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Abstract: In this paper we discuss implementing Bayesian fully nonparametric re-

gression by defining a process prior on distributions that depend on covariates. We

consider the problem of centring our process over a class of regression models, and

propose fully nonparametric regression models with flexible location structures. We

also introduce an extension of a dependent finite mixture model proposed by Chung

and Dunson (2011) to a dependent infinite mixture model and propose a specific

prior, the Dirichlet Process Regression Smoother, which allows us to control the

smoothness of the process. Computational methods are developed for the models

described. Results are presented for simulated and for real data examples.
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1. Introduction

Standard regression techniques assume that observations y1, . . . , yn observed
at x1, . . . , xn, respectively, can be modelled as

yi = g(xi, γ) + εi, εi ∼ N(0, σ2), (1.1)

where N(µ, σ2) denotes a normal distribution with mean µ and variance σ2. Mis-
specification of either the mean function or the error distribution may lead to
biased estimates of the regression coefficients γ. For example, the error distribu-
tion may be heteroscedastic or have a changing numbers of modes. The model can
be robustified by assuming that the errors ε1, . . . , εn are modelled nonparamet-
rically. In the Bayesian literature, an initial step in this direction was taken by
Bush and MacEachern (1996) who assume that g(x, γ) is linear in the covariates
and that εi ∼ F where F is modelled by a Dirichlet process mixture of normals
(DPMN). The error distribution is flexibly modelled but does not depend on the
covariates. Leslie, Kohn, and Nott (2007) extend this approach to allow hetero-
geneity in the error distribution by assuming that εi = σ2(xi)ηi, where σ2(xi)
is a flexible functional form, and the ηi are drawn from a DPMN. This model
allows one aspect of the error distribution to depend on the covariates, but other
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aspects such as multi-modality are modelled through a single distribution. The
present paper is concerned with inference in the more general model

yi = g(xi, γ) + m(xi) + εi, εi ∼ k(εi|ψi), ψi ∼ Fxi , Fxi ∼ Π(H, ξ), (1.2)

where m(xi) has a flexible nonparametric prior, such as a Gaussian process (e.g.,
Rasmussen and Williams (2006)), k(εi|ψi) is a probability distribution with pa-
rameter ψi and Fxi is a distribution indexed by the covariates xi, while Π(H, ξ) is
a density regression prior centred over the distribution H with parameters ξ (so
that E[Fxi(B)] = H(B) for all B and xi). The distribution of εi, marginalising
over ψi, is a mixture of distributions of type k, which defines a flexible form.
Recently developed density regression priors express the distribution as

Fx
d=

∞∑
i=1

pi(x)δθi(x), (1.3)

where pi(x) is an infinite vector of probabilities such that
∑∞

i=1 pi(x) = 1.
MacEachern (2000) discusses the problem of specifying a prior for a collection
of distribution {Fx}x∈X for which the marginals Fx follow Dirichlet processes
(Ferguson (1973)). His single-p model assumes that pi(x) = pi for all x and
the changing distribution is modelled through a process for θ1, θ2, . . ., which has
been applied to group experimental data (De Iorio et al. (2004)), spatial problems
(Gelfand, Kottas and MacEachern (2005)) and quantile regression (Kottas and
Krnjajic (2009)). Several authors have instead considered a regression model for
pi(x). Dunson, Pillai and Park (2007) define dependent measures by allowing
each measure to be an average of several unknown, latent distributions. Specify-
ing weights that change with covariates allows the distributions to change. Griffin
and Steel (2006) (hereafter denoted by GS), Dunson and Park (2008), and Reich
and Fuentes (2007) exploit the stick-breaking construction of random measures.
GS use permutations of the breaks to induce dependence whereas Dunson and
Park (2008) and Reich and Fuentes (2007) introduce a kernel to allow breaks to
change over x. Chung and Dunson (2011) define a specific example of this type
of process, the Local Dirichlet process, which takes the kernel to be a ball of
radius φi around x. In this case, it is simple to relate the correlation in pi(x) to
the properties of the kernel and the choice of the prior for φi. One purpose of
this paper is to extend this class of models to the nonparametric case where we
have an infinite number of atoms. The methods developed in GS lead to prior
distributions centred over a single distribution. This paper discusses a method of
centring over a non-trivial model (in other words, allowing the centring distribu-
tion to depend on the covariates). Thus, we allow for two sources of dependence
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on covariates: dependence of the random probability measure on the covariates,
and dependence of the centring distribution on the same (or other) covariates.
Besides extra flexibility, this provides a framework for assessing the adequacy of
commonly used parametric models. We also propose a new density regression
prior which allows us to control its smoothness.

The paper is organised in the following way. Section 2 introduces the idea of
centring a nonparametric prior over a parametric model and develops a frame-
work for assessing the suitability of the parametric model for observed data.
Section 3 introduces a class of nonparametric priors for regression, including
the Dirichlet Process Regression Smoother (DPRS). Section 4 briefly discusses
computational methods for DPRS-based models, with more details of the im-
plementation available in Appendix B of the online supplement to the paper at
http://www.stat.sinica.edu.tw/statistica. Section 5 illustrates the use of
these models, and a final section concludes. Proofs are provided in Appendix A
of the online supplement.

