
Statistica Sinica 18(2008), 1375-1393

NONPARAMETRIC BOOTSTRAP FOR K-FUNCTIONS

ARISING FROM MIXED-EFFECTS MODELS WITH

APPLICATIONS IN NEUROPATHOLOGY

Sabine Landau and Ian P. Everall

King’s College London and University of California, San Diego

Abstract: Neuropathological studies frequently determine the positions of cells on

multiple brain tissue sections taken from multiple individuals. Interest arises in

group comparisons of the spatial dependencies between cells, in particular the spa-

tial dependencies of a single cell type (clustering or regularity as measured by the

univariate K-function), or the spatial interaction of two different cell types (attrac-

tion or repulsion as measured by the bivariate K-function). While the nonpara-

metric statistical analysis of spatial dependencies in the one-way design is fairly

well-established, investigations often employ more complex designs. In this pa-

per we develop a residual bootstrapping approach for K-functions arising from a

general repeated measures design by assuming an underlying linear mixed-effects

model. We illustrate our methodology by re-analysing the spatial interaction be-

tween neurons and astrocytes (brain cells that are functionally related to neurons)

in a study of HIV associated dementia.

Key words and phrases: Bivariate point process, bootstrap, K-function, mixed-

effects model, neuropathology, nonstationarity, replicated spatial point pattern.

1. Introduction

Impaired functioning of brain cells has been hypothesized in brain disorders

such as depression, schizophrenia, or dementia. Such abnormalities might mani-

fest themselves as alterations of the cell densities and/or the spatial dependencies

between brain cells. For example, the degree of spatial aggregation (clustering

or regularity) of a brain cell type might be altered if non-random loss of this cell

type were to occur in a degenerative disease. Similarly the degree of spatial in-

teraction (attraction or repulsion) between two cell types might be affected. For

example, brain cells called astrocytes normally support neurons and are typically

found in their vicinity. So an impairment in the functional relationship between

these two types of cells might manifest itself by an alteration of the degree of

their spatial interaction. (We examine such a research question later.) To study

brain cell function, neuropathological investigations therefore often determine

the positions of cells on brain tissue sections from different groups of subjects
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(e.g., patients and controls), and compare cell densities as well as spatial cell

arrangement.
The resulting cell positions datasets can be considered as realisations of spa-

tial point processes. Brain tissue sections are typically cut coronally, that is,

reaching from the surface of the brain (the pia) to the grey-white matter junc-

tion. Coronal sections are thin relative to the cell sizes. In addition, coronal
sectioning is known to produce inhomogeneous neuronal cell patterns since neu-

rons are organised in the brain in (typically six) layers of differing densities that

run parallel to the pial surface. Thus under standard cutting practice, brain cell

positions have to be further considered as arising from planar inhomogeneous
point processes.

For homogeneous replicated cell patterns, effects of experimental factors on

densities can be analysed routinely in general purpose statistical packages using

appropriate methods for count outcomes; and recently methods have been sug-
gested that utilise replication to model spatial intensity for inhomogeneous cell

patterns (Wager, Coull and Lange (2004)). In contrast, approaches for analysing

spatial cell dependencies from replicated patterns are more restrictive. For some
classes of homogeneous point process models, fixed or mixed-effects model for-

mulations have been used to estimate process parameters from replicated point

patterns (for a fixed-effects model for pairwise interaction point processes, see

Diggle, Mateu and Clough (2000) and Mateu (2001); for a random-effects for-
mulation for Gibbs point processes, see Bell and Grunwald (2004)). Alterna-

tively, for the simple one-way design, nonparametric methods that make use of

the replication and do not have to rely on stationarity have been suggested (see

Diggle, Lange and Beneš (1991) for a residual bootstrap procedure to test over-
all group effects on the spatial aggregation of a univariate point process, and

Landau, Rabe-Hesketh and Everall (2004) for extensions to spatial interaction

of a bivariate process).

While nonparametric analysis of spatial cell dependencies has become more
widespread in pathological investigations (e.g., Asare, Dunn, Glass, McArthur,

Luthert, Lantos, and Everall (1996), Chana, Landau, Beasley, Everall, and Cotter

(2003) and Schladitz, Särkkä, Pavenstädt, Haferkamp, and Mattfeldt (2003)),

studies often employ more complex designs than can so far be accommodated by
this approach. Several cell patterns per individual might be subject to analysis,

and the effects of a number of continuous and/or categorical between- and/or

within-subject variables might be under investigation. Repeated cell patterns

per individual can arise due to multiple tissue sections, for example, from several
brain regions. In addition, the information from a single multi-type cell pattern

can be captured by several univariate or bivariate patterns when the research

question is focused on comparing spatial arrangements of certain cell types. (We

consider such a research question later.)
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This paper aims to further develop the nonparametric approach which allows
for inhomogeneous replicated point patterns to cover more general repeated mea-
sures designs. The existing approach operates first by summarizing the spatial
dependencies of the cell patterns by functions of distance, typically by empirical
K-functions, then modelling the relationship between expected K-function val-
ues and group by a one-way ANOVA type model for each distance, and finally
applying a residual bootstrap of entire K-function curves to derive inferences.
We propose to extend the approach by assuming an appropriate linear mixed-
effects model for empirical K-function values at a given distance. This provides a
framework that can account for correlation between cell patterns from the same
individual, and can accommodate any type of between-subject or within-subject
covariate.

