of the estimators is low and close to that of the maximum likelihood
estimators for all the examined scenarios. As in the likelihood approach, the
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Table 4. Bias, estimated standard error (SE), empirical standard error (Sim-
SE), and relative mean squared error (Relative MSE) of the estimators of
βV , for model d) in Section 5.3, with threshold c. Parameter estimators:
naive analysis (Naive), regression calibration in the version of Dalen et al.
(2006) (Round − RC), likelihood analysis (Lik), pseudo-likelihood analysis
(pLik).

βV = 2.0
Relative

Bias SE Sim-SE MSE

c = −1.0

Naive -1.24 0.12 0.13 0.02
Round-RC -1.25 0.13 0.13 0.02

Lik 0.02 0.17 0.17 1.00
pLik 0.10 0.18 0.24 0.68

c = −0.5

Naive -1.06 0.12 0.12 0.02
Round-RC -1.06 0.12 0.12 0.02

Lik -0.01 0.14 0.16 1.00
pLik -0.02 0.14 0.14 0.95

c = 0.0

Naive -1.01 0.11 0.11 0.02
Round-RC -1.00 0.11 0.12 0.02

Lik -0.03 0.13 0.14 1.00
pLik -0.07 0.13 0.15 0.83

standard errors theoretically calculated as described in Section 4.2 are close to
the simulated standard errors. As expected, the standard errors associated to
the maximum pseudo-likelihood estimators are slightly higher than those of max-
imum likelihood estimators, as a consequence of the separate estimation of the
nuisance parameters. Globally, the pseudo-likelihood approach provides estima-
tors with high levels of relative MSE, as for example in Table 1, thus gaining high
advantages in efficiency. In the meantime, the application of the method is com-
putationally convenient. In particular, time consumption for pseudo-likelihood
versus likelihood analysis is reduced about four times in models a) and c), and
slightly less than three times times in models b) and d). The computational
time is evaluated on the basis of ten independent replications of the simulation
experiment.

6. Sensitivity to Model Assumptions

The construction of the likelihood or pseudo-likelihood function can be prone
to model misspecification of the different components, with the subsequent risk
of unreliable inferential results. The problem mainly affects the unobserved X,
since the lack of additional information or of knowledge about the phenomenon
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precludes a proper specification of the model. Furthermore, as Guolo (2008)
points out, the situation is exacerbated when handling case-control data, since
the distribution of X in the case-control sampling scheme can notably differ from
that at the population level.

The issue has been addressed in the literature by suggesting a flexible mod-
eling of the distribution of X. For example, Carroll, Roeder, and Wasserman
(1999) and Richardson et al. (2002) focus on a mixture of normal variables. Alter-
natively, Guolo (2008) considers the skew-normal distribution (Azzalini (1985))
and shows that this distribution of X in the case-control sampling scheme re-
sults in likelihood estimation and inferences that are asymptotically correct, thus
adding robustness to the approach.

Following Guolo (2008), we specify a skew-normal distribution for X both as
a component of the pseudo-likelihood (2.2) specification, and as the importance
density in the E-step of the MCEM-type algorithm (Section 3.1).

A simulation study has been carried out to evaluate the performance of the
pseudo-likelihood approach and the competing methods to correct for mismea-
sured X when the distribution of X is modeled through the skew-normal. We
focus for simplicity on a univariate X ∼ SN(µX , σX , αX), with density function

fX(x; γ) = fX(x; µX , σX , αX) =
2

σX
φ

(
x − µX

σX

)
Φ

{
αX(x − µX)

σX

}
, (6.1)

where γ = (µX , σX , αX)T , µX , σX , αX are the location, the scale, and the
shape parameter, respectively, and φ(·) and Φ(·) represent the standard nor-
mal density and distribution functions. We consider a logistic regression model
logit{pr(Y = 1|X)} = β0 + βXX, with continuous X, with values simulated
from a Weibull distribution with shape and scale parameters equal to 2.0 and
0.5, respectively. The measurement error is assumed to be nondifferential and
additive on the log-scale, that is, log W = log X + ε, with ε being Normal(0, σ2