2. Centring Dependent Nonparametric Models

Nonparametric priors for an unknown distribution, F , are usually centred
over a parametric distribution, H, by setting E[F (B)] = H(B) for measurable
sets B. It is useful to extend this idea to centre dependent nonparametric priors
over parametric regression models. The nonparametric prior will model aspects
of the conditional distribution that are not well captured by our parametric
centring model and, by centring, we can use prior information elicited for the
parametric model directly. If the parameters controlling the departures of the
fitted distribution from the centring model are given priors, then we can assess
how well our parametric model describes the data. The covariates used in the
parametric and nonparametric parts of the model are not required to be the
same, but x will generally denote the union of all covariates.

Definition 1. A nonparametric model is centred over a parametric model, with
parameters η, if the prior predictive distribution of the nonparametric model at
a covariate value x conditional on η coincides with the parametric model for each
covariate value.

In this paper we concentrate on centring over the standard regression model
with normally distributed errors in (1.1), where η = (γ, σ2). Centring then
implies defining a nonparametric prior for the distribution of εi whose predictive
distribution is a zero mean, normal distribution. We first consider centring the
model in (1.2) when m(x) = 0 for all x. A suitable centring model lets ψi = µi

and takes
k(εi|ψi) = N(εi|µi, a σ2), H ∼ N(0, (1 − a)σ2),

http://www.stat.sinica.edu.tw/statistica
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where 0 < a < 1, which is denoted by Model 1(a). Clearly, the prior predictive
distribution of yi−g(xi, γ) is a N(0, σ2) distribution. The parameterisation of the
model is discussed by Griffin (2010), who pays particular attention to prior choice.
Many distributional features, such as multi-modality, are more easily controlled
by a rather than ξ in (1.2). Small values of a suggest that the nonparametric
modelling is crucial. A uniform prior distribution on a supports a wide range of
departures from a normal distribution. The full model, denoted by Model 1(b),
can be centred as

yi − g(xi, γ) − m(xi) ∼ N(µi, a(1 − b)σ2), H ∼ N(0, (1 − a)(1 − b)σ2),

where m(x) follows a Gaussian process prior with m(x1), . . . ,m(xn) jointly nor-
mally distributed with constant mean 0, and the covariance of m(xi) and m(xj)
is bσ2ρ(xi, xj) with ρ(xi, xj) a proper correlation function. A popular choice of
correlation function is the flexible Matérn class (see e.g., Stein (1999)) for which

ρ(xi, xj) =
1

2τ−1Γ(τ)
(ζ|xi − xj |)τKτ (ζ|xi − xj |),

where Kτ is the modified Bessel function of order τ . This process is q times mean
squared differentiable if and only if q < τ , and ζ acts as a range parameter. The
parameter b can be interpreted as the proportion of residual variability explained
by the nonparametric Gaussian process estimate of m(x). If we consider the prior
predictive with respect to Fx we obtain the centring model yi ∼ N(g(xi, γ) +
m(xi), (1− b)σ2), whereas if we integrate out both Fx and m(x) with their priors
we obtain yi ∼ N(g(xi, γ), σ2).

Dependence on the covariates x enters in three different ways: it is used in
the parametric regression function g(x, γ), it intervenes in the process m(x), and
the distribution of the means µi depends on xi through the dependent random
probability measure, Π. The distribution of y given x is marginally a standard
nonparametric mixture of normals model.

Model 1(a), in combination with a density regression prior, can capture non-
linear relationships between the errors and regressors through changing weights
pi(x). The following proposition shows the autocorrelation structure of the kth
moment of the distribution Fx.

Proposition 1. Suppose that Fx =
∑∞

i=1 pi(x)δθi
where θ1, θ2, θ3, . . .

i.i.d.∼ H. If
µ

(k)
x =

∑∞
i=1 pi(x)θk

i , then

Corr
(
µ(k)

x , µ(k)
y

)
=

∑∞
i=1 E[pi(x)pi(y)]∑∞

i=1 E[p2
i (x)]

.
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Therefore, these priors imply that the autocorrelation structure does not
change with k. This seems unsatisfactory for many applications. For example,
the model would resemble a homoscedastic nonparametric regression model if
the variance had a large correlation over the range of the data but we might
want a different autocorrelation for the mean. The relatively crude correlation
structure described in Proposition 1 can lead to undersmoothing of the posterior
estimates of the distribution. In particular, the posterior mean E[y|x] will often
have a step form typical of piecewise constant models. Introducing a Gaussian
process to define Model 1(b) addresses this problem by allowing the first moment
of yi − g(xi, γ) to have a different correlation structure from all higher moments.

Models 1(a) and 1(b) illustrate an important advantage of centring over a
model: it provides a natural way to distinguish between the parametric depen-
dence on covariates, captured by g(x, γ), and the nonparametric dependence,
modelled through Fx and m(x). Thus, by choosing g(x, γ) appropriately, we
may find that the nonparametric modelling is less critical. This will be detected
by a large value of a and a small value of b, and will allow us to use the model
to evaluate interesting parametric specifications. Note that the interpretation
of γ is non-standard in this model, since E[yi|Fxi , γ, xi] is merely distributed
around g(xi, γ) and P (E[yi|Fxi , γ, xi] = g(xi, γ)) = 0 if yi is a continuous random
variable and H is absolutely continuous, which occurs in a large proportion of
potential applications. The predictive mean E[yi|γ, xi] still equals g(xi, γ), how-
ever. The prior uncertainty about this predictive mean increases as confidence in
the centring model (usually represented by one of the parameters in ξ) decreases.