We start by introducing a replicated spatial cell pattern dataset from a study
of HIV associated dementia for illustrative purposes. Section 3 briefly reviews
K-functions as measures of spatial aggregation and spatial interaction. Section 4
then specifies an appropriate mixed-effects model for repeated K-functions, and

Section 5 provides details of a residual bootstrap procedure for analysing such
functions. Section 6 concludes with a discussion.

2. Illustrative Example: HIV Associated Dementia Study

We re-analyse a replicated spatial point pattern dataset from a study of HIV
associated dementia (HAD) to illustrate our proposed methodology; in particular,
to show that the extended modelling framework enables inferences not previously
possible under the simple one-way design (Landau, Rabe-Hesketh and Everall
(2004)). All datasets and programs used are available from the Statistica Sinica
website (http://www3.stat.sinica.edu.tw/statistica).

Some patients with HIV disease develop HAD. A hypothesized mechanism is
that HIV infection in the brain may result in dysregulation of astrocytes which
are normally crucial for supporting neurons and preventing excitotoxic damage
to neurons. This dysregulation may lead to excitotoxic damage and neuronal
death, particularly for large or pyramidal neurons which are most vulnerable
to such damage. One way of assessing the experimental hypothesis of such a
mechanism is to look for a specific alteration of the spatial interaction between
large pyramidal neurons and astrocytes in HIV patients who have developed
dementia relative to those who have not. (For more background about the HAD
study see Roberts (2000).)

Brain tissue of 29 male patients who died of AIDS between 1985 and 1991 was
available from the Johns Hopkins Hospital, Baltimore, USA (for demographic and
clinical information, see Everall, Glass, McArthur, Spargo and Lantos (1994)).
Prior to death, the patients had been assessed clinically for the presence and

severity of HAD as rated on the Memorial Sloan-Kettering Scale (MSK, Price
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and Brew (1988)). This was used to classify the patients into three demen-
tia severity groups: non-demented group (7 patients, MSK stages 0 and 0.5),
moderately demented group (13 patients, MSK stages 1 and 2), and severely
demented group (9 patients, MSK stages 3 and 4). From each individual a brain
block was supplied from the superior frontal gyrus, at the level of the genu or the
corpus callosum. From each block a single thin coronal tissue section (5 microns
thickness) was prepared and stained for neurons and astrocytes. Since the aim
of the study was to examine the potentially different changes in HAD in the
spatial relationships of astrocytes with different types of neurons, the latter were
further classified into three subpopulations labelled “interneurons” (less than 4.9
microns in radius), “small pyramidal neurons” (radius from 4.9 to 6.9 microns)
and “large pyramidal neurons” (radius more than 6.9 microns) on the basis of
their size. (For more details of the data and discriminant analysis used to develop
this rule see Roberts (2000)).

Each of the 29 patients therefore provided a single multivariate cell pattern
containing cells of four different types. We captured the relevant information from
this by considering three bivariate cell patterns per subject, each representing the
spatial relationship between astrocytes and one of the neuronal cell types. This
was reasonable in our context since we were focused on the spatial relationships
between astrocytes and neuronal subtypes. However, it meant that we generated
three potentially correlated repeated bivariate cell patterns. Some of the bivariate
cell patterns are shown in Figure 1. The arrangement of neurons in layers is
apparent, especially for interneurons. Also noticeable is the relative scarcity of
large pyramidal neurons compared to other types of neurons. Astrocytes tended
to cluster in the layer adjacent to the pial surface (layer I).

3. K-functions as Measures of Spatial Proximities between Cells

We briefly review empirical K-functions as summary measures for spatial
pattern analysis.

3.1. The empirical K-function

For a stationary and isotropic process the theoretical univariate K-function,
K(t) ≡ (1/λ)E[number of cells within distance t of an arbitrary cell] where λ is
the intensity of the process, reflects spatial relationships between the cells. Com-
plete spatial randomness (CSR) asserts that given n events of the process in
planar region A, the spatial positions are an independent random sample from a
uniform distribution over A. Under CSR K(t) = πt2, and the value πt2 further
defines a benchmark for categorising the spatial aggregation of a univariate pro-
cess: K(t) > πt2 indicating clustering, and K(t) < πt2 indicating regularity at
distance t. Thus the ratio I(t) = K(t)/(πt2) provides a scale invariant measure
of the extent to which the univariate K-function exceeds its expectation under
CSR.
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Figure 1. Spatial positions of neurons (black open symbols) and astrocytes