ε).
The parameters are set equal to (β0, βX , σ2

ε)
T = (0.0, 0.1, 0.32)T . We perform

500 replications of the simulation experiment, each of them with a sample size
of n = 600. The parameter identifiability is guaranteed by an internal validation
dataset of size equal to 10% of the main data (see Appendix A.2). As starting
points for the MCEM procedure we take the naive estimate for β and the esti-
mate σ2

ε provided by the method of moments based on the observations from W .
An initial estimate of γ can be obtained by fitting the skew-normal distribution
(6.1) on the observations of W . Simulation results are reported in Table 5.

Overall, simulation results recover the performance of the correction methods
experienced in previous studies reported in Section 5. The presence of measure-
ment error affects the naive estimator, as expected, by inducing a notable bias
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Table 5. Bias, estimated standard error (SE), empirical standard error (Sim-
SE), and relative mean squared error (Relative MSE) of the estimators of βX ,
for the model described in Section 5.5. Parameter estimators: naive analysis
(Naive), regression calibration (RC), likelihood analysis (Lik) under the
actual specification of the distribution of X, and pseudo-likelihood (pLik)
analysis under the skew-normal specification of the distribution of X.

βX = 1.0
Relative

Bias SE Sim-SE MSE

Naive -0.30 0.35 0.32 0.94
RC -0.67 0.16 0.16 0.42
Lik 0.02 0.45 0.42 1.00
pLik 0.05 0.45 0.44 0.97

of the estimator of βX . In the meantime, a substantial bias affects also the RC
estimator; the reason is that the method is well suited for classical additive mea-
surement error, not for a multiplicative structure. As in the previous simulation
studies, likelihood analysis is the preferable solution to correct for measurement
error, with low levels of bias of the βX estimator. Also the pseudo-likelihood
approach experiences a satisfactory performance. In fact, the bias of the estima-
tor of βX is low and close to that of the maximum likelihood estimator and the
relative MSE is very high, thus resulting in efficiency advantages. Resorting to
the skew-normal distribution of X in pseudo-likelihood analysis is encouraging,
since the approach provides results comparable to likelihood analysis based on
the correct distribution of X with only a slight increase of standard errors. Time
consumption for pseudo-likelihood versus likelihood analysis is reduced about two
times, on the basis of ten independent replications of the simulation experiment.

7. Examples

7.1. Tonga trench earthquakes data

(Fuller, 1987, Sec. 3.1) listed the data about the depth and location of 43
earthquakes occurring near the Tonga trench in the Pacific Ocean near Fiji,
between January 1965 and January 1966. Data are constituted by the depth Y of
the earthquakes, the perpendicular distance X1 from a line approximately parallel
to the Tonga trench, and the distance X2 from an arbitrary line perpendicular
to the Tonga trench. All the variables are measured in hundred of kilometers.
Following Sykes, Isacks, and Oliver, J. (1969), who previously analyzed the data,
Fuller (1987) suggests the regression of the depth on the locations have the form
E(Y ) = β0 + β1x1 + β2x

2
1 + β3x2, since the depths reasonably occur in a pattern

that curves away from the earth’s surface. Moreover, the measured distances
of the earthquake, W1 and W2, are subject to an error with variance of about
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100 kilometers squared. Schafer (2001) analyzes the same data according to a
semiparametric likelihood approach in which the distribution of the unobserved
Xs is left unspecified, then estimated by nonparametric maximum likelihood.
According to his suggestion about the measurement error distribution, we take
Wi = Xi + ε, i = 1, 2, with ε distributed as Normal(0, 100), and also suppose
that the measurement errors in the two directions are independent of one another,
given the true location.