One solution to this identifiability problem is to follow Kottas and Gelfand
(2001) who fix the median of εi, which is often a natural measure of centrality in
nonparametric applications, to be 0. If we assume that the error distribution is
symmetric and unimodal, then median and mean regression coincide (if the mean
exists). An alternative, wider, class of error distributions, introduced by Kottas
and Gelfand (2001) to regression problems, is the class of unimodal densities
with median zero (see Kottas and Krnjajic (2009) for extensions to quantile
regression). Extending the symmetric version of this model to our context yields
Model 2:

k(εi|ψi) ∼ U
([

−σ
√

(1 − b)ψi, σ
√

(1 − b)ψi

])
, H = Ga

(3
2
,
1
2

)
,

where U(A) is the uniform distribution on the set A and Ga(3/2, 1/2) represents
a Gamma distribution with shape 3/2 and mean 3. This choice of H corresponds
to a normal centring distribution and the model is centred exactly like Model
1(b).
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3. A Bayesian Density Smoother

This section develops a measure-valued stochastic process that can be used
as a prior for Bayesian nonparametric inference when we want to infer distri-
butions, {Fx}x∈X , where X is the space of covariates. It is stationary in the
sense that all marginal distributions Fx follow a Dirichlet process. We restrict
attention to Dirichlet process-based models since these methods dominate in the
literature and our approach follows these ideas naturally. The stick-breaking
representation of the Dirichlet process (Sethuraman (1994)) is given by (1.3)
without the dependence on x and with pi = Vi

∏
j<i(1 − Vj), where V1, V2, . . .

are i.i.d. with Vi ∼ Be(1,M) while θ1, θ2, . . . are i.i.d. from some distribution H.
A covariate-dependent stick-breaking process can be defined by only including a
subset of these V ’s at each x. If these subsets are similar for similar covariates,
then the distribution will change in a controlled way and effective inference will
be positive. We assume that the position θi does not depend on x. A similar idea
was implemented by GS using the πDDP prior. The process is also a non-trivial
generalisation of the independently proposed Local Dirichlet Process (Chung and
Dunson (2011)) from finite to infinite mixture models. This is achieved by intro-
ducing extra parameters t1, t2, . . . that determine the order in which points enter
the stick-breaking construction.

Definition 2. Let S(φ) be a shape characterized by a parameter φ, and (φ, t)
be a Poisson process with intensity f(φ) with associated marks (Vj , θj) that are
i.i.d. realisations of Be(1,M) and H, respectively. We define

Fx =
∑

{i|x∈S(φi)}

δθi
Vi

∏
{j|x∈S(φj), tj<ti}

(1 − Vj),

and say {Fx|x ∈ X} follows a Subset-based Dependent Dirichlet Process,
represented as S-DDP(M,H, f, S), where f is a non-negative function for which∫

I(x ∈ S(φ))f(φ)dφ > 0 for all x ∈ X .

Each marginal process Fx follows a Dirichlet process. This results from the
distribution of V1, V2, . . . and the infinite number of atoms included at each x.
This can be seen as follows: the number of points included in Fx is Poisson
distributed with mean

∫ ∫
I(x ∈ S(φ))f(φ)dφ dt. This number is almost surely

infinite if the condition
∫

I(x ∈ S(φ))f(φ)dφ > 0 for all x ∈ X is met. Any atom
θj only appears in the stick-breaking representation of Fx at points x which be-
long to a subset of X , and this allows atoms to “appear” and “disappear”. The
construction is general and could potentially be applied to arbitrary spaces if suit-
able shapes are available. However, as is common with nonparametric methods,
care needs to be taken in higher dimensions due to the “curse of dimensionality”.
Realisations of the distributions are discontinuous as are all moments. However,
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conditional prior predictive distributions and moments of y given x are continu-
ous. The dependence between distributions at different locations s and v can be
easily measured using the correlation of Fs(B) and Fv(B) for any measurable set
B.

Theorem 1. If F follows an S-DDP(M, H, f, S) process, then

Corr(Fs, Fv) =
2

M + 2
E

[ ∞∑
i=1

Bi

(
M

M + 1

)Pi−1
j=1 Aj

(
M + 1
M + 2

)Pi−1
j=1 Bj

]
, (3.1)

where Ai = I(s ∈ S(φi) or v ∈ S(φi)) and Bi = I(s ∈ S(φi) and v ∈ S(φi)).

If s, v ∈ S(φi) for all i then the correlation is 1. If s and v do not both fall in
any S(φi) then the correlation is 0. Suppose that the probability of observing a
shared element in each subsequence is constant given two covariate values s and
v and equals, say, ps,v. Then the following holds.

Theorem 2. The correlation between Fs and Fv is

Corr(Fs, Fv) = 2
[(M + 1)/(M + 2)]ps,v

1 + [M/(M + 2)]ps,v
=

2(M + 1)ps,v

2 + M(1 + ps,v)

where, for any k, ps,v = P (s, v ∈ S(φk)|s ∈ S(φk) or v ∈ S(φk)).

This correlation is increasing both in ps,v and M , the mass parameter of
the Dirichlet process, at each covariate value. As ps,v tends to the limits of
zero and one, the correlation does the same, irrespective of M . As M tends
to zero, the Sethuraman representation in (1.3) will be totally dominated by
the first element, and thus the correlation tends to ps,v. Finally, as M → ∞
(the Dirichlet process tends to the centring distribution) the correlation tends to
2ps,v/(1 + ps,v), as other elements further down the ordering can also contribute
to the correlation. Thus, the correlation is always larger than ps,v if the latter
is smaller than one. Note that the correlation between distributions at different
values of x will not tend to unity as M tends to infinity, in contrast to the πDDP
constructions proposed in GS. This is a consequence of the construction: some
points are not shared by the ordering at s and v no matter how large is M . The
correlation between drawings from Fs and Fv, given by Corr(Fs, Fv)/(M + 1)
(see GS), however, tends to zero as M → ∞. To make the result more applicable
in regression, we now give a specific, simple method for choosing the subset in
p-dimensional Euclidean space using a ball of radius r.