(grey cross symbols) in grey matter for an individual from the non-demented

and severely demented groups (columns) by two neuronal subpopulations

(rows). The plots show cell positions and rectangular boundary boxes indi-
cating the search areas employed. The boundary boxes reach from the top

of layer I (the layer adjacent to the pial surface) to the grey-white matter

junction.
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Let ukj denote the distance between the kth and jth cell position of the

process in region A, |A| the area of the region and define It(u) to be 1 if u ≤

t and 0 otherwise. Then for a stationary and isotropic process, a commonly

employed asymptotically unbiased estimator for K(t) which takes account of edge

effects (Ripley (1981)) is given K̂(t) ≡ (|A|/n2){
∑n

k=1

∑n
j=1;j 6=k w−1

k
It(ukj)},

where n is the number of events of the cell process and wk is the proportion of

the circumference of the circle, with centre at the kth cell position and radius t,

which lies within A.

For two stationary and isotropic processes the theoretical bivariate K-func-

tion K12(t) ≡ (1/λ1)E[number of type 1 cells within distance t of arbitrary type

2 cell] where λ1 is the intensity of the type 1 cell process, reflects spatial in-

teraction between the two different types of cells. The hypothesis of spatial

independence between two stationary and isotropic univariate processes asserts

that the positions taken by one cell type are independent of those taken by the

other. Under spatial independence K12(t) = πt2, and the value πt2 further de-

fines a benchmark for categorising the spatial interaction between the two cell

processes: K12(t) > πt2 indicating attraction, and K12(t) < πt2 indicating repul-

sion at distance t. Thus the ratio I12(t) = K12(t)/πt2 provides a scale invariant

measure of the extent to which the bivariate K-function exceeds its expectation

under spatial independence.

Under stationarity and isotropy, two asymptotically unbiased estimators are

given by

K̂
(1)
12 (t)≡

|A|

n1n2

{ n1
∑

k=1

n2
∑

j=1

w−1
k It(ukj)

}

and K̂
(2)
12 (t)≡

|A|

n1n2

{ n2
∑

j=1

n1
∑

k=1

w−1
j It(ukj)

}

,

where ukj now denotes the distance between the kth cell position of process 1

and the jth cell position of process 2, and n1 and n2 are the number of cells of

type 1 and 2, respectively. These may be optimally combined into the empirical

bivariate K-function K̂12(t) ≡ {n2/(n1 + n2)}K̂
(1)
12 (t) + {n1/(n1 + n2)}K̂

(2)
12 (t)

(Lotwick and Silverman (1982)).

Under nonstationarity theoretical K-functions are not defined, and empiri-

cal K-functions can no longer be motivated as estimators with theoretical prop-

erties. However, as noted previously (Diggle, Mateu and Clough (2000)), they

retain a tangible scientific interpretation as nonparametric summary measures of

the degree of spatial aggregation (univariate cell pattern) or spatial interaction

(bivariate pattern). Thus in the context of inherently nonstationary processes

in neuropathological studies empirical K-functions remain outcomes of interest,

but their interpretation needs to take account of the fact that they may partially

reflect the nonstationarity mechanism (e.g., neuronal layering) itself.
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3.2. Constructing empirical K-functions for the HAD study

For each bivariate cell pattern the spatial interaction between astrocytes

and neuronal subtype was summarized by their empirical bivariate K-function.

For this purpose rectangular grey matter search areas were chosen so that they

reached as far as possible toward the potentially curved grey-white matter junc-

tion while keeping widths relatively stable across subjects. Since astrocytes

tended to be prominent in layer I near the pial surface, and appeared homo-

geneously distributed across the remaining layers (see Figure 1), layer I was

excluded from the search area in an attempt to reduce nonstationarity and ease

interpretation. This led to one cell pattern from the moderate group being ex-

cluded, since all astrocytes were located in layer I. Bivariate K-functions were

evaluated in steps of four microns up to a maximum search radius of tmax = 300

microns (about a quarter of the shorter side of the boundary boxes). The outcome

data for formal analysis therefore consisted of 84 empirical bivariate K-functions

corresponding to 28 patients and three neuronal types.

We previously carried out simulations to assess the effects of neuronal lay-

ering on empirical bivariate K-functions (see Landau, Rabe-Hesketh and Everall

(2004)). This showed that neuronal layering of a type similar to that observed in

the HAD study had only a minor impact. (The interaction index was increased

by 1.2% and 2.6% toward more attraction under moderate and severe layering.)

Here we interpret substantial departures from the stationary independence model

(interaction indices < 1 or > 1.03) as apparent cell interaction and not simply

layering effects.