The semiparametric approach of Schafer leads to the fitted model Ê(Y ) =
−20.4 + 0.51x1 + 0.00124x2

1 + 0.071x2, with standard error of the parameter
estimators equal to (13.2, 0.19, 0.00051, 0.041)T , respectively. We analyze the
data through the likelihood and the pseudo-likelihood approaches described in
the previous sections, with the distribution of X1 and X2 specified according
to a multivariate normal distribution. In both approaches, the correlation be-
tween X1 and X2 is found negligible. The maximum pseudo-likelihood esti-
mator of (β0, β1, β2, β3)T is (−19.3, 0.505, 0.00121, 0.073)T , with standard error
(7.6, 0.105, 0.00031, 0.031)T . The maximum likelihood estimator is almost identi-
cal to the maximum pseudo-likelihood one, with about the same standard error.
The Schafer (2001) results, as well as those obtained from our likelihood and
pseudo-likelihood approaches, are close to the naive ones. This is not a sur-
prise, since the measurement error variance is small when compared to the total
variance of the measures, about 0.01 for each measure.

7.2. A cholesterol study

We consider data extracted from the Lipids Research Clinics study, on the
risk of coronary heart disease as a function of blood cholesterol level. We fo-
cus on a portion of the data involving men aged 60 − 70 who do not smoke, a
total of 256 records. The case status Y occurs if a subject has had a heart at-
tack, an abnormal exercise electrocardiogram, a history of angina pectoris, or the
like. Covariates are low-density lipoprotein (LDL), cholesterol level, and total
cholesterol level (TCL). TCL may be considered as a surrogate of LDL, whose
direct measure is expensive and time consuming. Measurement error arises since
TCL provides a measure of LDL plus unknown quantities of other components
as triglycerides and high density lipoprotein. Thus, according to the notation
used above, X = LDL/100 and W = TCL/100. We assume a nondifferential
lognormal measurement error structure, that seems to be well supported by the
data (Roeder, Carroll, and Lindsay (1996)). In examining the data, we are in-
terested in modifying the predictor W in order to derive a discrete variable that
is commonly adopted to discriminate between optimal and non-optimal total
cholesterol levels. To this aim, we construct the predictor V ∗ by dichotomizing
W with respect to the threshold 2 (200 in the TCL scale).
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Using X as the covariate in the logistic regression model logit{pr(Y = 1)} =
β0+β1X provides an estimate of β1 equal to 0.656, with a standard error of 0.336.
The naive analysis with W substituting X, instead, provides an estimate β1 =
0.549, with a standard error of 0.313. The naive analysis based on V ∗ provides
an estimate of β1 equal to 0.488, with standard error 0.275. The maximum
likelihood estimate of β1 is 0.649, with an associate standard error of 0.405,
while the maximum pseudo-likelihood estimate is 0.651, with a standard error of
0.486.

8. Discussion and Final Remarks

In this paper we explored a pseudo-likelihood approach to correct for mis-
measured covariates in regression models. The method has been proposed as an
alternative to a full likelihood analysis, whose application can be cumbersome
mainly because of computational difficulties. The pseudo-likelihood we focused
on is a simplification of the likelihood function, expressed as a function of the in-
terest parameters only, while the nuisance parameters related to the measurement
error structure are fixed at pre-determined values. The asymptotic distribution
of the maximum pseudo-likelihood estimator and, in particular, its asymptotic
variance-covariance matrix are provided by exploiting the results of Gong and
Samaniego (1981).

We illustrated a convenient approach for parameter estimation based on a
MCEM-type algorithm. The procedure can accommodate both mismeasured
continuous and misclassified categorical covariates with no restrictions on the
measurement error structure. The algorithm is developed similarly for the like-
lihood and the pseudo-likelihood case, the latter in two steps. Extensive sim-
ulation studies show that the pseudo-likelihood approach provides satisfactory
results with small bias comparable to that of the maximum likelihood estima-
tor, while the price paid for avoiding the contemporary estimation of interest
and nuisance parameters is a modest increase of the standard error. Advantages
over the standard regression calibration are substantial. In particular, dramatic
improvements are obtained in case of categorical misclassified covariates, with
respect to regression calibration according to Dalen et al. (2006).