Definition 3. Let (C, r, t) be a Poisson process with intensity f(r) defined on
Rp × R2

+ with associated marks (Vj , θj) that are i.i.d. realisations of Be(1,M)
and H, respectively. If

Fx =
∑

{i|x∈Bri (Ci)}

δθi
Vi

∏
{j|x∈Brj (Cj), tj<ti}

(1 − Vj),
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where Br(C) is a ball of radius r around C, we say {Fx|x ∈ X} follows a Ball-
based Dependent Dirichlet Process, written B-DDP(M,H, f), where f is a
non-negative function on R+ (the positive half-line).

The intensity f can be any positive function. However, we usually take f to
be a probability density function. The following argument shows that defining f

more generally does not add to the flexibility of the model. If (C, r, t) follows the
Poisson process above, then writing C?

i = Ci, r?
i = ri, and t?i = ti/λ for λ > 0,

defines a coupled Poisson process (C?, r?, t?) with intensity λf(r). The ordering
of t and t? is the same for the coupled processes and the B-DDP only depends
on t through its ordering. It follows that distributions {Fx}x∈X defined using
(C, r, t) and (C?, r?, t?) are the same. In one dimension, we induce dependence
by associating each atom with an interval, and only using that atom in the
stick-breaking construction if the covariate value falls within that interval. The
definition could be easily extended to ellipsoids around a central point that would
allow the process to exhibit anisotropy. It is necessary to add the latent variable t

for Fx to be a nonparametric prior. The set T (x) = {i| |x−Ci| < ri} indicates the
atoms that appear in the stick-breaking representation of Fx. If we would instead
define a Poisson process on (C, r) on Rp ×R+ with intensity f , then T (x) would
be Poisson distributed with mean 2

∫
r f(r) dr. This integral can be infinite but

this has strong implications for the correlation structure. By including t we make
T (x) infinite for all choices of f and therefore define a nonparametric process. To
calculate the correlation function, and relate its properties to the parameters of
the distribution of r, it is helpful to consider ps,v. This probability only depends
on those centres from the set {Ck|s ∈ Sk or v ∈ Sk} = {Ck|Ck ∈ Brk

(s)∪Brk
(v)}.

Theorem 3. If {Fx}x∈X follows a B-DDP then

ps,v =
∫

ν (Br(s) ∩ Br(v)) f(r) dr∫
ν (Br(s) ∪ Br(v)) f(r) dr

,

where ν(·) denotes Lebesgue measure in the covariate space X .

So far, our results are valid for a covariate space of any dimension. However,
in the sequel, we will focus particularly on implementations with a covariate that
takes values in the real line. In this case, Theorem 3 leads to a simple expression.

Corollary 1. If {Fx}x∈X follows a B-DDP on R then

ps,s+u =
2µ2 − |u|I

4µ − 2µ2 + |u|I
,

where µ = E[r], I =
∫ ∞
|u|/2 f(r) dr, and µ2 =

∫ ∞
|u|/2 rf(r) dr, provided µ exists.
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Figure 1. The autocorrelation function for a Gamma distance distribution
with range 5 and shape α = 0.1 (dashed line), α = 1 (solid line) and α = 10
(dotted line).

Throughout, we assume the existence of a nonzero mean for r and define
different correlation structures through the choice of the distribution, f(r). We
focus on two properties of the autocorrelation, the first being the range, say x?,
which we take to be the distance at which the autocorrelation function takes the
value ε, so

ps,s+x? =
ε(M + 2)

M + 2 + M(1 − ε)
.

The second property is the mean square differentiability or the smoothness of the
process. In particular, a weakly stationary process on the real line is mean square
differentiable of order q if and only if the 2qth derivate of the autocovariance
function evaluated at zero exists and is finite (see e.g., Stein (1999)). In the case
of a Gamma distributed radius, we can derive the following result.

Theorem 4. If {Fx}x∈X follows a B-DDP with f(r) = [βα/Γ(α)]rα−1 exp{−βr},
then Fx is mean square differentiable of order q = 1, 2, . . . if and only if α ≥ 2q−1.

If each radius follows a Gamma distribution, then we can choose the shape
parameter, α, to control smoothness and the scale parameter, β, to define the
range, x?. A closed form inverse relationship is not available in general. However,
if we choose α = 1, which gives an exponential distribution, then

β =
2
x?

log
(

1 + M + ε

ε(M + 2)

)
. (3.2)

Figure 1 shows the form of the autocorrelation for various smoothness pa-
rameters and a range fixed to 5 (with ε = 0.05). Clearly the mass parameter
M , which is critical for the variability of the process, does not have much im-
pact on the shape of the autocorrelation function once the range and smoothness
are fixed. We concentrate on the Gamma implementation and work with the
following class.
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Definition 4. Let {C, r, t} be a Poisson process with intensity (βα/Γ(α))rα−1
i

exp{−βri} defined on Rp × R2
+, with associated marks (Vi, θi) that are i.i.d. re-

alisations of Be(1,M) and H. If

Fx =
∑

{i|x∈Bri (Ci)}

Vi

∏
{j|x∈Brj (Cj), tj<ti}

(1 − Vj)δθi
,

then we say {Fx|x ∈ X} follows a Dirichlet Process Regression Smoother
(DPRS), represented as DPRS(M,H,α, β).