4. Mixed-effects Model for Repeated Empirical K-functions

4.1. Basic two-level mixed-effects model

We assume that the K-function values at a given distance t ∈ {t1, . . . , tmax}

follow a two-level model. Specifically for subject i ∈ {1, . . . , N}, let Ki(t) denote

the mi-dimensional vector of repeated empirical K-function values at distance

t, Xi a known fixed-effects mi × p-design matrix, β(t) a p-dimensional vector of

fixed effects, Zi a known random-effects mi × q-design matrix whose columns are

typically a subset of the columns of Xi, bi(t) a q-dimensional vector of subject

random effects with expectation 0 and covariance matrix Ψ(t), and εi(t) a mi-

dimensional vector with expectation 0 and covariance matrix σ2(t)Λi(t). Then

a mixed-effects model for repeated empirical K-functions is given by

Ki(t) = Xiβ(t) + Zibi(t) + εi(t), i = 1, . . . , N. (4.1)
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The bi(t) and εi(t) are assumed to be independent for different subjects and

independent of each other. The level 1 variance-covariance matrices can be

written as σ2(t)Λi(t) = σ2(t)Vi(t)Ci(t)Vi(t), where Vi(t) is a diagonal matrix

with jth diagonal element vij(t)≡ [Var {εij(t)}/σ
2(t)]0.5, and Ci(t) is defined by

[Ci(t)]jk ≡Corr{εij(t), εik(t)}. The matrix of within-subject correlations, Ci(t),

is modelled by an (usually small) set of parameters that can vary with distance t.

4.2. Model for the sampling variances

The sampling variances of empirical K-functions depend on parameters of

the underlying spatial point process. It has been shown theoretically for station-

ary and isotropic processes (Stoyan, Kendall and Mecke (1987)), and by simu-

lation for layered non-stationary processes (Landau, Rabe-Hesketh and Everall

(2004)), that the variance of the empirical K-function for subject i and univari-

ate cell pattern j is approximately proportional to 1/(λijnij), where nij is the

number of cells and λij the expected density for that pattern. Similarly simu-

lations of two independent stationary and isotropic processes, or involving one

layered non-stationary process (Landau, Rabe-Hesketh and Everall (2004)) show

that the variance of the empirical bivariate K-function is approximately propor-

tional to 1/(λ0.5
1,ijλ

0.5
2,ijn

0.5
1,ijn

0.5
2,ij), where n1,ij and n2,ij are the numbers of cells of

the two types, and λ1,ij and λ2,ij the respective expected densities. Therefore to

account for process parameters we assume that the variance function at level 1

can be characterized by variance covariate values that do not vary with distance,

i.e.,

Var {εij(t)} = σ2(t)v2
ij (4.2)

with v2
ij ≡ 1/(λ̂ijnij) for modelling empirical univariate K-functions, or v2

ij ≡

1/(λ̂0.5
1,ij λ̂

0.5
2,ijn

0.5
1,ijn

0.5
2,ij) for empirical bivariate K-functions.

For simple one-way designs of empirical univariate K-functions, the pro-

portionality factors have been approximated by assuming constant search area

sizes (Baddeley, Moyeed, Howard and Boyde (1993), resulting in the choice v2
ij =

1/n2
ij) or by assuming that the expected cell densities vary little between subjects

(Diggle, Lange and Beneš (1991), with choice v2
ij = 1/nij). The appeal of the

latter approach is that it avoids having to estimate further process parameters

from the observed cell patterns. However, for most repeated measures applica-

tions, the assumption of constant expected densities across subjects and repeated

measures is bound to be unrealistic, e.g., when the repeated measures represent

coronal layers or when the repeated measures correspond to different types of

cells. In addition, neuropathological studies often also hypothesize differences in

expected densities across repeated measures and groups. We therefore suggest

estimating the expected densities.
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4.3. Repeated measures model for the HAD bivariate K-functions

We assumed that the 84 empirical bivariate K-functions followed a mixed
model at each distance t ∈ {4, 8, . . . , 300}. The fixed part Xiβ(t) of our mixed
model was parameterised so that it contained linear and quadratic effects of (or-
dinal) dementia groups (fixed effects β2(t) and β3(t)), differences between small
or large pyramidal neurons and interneurons (β4(t) and β5(t)), and respective in-
teraction terms (β6(t) to β9(t)). Sampling variances for processes similar to the
one at hand had previously been shown to follow the stipulated proportionality
relationship, and variance covariate values required to fully specify (4.2) were
estimated from a saturated model for expected densities.

The neuronal types defined the three repeated measures per subject. To iden-
tify an appropriate model for the correlations between the repeated K-function
values, simple fixed-effects models based on independent repeated measures were
fitted, residuals constructed, scaled to constant variances using the variance co-
variate values, and correlations estimated. This suggested the need for a more
complex correlation structure than could be accounted for by subject random
intercepts. (The three correlations varied considerably; reaching coefficients of
small positive size, small negative size and large negative size for the largest dis-
tances). We therefore opted for three (distance-varying) correlation parameters:

Ci(t) ≡





1 ρ12(t) ρ13(t)

ρ12(t) 1 ρ23(t)

ρ13(t) ρ23(t) 1





interneurons

small pyramidal neurons

large pyramidal neurons

.

5. Residual Bootstrap Procedure for Repeated K-functions

We now propose a residual bootstrap procedure for K-functions arising from
the model at (4.1) and (4.2).