Given the difficulty of a correct specification of the distribution of the un-
observed X, we proposed a flexible modeling through the skew-normal family of
distributions, resorting to the results in Guolo (2008). Simulation studies suggest
that this specification within the pseudo-likelihood analysis leads to well-behaved
inferential conclusions.

The MCEM-type algorithm takes advantage of an importance sampling pro-
cedure in the E-step to simulate from the target conditional distribution of the
unobserved X given (Y, W ). Monte Carlo Markov Chain methods can be a
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convenient alternative in case of high-dimensional problems or target densities
of non-standard forms. The price to pay is a possibly slow convergence of the
algorithm to the stationary distribution and a difficult estimation of the standard
error of the parameter estimators (see Caffo, Jank, and Jones (2005)).

Care should be taken when using stochastic versions of the EM algorithm,
since the method can be prone to some challenges. A question of major interest
when applying a MCEM procedure is its convergence. In our study, we considered
the application of a deterministic rule, namely (5.1), for three consecutive times
in order to reduce the risk of a premature stop, as suggested by Booth and
Hobert (1999). Actually, alternative criteria can be applied which are based
on consecutive differences of the Q function (Caffo, Jank, and Jones (2005))
or on monitoring the likelihood gradient (Gu and Zhu (2001)). Furthermore,
the MCEM algorithm is known not to guarantee the convergence to a global
maximum; a common practice is to initialize the algorithm from different starting
points, although the procedure can be cumbersome as the parameter dimension
increases. The development of MCEM versions that overcome the problem of
convergence to a global maximum is a topic of increasing interest in the literature,
see Jank (2006a). We refer the reader to Jank (2006b) for a detailed review of
challenges related to stochastic EM algorithms and recent possible solutions.

In this paper, we followed a frequentist approach to inference, although
Bayesian analysis can also handle the models we focused on. We refer the reader
to Carroll et al. (2006, Chap. 6) for a detailed illustration of Bayesian methods
for measurement error problems, and to Gustafson (2004) for a Bayesian perspec-
tive on misclassification. Standard softwares, such as WinBUGS, are powerful
instruments for Bayesian analysis. In the measurement error context, the imple-
mentation of WinBUGS routines is illustrated in Carroll et al. (2006, Sec. 9.8.4).
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A. Appendix

A.1. Asymptotic variance-covariance matrix of the maximum pseudo-
likelihood estimator

Consider the logarithm of the pseudo-likelihood for β, p`(β; y, w, λ), as a
function of β with λ fixed at a predetermined estimate λ = λ̂. For simplicity,
we write p`(β; y, w, λ) = p`(β; λ) = log

∫
fY WX(y, w,x; β, λ)dx. An estimate
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of λ can be obtained by the reduced log-likelihood r`(λ; w) = r`(λ). Denote by
βf ′

Y WX(y, w, x; β, λ) and βf
′′
Y WX(y, w,x; β, λ) the first and second derivative

of fY WX(y, w, x; β,λ) with respect to β, respectively. A similar notation is
used when deriving fWX(w, x; λ) with respect to λ. Following Louis (1982), the
gradient of p`(β; λ) with respect to β is

∂p`(β; λ)
∂β

=
∫

βf ′
Y WX(y, w, x; β,λ)dx∫

fY WX(y, w, x; β, λ)dx
,

and, by multiplying and dividing the integrand in the numerator by
fY WX(y, w, x; β, λ), we obtain

∂p`(β; λ)
∂β

=
∫

∂ log fY WX(y, w, x; β,λ)
∂β

fX|Y W (x|y, w; β, λ)dx

= E

{
∂ log fY WX(y, w, x; β,λ)

∂β

∣∣∣∣ y, w; β, λ

}
= 1Sβ(β; λ).