Typically, we fix α and x? and put appropriate priors on M and any other
parameters in the model. We use a prior distribution for M that can be elicited
by choosing a typical value for M to be n0 and a variance parameter η. This
prior (discussed in GS) has the density function

p(M) =
nη

0Γ(2η)
Γ(η)2

Mη−1

(M + n0)2η
.

4. Computational Method

This section discusses how the nonparametric hierarchical models of Section
2 with a DPRS prior can be fitted to data using a retrospective sampler. Retro-
spective Sampling for Dirichlet process-based hierarchical models was introduced
by Papaspiliopoulos and Roberts (2008). Previous samplers based on the stick-
breaking representation of the Dirichlet process used truncation (e.g., Ishwaran
and James (2001)). The Retrospective Sampler avoids the need to truncate. The
method produces a sample from the posterior distribution of all parameters ex-
cept the unknown distribution. Inference about the unknown distribution often
requires the use of some truncation method. This makes the method comparable
to Pólya-urn based methods, which are reviewed by Neal (2000). Retrospec-
tive methods have been used for density regression models by Dunson and Park
(2008).

We assume that data (x1, y1), . . . , (xn, yn) have been observed that are hier-
archically modelled by

yi ∼ k(yi|ψi), ψi|xi ∼ Fxi , Fx ∼ DPRS(M,H,α, β).

The DPRS assumes that Fx =
∑∞

j=1 pj(x)δθj
, where θ1, θ2, . . .

i.i.d.∼ H and p

is constructed according to the definition of the DPRS. Additional parameters
can be added to the sampling kernel or the centring distribution, and these are
updated in the standard way for Dirichlet process mixture models. MCMC is



BAYESIAN NONPARAMETRIC MODELLING 1517

more easily implemented by introducing latent variables s1, s2, . . . , sn and re-
expressing the model as

yi ∼ k(yi|θsi), P (si = j) = pj(xi), θ1, θ2, . . .
i.i.d.∼ H.

The latent variables s = (s1, . . . , sn) are often called allocations, since si as-
signs the ith observation to the distinct elements of Fxi (i.e., ψi = θsi). We
define y = (y1, . . . , yn), θ = (θ1, θ2, . . .), and V = (V1, V2, . . .). The probability
p(si|xi, C, t, r, V ) is only non-zero if xi ∈ Br(C). Let (CA, rA, tA) be the Poisson
process (C, r, t) restricted to the set A, and let (θA, V A) denote the set of associ-
ated marks. If we define the set R = {(C, r, t)|x ∈ Br(C)} with its complement
RC , the posterior distribution can be written as

p(θ, s, t, C, r, V |y) ∝ p(y|θ, s)
n∏

i=1

p(si|xi, C, t, r, V )p(V )p(θ)p(C, r, t)

∝ p
(
y|θR, s

) n∏
i=1

p
(
si|xi, C

R, tR, rR, V R
)
p

(
V R

)
p

(
θR

)
× p

(
CR, rR, tR)p(V RC

)
p

(
θRC

)
p

(
CRC

, rRC
, tR

C
)

,

which follows from the independence of Poisson processes on disjoint sets. There-
fore we can draw inference using the restricted posterior distribution

p
(
θR, s, tR, CR, rR, V R|y

)
∝ p

(
y|θR, s

) n∏
i=1

p
(
si|xi, C

R, tR, rR, V R
)

× p
(
V R

)
p

(
θR

)
p

(
CR, rR, tR

)
.

We define a retrospective sampler for this restricted posterior distribution.
A method of simulating (CR, rR, tR) that is useful for our retrospective sampler
is: (1) initialize t1 ∼ Ga

(
1,

∫
R f(r) dC dr

)
, and (2) ti = ti−1 + xi where xi ∼

Ga
(
1,

∫
R f(r) dC dr

)
. Then (CR

1 , rR
1 ), (CR

2 , rR
2 ), . . ., are independent of tR1 , tR2 , . . .,

and we take i.i.d. draws from the distribution

p
(
CR

k |rR
k

)
= U

(
n∪

i=1

BrR
k
(xi)

)
, p

(
rR
k

)
=

ν
(∪n

i=1 BrR
k
(xi)

)
f(rR

k )∫
ν (

∪n
i=1 Bu(xi)) f(u) du

.

It is often hard to simulate from the conditional distribution of CR
k and to calcu-

late the normalising constant of the distribution of rR
k . It is usually simpler

to use a rejection sampler from the joint distribution of (C,R), conditioned
to fall in a simpler set containing R. For example, in one dimension we take



1518 J. E. GRIFFIN AND M. F. J. STEEL

d?(rk) = (xmin − rk, xmax + rk), where xmin and xmax are the minimum and max-
imum values of x1, . . . , xn and the rejection envelope is f?

(
CR

k , rR
k

)
, for which

f?(CR
k |rR

k ) = U
(
d?

(
rR
k

))
, f?(rR

k ) =
(xmax − xmin + 2rk) f(rR

k )∫
(xmax − xmin + 2u) f(u) du

.