5.1. Review of existing approaches and outline of proposed extensions

Existing residual bootstrap procedures for empirical K-functions, arising
from a one-way ANOVA type model, implement four basic steps: (i) fitting of
a simple fixed-effects model to K-functions at each distance separately to gen-
erate residual functions; (ii) standardisation of residual functions to equalise
their sampling variances across subjects; (iii) resampling of entire standardised
residual functions; and (iv) generation of bootstrap replicates of individual and
group mean K-functions. Generalisation of the modelling framework to the linear
mixed-effects model here necessitates a number of modifications.

A. Resampling of random effects bi(t) at subject level 2 as well as at level 1.

B. Preservation of the population covariance structure of the level-1 random
effects.
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C. Definition of a general estimator of parameter functions of interest.

D. Definition of a general test statistic.

We address A by implementing the residual bootstrap for multilevel models

proposed by Carpenter, Goldstein and Rasbash (2003) to operate on entire K-

function curves. Briefly, their procedure uses restricted maximum likelihood

(REML) estimators of the multilevel model parameters to generate empirical best
linear unbiased predictors (E-BLUPs) of the random effects at each level. These

are known to provide unbiased predictions under normality (Kackar and Harville

(1984)), and form the basis for independent resampling at each level. However,

empirical sample moments of E-BLUPs differ from population moments of the

random effects that they are predicting. While the random effects are assumed

to have a population mean of zero, the mean of a sample of predictions will not
necessarily be exactly zero, especially for higher level random effects and smaller

sample sizes. Secondly, and more importantly, the variability of a sample of E-

BLUPs is smaller than (the REML estimate of) the population variance of the

random effects for all sample sizes, and in this sense the crude predictions are

“shrunk” toward zero (Robinson (1991)). We therefore implement the Carpenter

et al transformation for restoring population properties before resampling E-
BLUPs.

Existing residual bootstrap methods transform level-1 residuals using only

Vi(t) to equalise sampling variances before resampling. This practice would lead

to resampled level-1 predictions that are independent between repeated measures

as well as subjects, which is clearly not appropriate under a linear mixed model

with Ci(t) 6= Imi
. To preserve the population covariance structure of the level-1

random effects, σ2(t)Λi(t), we suggest transforming level-1 predictions so that

the modified values are E-BLUPs of a random sample from a common popu-

lation with expectation 0 and variance σ2(t), resampling these, and then later

re-instating the population covariance structure by backtransformation.

We suggest making use of the mixed model for K-functions to provide estima-

tor functions for any linear combination of parameters (not only those involving
group means), and to provide a general form of a test for addressing hypotheses of

interest in spatial pattern investigations. The latter, in particular, requires some

care in defining an appropriate scalar test statistic and to keep computational

effort manageable.

5.2. Residual bootstrap procedure

Let β̂REML(t) denote the estimator of the fixed effects vector β(t) of the

model at (4.1) and (4.2) derived by REML estimation under normality. Fur-

ther let Ψ̂REML(t), σ̂2
REML(t) and Λ̂i,REML(t) denote the REML estimators of

the variance-covariance parameters that provide Σ̂i,REML(t) ≡ Côv[Ki(t)]. The
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E-BLUPS of the level-2 random effects, bi(t), i = 1, . . . , N , and the level-1 ran-

dom effects εi(t), i = 1, . . . , N , are derived by using expressions for the BLUPs

b̂i,BLUP(t) ≡ E{bi(t)|Ki(t)} and ε̂i,BLUP(t) ≡ {εi(t)|Ki(t)}, but with unknown

variance-covariance parameters replaced by their REML estimates.

Let S(t) denote the empirical q × q-variance-covariance matrix at level 2,

i.e., S(t) ≡ 1/N{b̂E−BLUP(t)T b̂E−BLUP(t)} with b̂E−BLUP(t) ≡ [b̂1,E−BLUP(t) · · ·

b̂N,E−BLUP(t)]T the matrix of (mean centred) level-2 E-BLUPS. For restoring

population properties at level 2 we require a matrix, A(t), so that the linear

transformation b̃(t) ≡ b̂E−BLUP(t)A(t) has an empirical covariance matrix equal

to the (estimated) population covariance matrix at level 2:

S̃(t) ≡
1

N
{b̃(t)T b̃(t)} = A(t)TS(t)A(t) = Ψ̂REML(t).

A linear transformation that achieves this is (Carpenter, Goldstein and Rasbash

(2003))

A(t) ≡

[

Ψ̂REML(t)0.5
{

S(t)0.5
}−1

]T

, (5.1)

where S(t)0.5 denotes a q × q-matrix that satisfies S(t)0.5{S(t)0.5}T = S(t).