The Hessian of p`(β; λ) with respect to β is

∂2p`(β; λ)
∂β∂βT

=
∫

βf
′′
Y WX(y, w, x; β,λ)dx∫

fY WX(y, w, x; β, λ)dx

−
∫

βf ′
Y WX(y, w,x; β, λ)dx{

∫
βf ′

Y WX(y,w, x;β, λ)dx}T

{
∫

fY WX(y, w, x; β, λ)dx}2

=
∫

βf
′′
Y WX(y, w, x; β,λ)dx∫

fY WX(y, w, x; β, λ)dx
− 1Sβ(β; λ)1ST

β (β; λ)

= E

{
βf

′′
Y WX(y, w, x; β, λ)

fY WX(y, w,x; β, λ)

∣∣∣∣∣ y, w; β, λ

}
− 1Sβ(β; λ)1ST

β (β; λ)

= E

{
∂2 log fY WX(y, w, x;β, λ)

∂β∂βT

∣∣∣∣ y,w; β, λ

}
+E

[
∂ log fY WX(y, w, x; β, λ)

∂β

{
∂ log fY WX(y, w, x; β, λ)

∂β

}T
∣∣∣∣∣ y, w; β, λ

]
−1Sβ(β; λ)1ST

β (β; λ).

The Monte Carlo estimate of the negative of ∂2p`(β; λ)/∂β∂βT evaluated at
λ = λ̂ is Iββ , as provided in Section 4.2.

In the same way, consider r`(λ) = log
∫

fWX(w,x; λ)dx. The gradient of
r`(λ) with respect to λ is

∂r`(λ)
∂λ

=
∫

λf ′
WX(w, x;λ)dx∫

fWX(w, x; λ)dx
.
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By multiplying and dividing the integrand in the numerator by fWX(w, x;λ),
we obtain

∂r`(λ)
∂λ

= E

{
∂ log fWX(w, x; λ)

∂λ

∣∣∣∣ w; λ
}

= 1Sλ(λ).

Similarly,

∂2r`(λ)
∂λ∂λT = E

{
∂2 log fWX(w, x; λ)

∂λ∂λT

∣∣∣∣ w; λ
}

+E

[
∂ log fWX(w, x; λ)

∂λ

{
∂ log fWX(w, x; λ)

∂λ

}T
∣∣∣∣∣ w; λ

]
−1Sλ(λ)1ST

λ (λ).

The Monte Carlo estimate of the negative of ∂2r`(λ)/∂λ∂λT is Iλλ, as provided
in Section 4.2.
The quantity Iβλ is obtained from the negative of the Monte Carlo estimate of

∂2p`(β; λ)
∂β∂λT

= E

{
∂2 log fY WX(y, w, x; β, λ)

∂β∂λT

∣∣∣∣ y,w; β, λ

}
+E

[
∂ log fY WX(y, w, x; β, λ)

∂β

{
∂ log fY WX(y, w, x; β, λ)

∂λ

}T
∣∣∣∣∣ y, w; β, λ

]
−1Sβ(β; λ)1ST

λ (λ).

The Monte Carlo estimate of ∂p`(β;λ)/∂β, ∂p`(β; λ)/∂λ, and ∂r`(λ)/∂λ are
necessary in the estimate of, respectively, Σββ , Σλβ, and Σλλ, as reported in
Section 4.2.

A.2. Extra Information

In applications, additional information may be available about the mismea-
sured covariates X. The additional information included in the inferential pro-
cess ensures parameter identifiability and it is helpful in specifying a distribution
for X and/or X|W . A common source of additional information is represented
by validation data. Suppose that n observations are available for (Y, W ). If we
focus on internal validation data of dimension n1, values of X are also avail-
able, while they are not for the remaining n2 = n − n1 observations. Thus, the
likelihood function (2.1) for θ based on the observed n1 + n2 = n data is

L(θ) =
n1∏
i=1

fY WX(yi, wi, xi; θ)
n∏

i=n1+1

∫
fY WX(yi, wi, xi; θ)dxi. (A.1)
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The maximization of the likelihood function (A.1) can exploit the MCEM strat-
egy described in Section 3 only with respect to the second component involving
the integral. The gradient and the Hessian of the likelihood function (A.1) can
be obtained as the sum of the gradient and of the Hessian for the first compo-
nent of the likelihood, provided by standard routines, and those for the second
component derived starting from the Louis (1982) results.
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