Any values (CR
k , rR

k ) are rejected if they do not fall in R. If we use a DPRS where
rk follows a Gamma(α,β) distribution, then we sample rR

k from the rejection
envelope using a mixture distribution

f?
(
rR
k

)
= wfGa(α, β) + (1 − w)fGa(α + 1, β),

where w = (xmax − xmin)/(xmax − xmin + 2α
β ) and fGa(α, β) is the pdf of a

Ga(α, β) distribution. This construction generates the Poisson process under-
lying the B-DDP ordered in t and we use it to retrospectively sample the Poi-
son process in t (we can think of the DPRS as defined by a marked Poisson
process where tR follows a Poisson process and (CR, rR) are the marks). In
fact, the posterior distribution only depends on tR1 , tR2 , . . . through their order-
ing, and we can simply extend the ideas of Papaspiliopoulos and Roberts (2008)
to update the allocations s. The MCMC sampler defined on the posterior dis-
tribution parameterised by rR can have problems mixing. The sampler can
have much better mixing properties by using the reparameterisation from rR

to rR ?, where we let dil = |xi − Cl| and rR ?
i = rR

i − max{dij |si = j}. Con-
ditioning on rR ? = (rR ?

1 , rR ?
2 , . . .) rather than rR = (rR

1 , rR
2 , . . .) allows each

observation to be allocated to a distinct element. Initially, we condition on
s−i = (s1, . . . , si−1, si+1, . . . , sn) and remove si from the allocation. Let K−i =
max{s−i}, and let r

(1)
k = rR ?

j +max{djk|sj = k, j = 1, . . . , i− 1, i+1, . . . , n} and

r
(2)
k = rR ?

j + max({djk|sj = k, j = 1, . . . , i − 1, i + 1, . . . , n} ∪ {|xi − Cj |}). The
proposal distribution is

q(si = j) = c−1 ×


k(yi|θk)Vk(1 − Vk)Dk

∏
l<k(1 − Vl)

f
“

r
(2)
k

”

f
“

r
(1)
k

” j ≤ K−i

max
m≤K−i

{k(yi|θm)}Vk
∏

l<k(1 − Vl) j > K−i

,

where Dj = #
{

m
∣∣∣r(1)

j < dmsm < r
(2)
j , sm > j

}
and

c =
K−i∑
l=1

k(yi|θl)Vl(1 − Vl)Dl
∏
h<l

(1 − Vh)
f

(
r
(2)
l

)
f

(
r
(1)
l

) + max
l≤K−i

{k(yi|θl)}
∏

h≤K−i

(1 − Vh).

If j > K−i we need to generate (θK−i+1, VK−i+1, CK−i+1, dK−i+1), . . . , (θj , Vj , Cj ,
dj) independently from their prior distribution. A value is generated from this
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discrete distribution using the standard inversion method (i.e., simulate a uniform
random variate U and the proposed value j is such that

∑j−1
l=1 q(si = l) < U ≤∑j

l=1 q(si = l)). Papaspiliopoulos and Roberts (2008) show that the acceptance
probability of the proposed value is

α =

1 if j ≤ K−i

min
{

1,
k(yi|θj)

max1≤l≤K−i
k(yi|θl)

}
if j > K−i

.

The other full conditional distributions of the Gibbs sampler are given in
Appendix B of the online supplement.

5. Examples

This section applies the models developed in Section 2, in combination with
the DPRS of Section 3 to simulated data and two real data sets: the prestige
data (Fox and Suschnigg (1989)) and the electricity data of Yatchew (2003). As a
basic model, we took Model 1(a) with a regression function f(x) = 0. This model
tries to capture the dependence on x exclusively through the Dirichlet process
smoother. Model 1(b) is a more sophisticated version of Model 1, where m(x) is
modelled through a Gaussian process, as explained in Section 2. Finally, we also
used Model 2, which always has a Gaussian process specification for m(x). The
prior on M is as explained in Section 3, with n0 = 3 and η = 1 for all examples.
For the parameters a and b we adopted a Uniform prior over (0,1). The range
x? of the DPRS was such that the correlation was 0.4 at the median distance
between covariate values. Priors on σ2 and on the parameter of the Gaussian
process ζ were as in the benchmark prior of Palacios and Steel (2006), and we
fixed the smoothness parameter τ of the Gaussian process at 1.

5.1. Example 1: Sine wave

We generated 100 observations from the model yi = sin(2πxi) + εi where xi

were uniformly distributed on (0, 1) and the errors εi were independent and chosen
to be heteroscedastic and non-normally distributed. We considered two possible
formulations: Error 1 assumed that εi follows a t-distribution with zero mean,
2.5 degrees of freedom and a conditional variance of the form σ2(x) = (x−1/2)2,
thus 0 at x = 1/2 and increasing away from 1/2. Error 2 assumed that the error
distribution was a mixture of normals p(εi|xi) = 0.3N(0.3, 0.01) + 0.7N(−0.3 +
0.6xi, 0.01). This error distribution is bimodal at xi = 0 and unimodal (and
normal) at xi = 1. The first error distribution can be represented using both
a mixture of normals and a scale mixture of uniforms whereas the second error
distribution cannot be fitted using a mixture of uniforms. Initially, we assumed
Error 1. The results for Model 1(a) are illustrated in Figure 2 for three values
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Figure 2. Example 1 with Error 1: predictive conditional mean of y given
x for Model 1(a): α = 0.1 (dashed line), α = 1 (solid line), α = 10 (dotted
line). Data points are indicated by dots. The right panel presents a magnified
section of the left panel.

Table 1. Example 1 with Error 1: posterior median and 95% credible interval
(in parentheses) for selected parameters.