For preserving the population covariance structure of the level-1 random

effects, σ2(t)Λi(t), we require a set of matrices, Bi(t), i = 1, . . . , N , so that

the linear transformations Bi(t)ε̂i,E−BLUP(t), i = 1, . . . , N , produce E-BLUPs of

a random sample from a common population with expectation 0 and variance

σ2(t). Linear transformations that achieve this are given by (Freedman and

Peters (1984) and Solow (1985))

Bi(t) ≡
{

Λ̂i,REML(t)0.5
}−1

, i = 1, . . . , N. (5.2)

We then suggest the following resampling procedure for E-BLUPs at level 1:

(i) transform the level-1 predictions ε̂i,E−BLUP(t) using the Bi(t), i = 1, . . . , N ;

(ii) mean-centre and correct the empirical variance of the transformed values ac-

cording to Carpenter et al’s procedure; (iii) resample the (corrected) transformed

level-1 predictions; (iv) backtransform these into level-1 bootstrap residual sam-

ples that exhibit heteroscedasticity and correlation by applying the inverse trans-

formations Bi(t)
−1, i = 1, . . . , N . Resampling of the E- BLUPs at level 2 involves

only two steps: (i) correct mean-centred level-2 predictions b̂i,E−BLUP(t) using

the transformation A(t), and (ii) resample the corrected level-2 predictions.

Our residual bootstrap procedure resamples entire curves, that is, the func-

tion values for the ith subject and jth repeated measure for different distances

t are kept together at all times. This preserves any covariances between values

at different distances (and avoids the need for modelling the latter explicitly).
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Resampling of predictor curves is carried out independently at both levels. This

breaks any correlation in line with the model assumption of independent random

effects. At level 2 subjects are sampled with replacement to provide bootstrap

replicates {b̃i′(t1)
∗, . . . , b̃i′(tmax)

∗}, i′ = 1, . . . , N . Note that the covariances of

the level 2 random effects are preserved since the sampling of subjects ensures

that multiple random effects predictions per subject are also kept together at all

times. At level 1 subjects and repeated measures are sampled with replace-

ment to (eventually) provide bootstrap replicates {ε̃i′j′(t1)
∗, . . . , ε̃i′j′(tmax)

∗},

i′ = 1, . . . , N ; j′ = 1, . . . ,mi′ of the heteroscedastic and correlated level-1 er-

rors.

K-functions can be rebuilt from the bootstrapped residual samples by defin-

ing

K̃i′(t)
∗ ≡ Zib̃i′(t)

∗ + ε̃i′(t)
∗ + Xiβ̂REML(t), i = 1, . . . , N, (5.3)

where ε̃i′(t)
∗ ≡ [ε̃i′1(t)

∗, . . . , ε̃i′m
i′
(t)∗]T and a bootstrap replicate of the esti-

mator statistic cT β̂REML(t) for the linear combination cT β(t) constructed by

cT β̃REML(t)∗ where β̃REML(t)∗ denotes the REML fixed effects estimator cal-

culated from the new K-function replicates. Repeated bootstrap resampling

then provides the sampling distribution of the estimator statistic. This simu-

lated distribution can then be used to construct confidence bands for cT β(t), t =

t1, . . . , tmax with pointwise confidence level 1−α by using percentiles or other rel-

evant methods (see Carpenter and Bithell (2000)). Since an analytic form of the

standard error of the estimator is readily available in linear mixed models boot-

strap t-confidence bands can be constructed (for details see Davison and Hinkley

(1997)).

We now consider a residual bootstrap procedure for formally testing

H0 : CTβ(t) = h0(t) for all t against H1 : CT β(t) 6= h0(t) for any t

where CT = [c1 · · · cq]
T , q ≤ p, and h0(t) = [h01(t) · · · h0q(t)]

T , contain known

values. Typically h0(t) ≡ 0 for all t but other choices might be of interest, for

example h0(t) ≡ πt2 for testing the CSR (univariate K-functions) or spatial inde-

pendence (bivariate K-functions) hypotheses. For confidence band construction

the bootstrap replicates of the K-functions are not restricted in any way, and we

simply add back the expected K-function values, Xiβ̂REML(t), to the resampled

residual functions as shown at (5.3). In contrast, for hypothesis test derivation

we need to generate the distribution of a test statistic under the null hypothesis.

The resampling plan therefore needs to be modified to add back K-function val-

ues expected under the null hypothesis, Xiβ̂REML,H0
(t). Computationally, this

is achieved by reparametrisation of the model so that the linear combinations to

be tested constitute parameters with explanatory variables that are orthogonal
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to the explanatory variables of the remaining parameters. The K-function val-

ues expected under the null hypothesis can then be estimated without re-fitting

the linear model, simply by using the linear predictor of the fitted models after

restricting the effect(s) in question to the hypothesized values.

The estimator, CT β̂REML(t), as a measure of effect size, provides the basis of

a test statistic. However, consideration needs to be given to how best to combine

q-dimensional effect estimates at different distances into a scalar test statistic.

In analogy with general linear models, we suggest using a quadratic test statistic

T ≡

tmax
∑

t=t1

{

CT β̂REML(t) − h0(t)
}T

[

CT
{

N
∑

i=1

XT
i Σ̂i,REML(t)−1Xi

}−1
C

]−1

×
{

CT β̂REML(t) − h0(t)
}

. (5.4)

The test statistic standardizes the estimated effects at each distance by their

estimated standard errors before combining effects across distances. Previous

approaches have used variance stabilizing transformations (Diggle, Lange, and

Beneš (1991) and Landau, Rabe-Hesketh and Everall (2004)) or distance weights

(Diggle, Mateu and Clough (2000)) to account for the increased variability of

empirical K-functions values at larger distances. We prefer (5.4) since it utilizes

the replication in the data rather than approximate theoretical relationships to

estimate distance weights, and also extends naturally to any q-dimensional linear

hypothesis.

5.3. Bootstrapping the HAD bivariate K-functions

The empirical bivariate K-functions were assumed to follow the model de-

scribed in Section 4.3. We now obtain inferences for the model parameters by

using the modified residual bootstrap. All results were produced in R (R De-

velopment Core Team (2004)) using the nlme (Pinheiro and Bates (2000)) and

splancs (Rowlingson and Diggle (1993)) packages; see http://www3.stat.sinica.

edu.tw/statistica.

For descriptive purposes we started by generating unbiased estimates and

confidence bands for the mean bivariate K-functions within dementia groups

and neuronal types. K-functions were resampled as described in the previous

section using 999 bootstrap simulations. Since the underlying model did not in-

clude any level 2 random effects, resampling operated at only one level. In this

instance transformation (5.2) (which used moderate-sized correlation estimates:

ρ̂23,REML(t) reaching 0.7 for most distances t; ρ̂12,REML(t) and ρ̂13,REML(t) con-

sistently negative around −0.3 and −0.5, respectively) turned out to be more

influential than transformation (5.1) (variance inflation factor after mean cen-

tring of the transformed residual: {84/(84 − 9)}0.5 = 1.06). Once K-function
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Figure 2. Group mean spatial interaction indices for neurons and astro-

cytes by neuronal subpopulation and dementia groups. Index function val-

ues above the threshold value 1 indicate apparent spatial attraction at the

respective distance, while values below this threshold indicate apparent spa-
tial repulsion. For each dementia group the relevant error bars indicate

point-wise 95% confidence intervals constructed by bootstrapping with 999

runs.

replicates were rebuilt according to (5.3), bootstrap replicates of the respective

estimator statistics and their estimated standard errors were also available and

could be converted into bootstrap t-confidence bands.

To ease interpretation, Figure 2 displays the results in terms of spatial in-

teraction indices. All estimated spatial interaction functions start at a value of

(or almost) zero due to no (very few) astrocytes being found within the very

small vicinities of the neurons (4 or 8 microns), and rapidly increase thereafter

reflecting a hard core effect. For interneurons and astrocytes the interaction

indices are continually increasing, eventually reaching attraction levels in the de-

mentia groups. However, the confidence bands for the non-demented group and

the moderately demented group (not shown completely in Figure 2 for graphical

clarity) include the reference line at y = 1.0 (and also lines drawn at y = 1.01

or y = 1.03), indicating consistency with the spatial independence model. For

small pyramidal neurons and astrocytes the three group-wise estimated spatial

interaction indices were similar and consistent with the spatial interaction model.
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Finally, for large pyramidal neurons, the spatial interaction indices in the non-

and moderately demented groups reached levels consistent with the independence

model, while the spatial relationship appeared repulsed in the severe group at

all distances. (Note that the increased widths of the confidence bands for large

pyramidal neurons relative to interneurons and small pyramidal neurons are a

reflection of the relative scarcity of large pyramidal neurons due to variance func-

tion assumption (4.2), see Figure 1.)

The experimental hypothesis of dysfunctional astrocytes translated into an

assessment of the interaction between the experimental factors dementia group

(here coded as two separate contrasts) and neuronal cell type with regard to the

spatial interaction between neurons and astrocytes (here measured by bivariate

K-functions). We therefore tested the following:

(i) interaction between neuronal type and linear trend of dementia grading

H
(I)
0 : CT

1 β(t) ≡

[

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

]

β(t) =

[

β6(t)

β7(t)

]

=

[

0

0

]

for all t,

and (ii) interaction between neuronal type and quadratic trend of dementia grad-

ing

H
(II)
0 : CT

2 β(t) ≡

[

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

]

β(t) =

[

β8(t)

β9(t)

]

=

[

0

0

]

for all t,

against respective two-sided alternative hypotheses. Using quadratic test statis-

tics of the form (5.4), the linear effect of dementia varied with neuronal type at

the trend level (p = 0.10), while the observed K-functions were consistent with

a constant quadratic effect for all three neuronal types (p = 0.92). We therefore

dropped the latter interaction effect and also the main quadratic trend of demen-

tia grading after further testing (p = 0.80). The nature of the detected interac-

tion was such that, while spatial interaction between astrocytes and interneurons

appeared more attracted for severely demented subjects than for non-demented

subjects, the relationship between astrocytes and small pyramidal neurons was

not affected in dementia, and the relationship between astrocytes and large pyra-

midal neurons became more repulsed (Figure 2).