Model 1(a) Model 1(b) Model 2
σ 0.71 (0.48, 1.13) 0.64 (0.46, 0.96) 0.68 (0.49, 1.08)
a 0.09 (0.02, 0.24) 0.05 (0.01, 0.33)
b 0.75 (0.54, 0.88) 0.76 (0.53, 0.90)
ρ 0.53 (0.31, 0.96) 0.62 (0.31, 1.19)
M 0.38 (0.14, 0.95) 1.84 (0.61, 5.27) 1.57 (0.46, 3.64)

of α. Smaller values of α lead to rougher processes and the effect of its choice
on inference is clearly illustrated. In the sequel, we only present results where
α = 1.

Under Model 1(a), we infer a rough version of the underlying true distribution
function as illustrated by the predictive density in Figure 3. The small values of
a in Table 1 indicate a lack of normality. The results are similar to those of GS
who find that the estimated conditional mean is often “blocky”, which reflects
the underlying piecewise constant approximation to the changing distributional
form.

In the more complicated models the conditional location was modelled through
a nonparametric regression function (in this case a Gaussian process prior). Both
Model 1(b) and Model 2 assumed a constant prior mean for m(x). Introducing
the Gaussian process into Model 1 led to smaller values of σ, since some variabil-
ity can now be explained by the Gaussian process prior. However, the posterior
for a still favoured fairly small values, reminding us that even if the conditional
mean was better modelled with the Gaussian process, the tails were still highly
non-Normal (see Figure 4). The estimated posterior predictive distributions (as
depicted in Figure 3) were now much smoother. Both Model 1(b) and Model 2
led to large values for b and thus the variance of the Gaussian process (which
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Figure 3. Example 1 with Error 1: heatmap of the posterior predictive
density p(y|x) and plot of the posterior conditional predictive variance σ2(x)
(solid line) and the true value (dashed line).

Figure 4. Example 1 with Error 1: The posterior predictive distribution of
y given x using Model 1(a) (solid line) and Model 1(b) (dashed line)

better fits the true variability of the mean). This led to better estimates of the
conditional predictive variance, as illustrated in Figure 3. Clearly a model of this
type struggles with estimation at the extreme values of x, but the main part of
the functional form is well-recovered. The parameter ρ = 2

√
τ/ζ used in Table 1

is an alternative range parameter favoured by Stein (1999, p.51), and indicates
that the Gaussian process dependence of m(x) was similar for Model 1(a) and
Model 2. The posterior median values of ρ led to a range of the Gaussian process
of 1.89 and 1.61 for Models 1(b) and 2, respectively.

Results for data generated with the second error structure are shown in
Figure 5 and Table 2 (for selected parameters). Model 1(b) was able to infer
the bimodal distribution for small values of x and the single mode for large x as
well as the changing variance. Model 2 was not able to capture the bimodality
by construction and only captured the changing variability. In both cases the
mean was well estimated. Small values of a illustrate the difficulty in capturing
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Figure 5. Example 1 with Error 2: heatmap of posterior predictive density p(y|x),
plot of the posterior of m(x) indicating median (solid line), 95% credible interval
(dashed lines), and data (dots), and the posterior predictive error distribution
indicating the 2.5th, 25th, 75th, and 97.5th percentiles

Table 2. Example 1 with Error 2: posterior median and 95% credible interval
(in parentheses) for selected parameters.

Model 1(a) Model 1(b) Model 2
σ 0.70 (0.41, 1.66) 0.47 (0.34, 0.71) 0.54 (0.38, 0.98)
a 0.12 (0.02, 0.31) 0.13 (0.02, 0.38)
b 0.84 (0.66, 0.92) 0.84 (0.65, 0.94)

Figure 6. Prestige data: posterior distribution of the conditional mean in-
dicating median (solid line), 95% credible interval (dashed lines) and data
(dots).

the error structure. The large values of b indicate that the centring model (a
constant model with mean zero) does a poor job in capturing the mean.
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Table 3. Prestige data: posterior median and 95% credible interval (in
parentheses) for selected parameters

Model 1(a) Model 1(b) Model 2
σ 22.20 ( 14.80, 43.70 ) 20.00 ( 14.80, 30.00 ) 22.00 ( 16.20, 36.40 )
a 0.12 ( 0.03, 0.31 ) 0.28 ( 0.08, 0.69 )
b 0.66 ( 0.38, 0.85 ) 0.69 ( 0.40, 0.88 )

5.2. Prestige data

Fox (1997) considered the relationship between income and prestige of 102
occupations using the 1971 Canadian census. The prestige of the jobs was mea-
sured through a social survey. We treat income as the response and the prestige
measure as a covariate. The data is available to download in the R package car.
Figure 6 shows the fitted conditional mean. In all cases the relationship between
income and prestige show an increasing trend for smaller income before prestige
flattens out for larger incomes. The results are very similar to those described
in Fox (1997). The inference for selected individual parameters is presented in
Table 3. As in the previous example, the Gaussian process structure on m(x)
accounts for quite a bit of variability, rendering the error distribution not too far
from normal in Model 1(b), as indicated by the fairly large values of a.

5.3. Scale economies in electricity distribution

Yatchew (2003) considered a cost function for the distribution of electricity.
A Cobb-Douglas model was fitted,

tc = f(cust)+β1 wage+β2 pcap+β3 PUC+β4 kwh+β5 life+β6 lf+β7 kmwire+ε,

where tc is the log of total cost per customer, cust is the log of the number of
customers, wage is the log wage rate, pcap is the log price of capital, PUC is a
dummy variable for public utility commissions, life is the log of the remaining
life of distribution assets, lf is the log of the load factor, and kmwire is the log of
kilometres of distribution wire per customer. The data consist of 81 municipal
distributors in Ontario, Canada during 1993. We fitted the DPRS model with
cust as the covariate to ε and we centred the model over two parametric regression
models by choosing f(cust) as Parametric 1, γ1 + γ2 cust, and Parametric 2,
γ1 + γ2 cust + γ3 cust2.