The final model further served to quantify the size of the effects. Fig-

ure 3 shows the estimated differences between the bivariate K-functions in the

severely demented and non-demented groups for each neuronal type, together

with pointwise 95% bootstrap t-confidence bands. Figure 3 gives results in terms

of index differences representing absolute differences in percentage change from

the expected value under independence. For example, compared with the non-

demented group, the estimated spatial interaction index for interneurons at dis-

tance 200 microns was 19.3% higher in the severely dementia group.
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Figure 3. Difference in spatial interaction indices for neurons and astrocytes

between severely demented and non-demented patients by neuronal subpop-

ulation. Differences above the threshold value 0 indicate increased appar-

ent attraction in the severely demented group relative to the non-demented

group, and vice versa. The bands indicate pointwise 95% confidence bands

constructed by bootstrapping with 999 runs.

We were able to directly address the experimental hypothesis that changes

in spatial interaction with astrocytes in HAD depended on the type of neuron.

The finding of an increased repulsion restricted to large pyramidal neurons is

consistent with the excitotoxic damage hypothesis. In addition, the estimated

correlations between the repeated measures showed that, within dementia groups,

those subjects demonstrating more repulsion between astrocytes and large pyra-

midal neurons also tended to show more repulsion with small pyramidal neurons,

consistent with a common function of pyramidal neurons. In contrast, increased

repulsion with pyramidal neurons was associated with increased attraction with

interneurons.

6. Discussion

We have described a nonparametric(perhaps one should say semi-parametric)

residual bootstrap procedure for obtaining statistical inferences in linear mixed-
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effects models for repeated empirical K-functions. The procedure extends ex-

isting approaches (Diggle, Lange and Beneš (1991) and Landau, Rabe-Hesketh,

and Everall (2004)) to repeated measures designs, and provides a general mod-

elling framework for the analysis of spatial cell dependencies, for example, to

adjust for confounding variables or to investigate higher order effects.

While described here as an inference procedure for two-level mixed models

for repeated K-functions, the bootstrap approach is in principle applicable to

general multilevel models of K-functions. The residual resampling procedure

described for the subject level (level 2) would simply have to be repeated at

all higher levels. Thus an investigation assessing the spatial patterning of cells

from multiple brain regions from several family members could be envisaged as

a three-level model.

The suggested bootstrap approach for mixed-effects models for K-functions

can yet be more generally considered a nonparametric procedure for obtaining

inferences in multivariate mixed-effects models without specifying the correlation

structure between the multiple dependent variables. The only aspect that is

specific to K-functions is the modelling of the effect of process parameters on the

precision of the function values. Thus the bootstrap approach could be used for

spatial proximity functions other than K-functions, e.g., the F-, G- or J-functions

(van Lieshout and Baddeley (1996)) and/or carried over to proximity functions

for three-dimensional space (e.g., Baddeley, Moyeed, Howard and Boyde (1993)),

provided that relationships between precisions and process parameters can be

accommodated.

In practice, the use of summary measures such as the K-functions seems

the best way forward. Fully parametric approaches for the analysis of replicated

spatial point patterns have been proposed (Diggle, Mateu and Clough (2000),

Mateu (2001) and Bell and Grunwald (2004)). These might provide more pow-

erful inferences if a suitable bivariate point process model could be identified.

However, this might prove difficult, especially when inhomogeneities have to be

modelled and the gain in power might not be that great. In a simulation study,

Diggle, Mateu and Clough (2000) showed that the nonparametric approach was

reasonably powerful compared to the parametric approach even when the point

patterns were generated from the correct point process model. (The study also

confirmed that the parametric approach was not robust against mis-specifications

of the point process model.)

An appealing feature of the bootstrap approach is that it is based purely

on replication rather than stationarity, since histological structures, and coronal

brain sections in particular, often display inhomogeneities. However, nonstation-

arity does affect the interpretation of spatial proximity measures in that detected

effects can relate to the nonstationarity mechanism rather than cell relationships
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per se. But at least the association between a combined measure of nonstation-

arity and cell interaction and explanatory variables can be formally investigated,

and this we consider to be of value in itself. In this context a natural progression

of our methodology that may provide for more clearcut interpretation, would

be to adapt it to work with more refined summary functions. For example, an

analogue of the K-function for measuring the interaction between points arising

from an inhomogeneous process (Baddeley, Møller and Waagepetersen (2000)),

or, if a suitable nonstationary point process model could be fitted to each cell

pattern, their resulting K-function estimators, could be investigated.

A limitation of our proposed methodology is that variance covariate values,

introduced to account for the dependence of the precision of K-functions on point

process parameters, are assumed known. In practice they have to be estimated

and the associated extra variability is currently ignored in our inferential proce-

dures. Future work should look at ways of accounting for the imprecision of the

variance covariate value estimates.
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