The results of Yatchew (2003) suggest that a linear f(cust) is not sufficient
to explain the effect of number of customers. The results for selected parameters
are shown in Tables 4 and 5 when centring over Parametric 1 and over Parametric
2, respectively. When fitting both parametric models we see differences in the
estimates of the effects of some other covariates. The parameters β1 and β6 have
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Table 4. Electricity data: posterior median and 95% credible interval (in
parentheses) for selected parameters of Parametric model 1 (linear) and the
nonparametric models centred over Parametric model 1.

Parametric 1 Model 1(a) Model 1(b) Model 2
γ1 0.42( -4.14, 5.10) -0.70( -4.88, 3.20) -0.90( -4.98, 3.09) -0.67( -4.79, 4.30)
γ2 -0.07( -0.13, -0.02) -0.07( -0.14, -0.01) -0.10( -0.20, 0.02) -0.09( -0.20, 0.00)
β1 0.48( -0.25, 1.16) 0.67( 0.05, 1.20) 0.71( 0.07, 1.32) 0.70( 0.00, 1.53)
β4 0.12( -0.06, 0.31) 0.07( -0.10, 0.25) 0.04( -0.14, 0.22) 0.06( -0.14, 0.23)
β6 0.97( 0.03, 1.92) 1.11( 0.29, 2.00) 1.24( 0.40, 2.10) 1.19( 0.14, 2.04)
σ 0.17( 0.15, 0.21) 0.20( 0.14, 0.36) 0.23( 0.17, 0.39) 0.27( 0.19, 0.48)
a 0.19( 0.05, 0.45) 0.75( 0.25, 0.99)
b 0.41( 0.11, 0.77) 0.55( 0.21, 0.84)

Table 5. Electricity data: posterior median and 95% credible interval (in
parentheses) for selected parameters of Parametric model 2 (quadratic) and
the nonparametric models centred over Parametric model 2

Parametric 2 Model 1(a) Model 1(b) Model 2
γ1 2.77( -1.53, 6.96) 2.78( -1.83, 6.88) 2.52( -2.44, 7.56) 2.77( -4.20, 7.79)
γ2 -0.83( -1.19, -0.48) -0.92( -1.42, -0.41) -0.91( -1.69, -0.23) -0.96( -1.57, -0.32)
γ3 0.04( 0.02, 0.06) 0.05( 0.02, 0.07) 0.04( 0.01, 0.09) 0.05( 0.01, 0.08)
β1 0.83( 0.20, 1.48) 0.79( 0.16, 1.38) 0.80( 0.14, 1.43) 0.78( -0.03, 1.41)
β4 -0.02( -0.20, 0.15) -0.02( -0.22, 0.17) 0.00( -0.18, 0.18) 0.00( -0.18, 0.19)
β6 1.25( 0.38, 2.09) 1.31( 0.52, 2.18) 1.32( 0.47, 2.15) 1.31( 0.48, 2.59)
σ 0.16( 0.13, 0.19) 0.17( 0.14, 0.23) 0.21( 0.16, 0.34) 0.22( 0.16, 0.38)
a 0.13( 0.02, 0.40) 0.77( 0.24, 0.99)
b 0.30( 0.08, 0.75) 0.37( 0.15, 0.77)

larger posterior medians under Parametric 2, while β4 has a smaller estimate. If
we centre our nonparametric models over the linear parametric model then we see
the same changes for β1 and β6 and a smaller change for β4. Posterior inference
on regression coefficients was much more similar for all models in Table 5. In
particular, the parametric effect of customers was very similar for Parametric 2
and for all the nonparametric models centred over it. The estimated correction
to the parametric fit for the effect of customers is shown in Figure 7. For models
centred over the linear model, it shows a difference that could be well captured
by a quadratic effect, especially for Model 1(b) and Model 2.

Under both centring models, the importance of the nonparametric fitting of
the error sharply decreased as a Gaussian process formulation for the regression
function was used, as evidenced by the increase in a. Changing to a quadratic
centring distribution led to decreased estimates of b, indicating a more appro-
priate fit of the parametric part. This is corroborated by the nonparametric
correction to this fit as displayed in Figure 7.
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Figure 7. Electricity data: posterior mean of the nonparametric compo-
nent(s) of the model

6. Discussion

This paper shows how ideas from Bayesian nonparametric density estima-
tion and nonparametric estimation of the mean in regression models can be com-
bined to define a range of useful models. We introduce novel approaches to
nonparametric modelling by centring over appropriately chosen parametric mod-
els. This allows for a more structured approach to Bayesian nonparametrics, and
can greatly assist in identifying the specific inadequacies of commonly used para-
metric models. An important aspect of the methodology is separate modelling of
various components, such as important quantiles, like the median, or moments,
like the mean, that allows the nonparametric smoothing model to “do less work”.
These ideas can be used in combination with any nonparametric prior that allows
distributions to change with covariates. Here we have concentrated on one exam-
ple, the Dirichlet Process Regression Smoother (DPRS) prior, introduced in this
paper. We have concentrated on univariate regression problems but the methods
could be extended to higher dimensions. However, we imagine that computa-
tion will become harder with increasing dimension. The DPRS is related to the
πDDP methods of GS, but allows simpler computation (and without truncation)
through retrospective methods. The parameters of the DPRS can be chosen to
control the smoothness and the scale of the process.
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